1
|
Zhao B, Jiang W, Wang J, Sheng G, Wang Y, Meng K, Yang T. A prognostic signature of fatty acid metabolism-related genes for predicting survival of gastric cancer patients. J Biochem Mol Toxicol 2024; 38:e23687. [PMID: 38515005 DOI: 10.1002/jbt.23687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
To analyze the expression profile of fatty acid metabolism (FAM)-related genes, identify a prognostic signature, and evaluate its clinical value for gastric cancer (GC) patients. The mRNA expression profiles of 493 FAM-related genes were obtained from TCGA database. Differentially expressed genes (DEGs) between cancer and non-cancer samples were identified, and their relationships with overall survival (OS) of GC patients were evaluated. A prognostic signature of FAM-related genes was identified by the LASSO regression model, and its predictive performance was tested by an independent external cohort. Ninety-three DEGs were identified, of which 44 were downregulated and 49 were upregulated. After optimizing risk characteristics, a prognostic signature of four FAM-related genes (ACBD5, AVPR1A, ELOVL4, and FAAH) were developed. All patients were divided into high-risk (>1.020) and low-risk groups (≤1.020) on the basis of the median risk score. Survival analysis indicated that high-risk patients had a shorter OS than low-risk patients (5-year OS rate, 26.3% vs. 45.0%, p < 0.001). The AUC values for the prediction of 3-year and 5-year OS were 0.664 and 0.624, respectively. In the GSE62254 data set, the 5-year OS rate of high-risk and low-risk patients were 44.7% versus 61.5%, respectively (p = 0.003). The AUC values were 0.632 and 0.627 at 3-year and 5-year prediction. The prognostic signature of FAM-related genes was an independent predictor of OS (hanzard ratio [HR] for TCGA cohort: 1.851, 95% confidence interval [CI]: 1.394-2.458, p < 0.001; HR for GSE62254: 1.549, 95% CI: 1.098-2.185, p = 0.013). The risk signature of four FAM-related genes was a valuable prognostic tool, and it might be helpful for clinical management and therapeutic decision of gastric cancer patients.
Collapse
Affiliation(s)
- Bochao Zhao
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Jingchao Wang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Guannan Sheng
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Yiming Wang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Kewei Meng
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| | - Tao Yang
- Department of Gastrointestinal Surgery, Tianjin First Central Hospital, Nankai District, Tianjin, China
| |
Collapse
|
2
|
Phosphorylation of CaMK and CREB-Mediated Cardiac Aldosterone Synthesis Induced by Arginine Vasopressin in Rats with Myocardial Infarction. Int J Mol Sci 2022; 23:ijms232315061. [PMID: 36499387 PMCID: PMC9738971 DOI: 10.3390/ijms232315061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022] Open
Abstract
Both aldosterone and arginine vasopressin (AVP) are produced in the heart and may participate in cardiac fibrosis. However, their relationship remains unknown. This study aims to demonstrate the regulation and role of AVP in aldosterone synthesis in the heart. Rats were subjected to a sham operation or myocardial infarction (MI) by ligating the coronary artery. Cardiac function and fibrosis were assessed using echocardiography and immunohistochemical staining, respectively. In addition, the effects of AVP stimulation on cardiac microvascular endothelial cells (CMECs) were studied using ELISA, real-time PCR, and Western blotting. Compared with the rats having undergone a sham operation, the MI rats had an increased LVMI, type I collagen composition, and concentrations of aldosterone and AVP in the heart but decreased cardiac function. As the MI rats aged, the LVMI, type I collagen, aldosterone, and AVP increased, while the LVMI decreased. Furthermore, AVP time-dependently induced aldosterone secretion and CYP11B2 mRNA expression in CMECs. The p-CREB levels were significantly increased by AVP. Nevertheless, these effects were completely blocked by SR49059 or partially inhibited by KN93. This study demonstrated that AVP could induce the secretion of local cardiac aldosterone, which may involve CaMK and CREB phosphorylation and CYP11B2 upregulation through V1 receptor activation.
Collapse
|
3
|
Centrone M, D’Agostino M, Ranieri M, Mola MG, Faviana P, Lippolis PV, Silvestris DA, Venneri M, Di Mise A, Valenti G, Tamma G. dDAVP Downregulates the AQP3-Mediated Glycerol Transport via V1aR in Human Colon HCT8 Cells. Front Cell Dev Biol 2022; 10:919438. [PMID: 35874817 PMCID: PMC9304624 DOI: 10.3389/fcell.2022.919438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022] Open
Abstract
Vasopressin (AVP) plays a key function in controlling body water and salt balance through the activation of the vasopressin receptors V1aR and V2R. Abnormal secretion of AVP can cause the syndrome of inappropriate antidiuresis that leads to hyponatremia, which is an electrolyte disorder often observed in the elderly hospitalized and oncologic patients. Beyond kidneys, the colonic epithelium modulates water and salt homeostasis. The water channel AQP3, expressed in villus epithelial cells is implicated in water absorption across human colonic surface cells. Here, the action of dDAVP, a stable vasopressin analog, was evaluated on the AQP3 expression and function using human colon HCT8 cells as an experimental model. Confocal and Western Blotting analysis revealed that HCT8 cells express both V1aR and V2R. Long-term (72 h) treatment with dDAVP reduced glycerol uptake and cell viability. These effects were prevented by SR49059, a synthetic antagonist of V1aR, but not by tolvaptan, a specific V2R antagonist. Of note, the SR49059 action was impaired by DFP00173, a selective inhibitor of AQP3. Interestingly, compared to the normal colonic mucosa, in the colon of patients with adenocarcinoma, the expression of V1aR was significantly decreased. These findings were confirmed by gene expression analysis with RNA-Seq data. Overall, data suggest that dDAVP, through the V1aR dependent pathway, reduces AQP3 mediated glycerol uptake, a process that is reversed in adenocarcinoma, suggesting that the AVP-dependent AQP3 pathway may represent a novel target in colon diseases associated with abnormal cell growth.
Collapse
Affiliation(s)
- Mariangela Centrone
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Mariagrazia D’Agostino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Pinuccia Faviana
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, Pisa, Italy
| | | | | | - Maria Venneri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- *Correspondence: Grazia Tamma,
| |
Collapse
|
4
|
Khegay II. Vasopressin Receptors in Blood Vessels and Proliferation of Endotheliocytes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021040129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Zhao N, Peacock SO, Lo CH, Heidman LM, Rice MA, Fahrenholtz CD, Greene AM, Magani F, Copello VA, Martinez MJ, Zhang Y, Daaka Y, Lynch CC, Burnstein KL. Arginine vasopressin receptor 1a is a therapeutic target for castration-resistant prostate cancer. Sci Transl Med 2020; 11:11/498/eaaw4636. [PMID: 31243151 DOI: 10.1126/scitranslmed.aaw4636] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Castration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7. AR-V7 lacks a ligand-binding domain and is linked to poor prognosis. We previously showed that VAV3 enhances AR-V7 activity to drive CRPC progression. Gene expression profiling after depletion of either VAV3 or AR-V7 in CRPC cells revealed arginine vasopressin receptor 1a (AVPR1A) as the most commonly down-regulated gene, indicating that this G protein-coupled receptor may be critical for CRPC. Analysis of publicly available human PC datasets showed that AVPR1A has a higher copy number and increased amounts of mRNA in advanced PC. Depletion of AVPR1A in CRPC cells resulted in decreased cell proliferation and reduced cyclin A. In contrast, androgen-dependent PC, AR-negative PC, or nontumorigenic prostate epithelial cells, which have undetectable AVPR1A mRNA, were minimally affected by AVPR1A depletion. Ectopic expression of AVPR1A in androgen-dependent PC cells conferred castration resistance in vitro and in vivo. Furthermore, treatment of CRPC cells with the AVPR1A ligand, arginine vasopressin (AVP), activated ERK and CREB, known promoters of PC progression. A clinically safe and selective AVPR1A antagonist, relcovaptan, prevented CRPC emergence and decreased CRPC orthotopic and bone metastatic growth in mouse models. Based on these preclinical findings, repurposing AVPR1A antagonists is a promising therapeutic approach for CRPC.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Stephanie O Peacock
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Chen Hao Lo
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Laine M Heidman
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Meghan A Rice
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Cale D Fahrenholtz
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ann M Greene
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fiorella Magani
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Valeria A Copello
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Maria Julia Martinez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yushan Zhang
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yehia Daaka
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Conor C Lynch
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA. .,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
6
|
Sinha S, Dwivedi N, Tao S, Jamadar A, Kakade VR, Neil MO, Weiss RH, Enders J, Calvet JP, Thomas SM, Rao R. Targeting the vasopressin type-2 receptor for renal cell carcinoma therapy. Oncogene 2020; 39:1231-1245. [PMID: 31616061 PMCID: PMC7007354 DOI: 10.1038/s41388-019-1059-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
Arginine vasopressin (AVP) and its type-2 receptor (V2R) play an essential role in the regulation of salt and water homeostasis by the kidneys. V2R activation also stimulates proliferation of renal cell carcinoma (RCC) cell lines in vitro. The current studies investigated V2R expression and activity in human RCC tumors, and its role in RCC tumor growth. Examination of the cancer genome atlas (TCGA) database, and analysis of human RCC tumor tissue microarrays, cDNA arrays and tumor biopsy samples demonstrated V2R expression and activity in clear cell RCC (ccRCC). In vitro, V2R antagonists OPC31260 and Tolvaptan, or V2R gene silencing reduced wound closure and cell viability of 786-O and Caki-1 human ccRCC cell lines. Similarly in mouse xenograft models, Tolvaptan and OPC31260 decreased RCC tumor growth by reducing cell proliferation and angiogenesis, while increasing apoptosis. In contrast, the V2R agonist dDAVP significantly increased tumor growth. High intracellular cAMP levels and ERK1/2 activation were observed in human ccRCC tumors. In mouse tumors and Caki-1 cells, V2R agonists reduced cAMP and ERK1/2 activation, while dDAVP treatment had the reverse effect. V2R gene silencing in Caki-1 cells also reduced cAMP and ERK1/2 activation. These results provide novel evidence for a pathogenic role of V2R signaling in ccRCC, and suggest that inhibitors of the AVP-V2R pathway, including the FDA-approved drug Tolvaptan, could be utilized as novel ccRCC therapeutics.
Collapse
Affiliation(s)
- Sonali Sinha
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nidhi Dwivedi
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shixin Tao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Abeda Jamadar
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Vijayakumar R Kakade
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Maura O' Neil
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert H Weiss
- Division of Nephrology and Comprehensive Cancer Center, University of California, Davis, CA, USA
- Medical Service, VA Northern California Health Care System, Sacramento, CA, USA
| | - Jonathan Enders
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - James P Calvet
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sufi M Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Reena Rao
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
7
|
Selvam R, Jurkevich A, Kuenzel WJ. Distribution of the vasotocin type 4 receptor throughout the brain of the chicken,Gallus gallus. J Comp Neurol 2014; 523:335-58. [DOI: 10.1002/cne.23684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Rajamani Selvam
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville Arkansas 72701
| | - Alexander Jurkevich
- Molecular Cytology Research Core Facility; University of Missouri; Columbia Missouri 65211
| | - Wayne J. Kuenzel
- Center of Excellence for Poultry Science; University of Arkansas; Fayetteville Arkansas 72701
| |
Collapse
|
8
|
Chen J, Aguilera G. Vasopressin protects hippocampal neurones in culture against nutrient deprivation or glutamate-induced apoptosis. J Neuroendocrinol 2010; 22:1072-81. [PMID: 20673301 PMCID: PMC2939937 DOI: 10.1111/j.1365-2826.2010.02054.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Vasopressin (VP) secreted within the brain modulates neuronal function by acting as a neurotransmitter. Recent studies show that VP prevents serum deprivation-induced apoptosis in the neuronal cell line, H32. To determine whether VP is anti-apoptotic in hippocampal neurones, primary cultures of these neurones were used to examine the effect of VP on neuronal culture supplement (B27) deprivation-, or glutamate-induced apoptosis, and the signalling pathways mediating the effects. Removal of B27 supplement from the culture medium for 24 h or the addition of glutamate (3-10μm) decreased neuronal viability (P<0.05) and increased Tdt-mediated dUTP nick-end labelling (TUNEL) staining and caspase-3 activity (P<0.05), which is consistent with apoptotic cell death. VP (10 nm) reduced B27 deprivation- or glutamate-induced cell death (P<0.05). These anti-apoptotic effects of VP were completely blocked by a V1 but not a V2 receptor antagonist, indicating that they are mediated via V1 VP receptors. The anti-apoptotic effect of VP in neurones involves activation of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and inositol trisphosphate/protein kinase B (Akt) signalling pathways. This was shown by the transient increases in phospho-ERK and phospho-Akt after incubation with VP revealed by western blot analyses, and the ability of specific inhibitors to reduce the inhibitory effect of VP on caspase-3 activity and TUNEL staining by 70% and 35%, respectively (P<0.05). These studies demonstrate that VP has anti-apoptotic actions in hippocampal neurones, an effect that is mediated by the MAPK/ERK and phosphatidylinositol-3 kinase/Akt signalling pathways. The ability of VP to reduce nutrient deprivation or glutamate overstimulation-induced neuronal death suggests that VP acts as a neuroprotective agent within the brain.
Collapse
Affiliation(s)
- J Chen
- Developmental Endocrinology Branch, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | | |
Collapse
|
9
|
Alonso G, Galibert E, Boulay V, Guillou A, Jean A, Compan V, Guillon G. Sustained elevated levels of circulating vasopressin selectively stimulate the proliferation of kidney tubular cells via the activation of V2 receptors. Endocrinology 2009; 150:239-50. [PMID: 18787031 DOI: 10.1210/en.2008-0068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The hypothalamic hormone vasopressin (AVP) has known mitogenic effects on various cell types. This study was designed to determine whether sustained elevated levels of circulating AVP could influence cell proliferation within adult tissues known to express different AVP receptors, including the pituitary, adrenal gland, liver, and kidney. Plasmatic AVP was chronically increased by submitting animals to prolonged hyperosmotic stimulation or implanting them with a AVP-containing osmotic minipump. After several days of either treatment, increased cell proliferation was detected only within the kidney. This kidney cell proliferation was not affected by the administration of selective V1a or V1b receptor antagonists but was either inhibited or mimicked by the administration of a selective V2 receptor antagonist or agonist, respectively. Kidney proliferative cells mostly concerned a subpopulation of differentiated tubular cells known to express the V2 receptors and were associated with the phosphorylation of ERK. These data indicate that in the adult rat, sustained elevated levels of circulating AVP stimulates the proliferation of a subpopulation of kidney tubular cells expressing the V2 receptor, providing the first illustration of a mitogenic effect of AVP via the activation of the V2 receptor subtype.
Collapse
Affiliation(s)
- Gérard Alonso
- Départements d'Endocrinologie, Institut de Génomique Fonctionnelle, 141 Rue de la Cardonille, 34094 Montpellier cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
10
|
New DC, Wong YH. Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2007; 2:2. [PMID: 17319972 PMCID: PMC1808056 DOI: 10.1186/1750-2187-2-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 02/26/2007] [Indexed: 12/27/2022] Open
Abstract
G protein-coupled receptors are key regulators of cellular communication, mediating the efficient coordination of a cell's responses to extracellular stimuli. When stimulated these receptors modulate the activity of a wide range of intracellular signalling pathways that facilitate the ordered development, growth and reproduction of the organism. There is now a growing body of evidence examining the mechanisms by which G protein-coupled receptors are able to regulate the expression, activity, localization and stability of cell cycle regulatory proteins that either promote or inhibit the initiation of DNA synthesis. In this review, we will detail the intracellular pathways that mediate the G protein-coupled receptor regulation of cellular proliferation, specifically the progression from the G1 phase to the S phase of the cell cycle.
Collapse
Affiliation(s)
- David C New
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
| | - Yung H Wong
- Department of Biochemistry, the Molecular Neuroscience Center, and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clearwater Bay, Hong Kong, China
| |
Collapse
|
11
|
Purschke WG, Eulberg D, Buchner K, Vonhoff S, Klussmann S. An L-RNA-based aquaretic agent that inhibits vasopressin in vivo. Proc Natl Acad Sci U S A 2006; 103:5173-8. [PMID: 16547136 PMCID: PMC1458813 DOI: 10.1073/pnas.0509663103] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Indexed: 11/18/2022] Open
Abstract
A class of diuretic/aquaretic agents based on mirror-image oligonucleotides (so-called Spiegelmers) has been identified. These molecules directly bind and inhibit the neuropeptide vasopressin (AVP). AVP is the major regulatory component of body fluid homeostasis mediated through binding to the renal V(2) receptor. Elevated plasma levels of AVP are implicated in several pathological conditions, mainly cardiovascular diseases. In congestive heart failure, AVP is part of a neuroendocrine imbalance that is responsible for progressive worsening of the disease. Employing in vitro selection techniques, RNA aptamers that bind to the unnatural d-configuration of AVP were isolated. The best aptamer displayed an affinity to d-AVP of approximately 560 pM at 37 degrees C. The corresponding Spiegelmer, a 38-mer mirror-image oligonucleotide (l-RNA) termed NOX-F37, inhibits vasopressin-dependent activation of V(1a) as well as V(2) receptors with IC(50) values of 6.1 nM and 1 nM, respectively. NOX-F37 administered to healthy rats effectively neutralized AVP and increased diuresis dose-dependently for 24 h. The mode of action was strictly aquaretic, i.e., the increase in urine volume was not accompanied by an increase in electrolytes. These results clearly prove the in vivo efficacy of NOX-F37 and points out its potential as a drug in the treatment of diseases that are associated with body fluid overload.
Collapse
Affiliation(s)
| | - Dirk Eulberg
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Klaus Buchner
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Stefan Vonhoff
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Sven Klussmann
- NOXXON Pharma AG, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
12
|
Keegan BP, Akerman BL, Péqueux C, North WG. Provasopressin expression by breast cancer cells: implications for growth and novel treatment strategies. Breast Cancer Res Treat 2005; 95:265-77. [PMID: 16331351 DOI: 10.1007/s10549-005-9024-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Accepted: 07/01/2005] [Indexed: 01/12/2023]
Abstract
The arginine vasopressin (AVP) gene is expressed in certain cancers such as breast cancer, where it is believed to act as an autocrine growth factor. However, little is known about the regulation of the AVP protein precursor (proAVP) or AVP-mediated signaling in breast cancer and this study was undertaken to address some of the basic issues. The cultured cell lines examined (Mcf7, Skbr3, BT474, ZR75, Mcf10a) and human breast cancer tissue extract were found to express proAVP mRNA. Western analysis revealed multiple forms of proAVP protein were present in cell lysates, corresponding to those detected in human hypothalamus extracts. Monoclonal antibodies directed against different regions of proAVP bound to intact live Mcf7 and Skbr3 cells. Dexamethasone increased the amount of proAVP-associated glycopeptide (VAG) secreted by Skbr3 cells and a combination of dexamethasone, IBMX and 8br-cAMP increased cellular levels of VAG. Exogenous AVP (1, 10, and 100 nM) elevated phospho-ERK1/2 levels, and increased cell proliferation was observed in the presence of 10 nM AVP. Concurrent treatment with the V1a receptor antagonist SR49059 reduced the effects of AVP on proliferation in Mcf7 cells, and abolished it in Skbr3 cells. Results here show that proAVP components are found at the surface of Skbr3 and Mcf7 cells and are also secreted from these cells. In addition, they show that AVP promotes cancer cell growth, apparently through a V1-type receptor-mediated pathway and subsequent ERK1/2 activation. Thus, strategies for targeting proAVP should be examined for their effectiveness in diagnosing and treating breast cancer.
Collapse
Affiliation(s)
- Brendan P Keegan
- Department of Physiology, Dartmouth Medical School, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
13
|
Nicou A, Serrière V, Prigent S, Boucherie S, Combettes L, Guillon G, Alonso G, Tordjmann T. Hypothalamic vasopressin release and hepatocyte Ca2+ signaling during liver regeneration: an interplay stimulating liver growth and bile flow. FASEB J 2003; 17:1901-3. [PMID: 14519667 DOI: 10.1096/fj.03-0082fje] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Liver regeneration after partial hepatectomy is a plastic process during which the mechanisms that coordinate liver mass restoration compensate one another through a complex regulatory network of cytokines, growth factors, and hormones. Vasopressin, an agonist that triggers highly organized Ca2+ signals in the liver, may be one of these factors, although little in vivo evidence is available in support of this hypothesis. We provide evidence that hypothalamic vasopressin secretion is stimulated early after partial hepatectomy. Although hepatocytes were fully responsive to vasopressin during the first hours of regeneration, they became desensitized and exhibited slow oscillating Ca2+ responses to vasopressin on the following days. On the first day, hepatocyte V1a receptor density decreased and its lobular gradient increased in hepatectomized rats. By antagonizing the V1a receptor in vivo, we demonstrated that vasopressin contributes to NF-kappaB and cyclin (D1 and A) activation, to hepatocyte progression in the cell cycle, and to liver mass restoration. Finally, vasopressin exerted a choleretic effect shortly after hepatectomy, both in the isolated perfused liver and in the intact rat. In conclusion, we provide compelling in vivo evidence that vasopressin contributes significantly to growth initiation and bile flow stimulation in the early stages of liver regeneration.
Collapse
Affiliation(s)
- Alexandra Nicou
- Unité de Recherche U.442, Institut National de la Santé et de la Recherche Médicale, Université Paris Sud, bât. 443, 91405 Orsay, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Chiu T, Wu SS, Santiskulvong C, Tangkijvanich P, Yee HF, Rozengurt E. Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. Am J Physiol Cell Physiol 2002; 282:C434-50. [PMID: 11832328 DOI: 10.1152/ajpcell.00240.2001] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of G protein-coupled receptors and their ligands in intestinal epithelial cell signaling and proliferation is poorly understood. Here, we demonstrate that arginine vasopressin (AVP) induces multiple intracellular signal transduction pathways in rat intestinal epithelial IEC-18 cells via a V(1A) receptor. Addition of AVP to these cells induces a rapid and transient increase in cytosolic Ca(2+) concentration and promotes protein kinase D (PKD) activation through a protein kinase C (PKC)-dependent pathway, as revealed by in vitro kinase assays and immunoblotting with an antibody that recognizes autophosphorylated PKD at Ser(916). AVP also stimulates the tyrosine phosphorylation of the nonreceptor tyrosine kinase proline-rich tyrosine kinase 2 (Pyk2) and promotes Src family kinase phosphorylation at Tyr(418), indicative of Src activation. AVP induces extracellular signal-related kinase (ERK)-1 (p44(mapk)) and ERK-2 (p42(mapk)) activation, a response prevented by treatment with mitogen-activated protein kinase kinase (MEK) inhibitors (PD-98059 and U-0126), specific PKC inhibitors (GF-I and Ro-31-8220), depletion of Ca(2+) (EGTA and thapsigargin), selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (tyrphostin AG-1478, compound 56), or the selective Src family kinase inhibitor PP-2. Furthermore, AVP acts as a potent growth factor for IEC-18 cells, inducing DNA synthesis and cell proliferation through ERK-, Ca(2+)-, PKC-, EGFR tyrosine kinase-, and Src-dependent pathways.
Collapse
Affiliation(s)
- Terence Chiu
- Department of Medicine, School of Medicine, University of California-Los Angeles, 900 Veteran Ave., Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, Brézillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 2001; 276:34631-6. [PMID: 11457843 DOI: 10.1074/jbc.m104847200] [Citation(s) in RCA: 1075] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Natural peptides displaying agonist activity on the orphan G protein-coupled receptor GPR54 were isolated from human placenta. These 54-, 14,- and 13-amino acid peptides, with a common RF-amide C terminus, derive from the product of KiSS-1, a metastasis suppressor gene for melanoma cells, and were therefore designated kisspeptins. They bound with low nanomolar affinities to rat and human GPR54 expressed in Chinese hamster ovary K1 cells and stimulated PIP(2) hydrolysis, Ca(2+) mobilization, arachidonic acid release, ERK1/2 and p38 MAP kinase phosphorylation, and stress fiber formation but inhibited cell proliferation. Human GPR54 was highly expressed in placenta, pituitary, pancreas, and spinal cord, suggesting a role in the regulation of endocrine function. Stimulation of oxytocin secretion after kisspeptin administration to rats confirmed this hypothesis.
Collapse
Affiliation(s)
- M Kotani
- Institut de Recherche Interdisciplinare en Biologie Humaine et Nucléaire (I.R.I.B.H.N.), Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Oz M, Kolaj M, Renaud LP. Electrophysiological evidence for vasopressin V(1) receptors on neonatal motoneurons, premotor and other ventral horn neurons. J Neurophysiol 2001; 86:1202-10. [PMID: 11535670 DOI: 10.1152/jn.2001.86.3.1202] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Prominent arginine-vasopressin (AVP) binding and AVP V(1) type receptors are expressed early in the developing rat spinal cord. We sought to characterize their influence on neural excitability by using patch-clamp techniques to record AVP-induced responses from a population of motoneurons and interneurons in neonatal (5-18 days) rat spinal cord slices. Data were obtained from 58 thoracolumbar (T(7)-L(5)) motoneurons and 166 local interneurons. A majority (>90%) of neurons responded to bath applied AVP (10 nM to 3 microM) and (Phe(2), Orn(8))-vasotocin, a V(1) receptor agonist, but not V(2) or oxytocin receptor agonists. In voltage-clamp, postsynaptic responses in motoneurons were characterized by slowly rising, prolonged (7-10 min) and tetrodotoxin-resistant inward currents associated with a 25% reduction in a membrane potassium conductance that reversed near -100 mV. In interneurons, net AVP-induced inward currents displayed three patterns: decreasing membrane conductance with reversal near -100 mV, i.e., similar to that in motoneurons (24 cells); increasing conductance with reversal near -40 mV (21 cells); small reduction in conductance with no reversal within the current range tested (41 cells). A presynaptic component recorded in most neurons was evident as an increase in the frequency but not amplitude (in motoneurons) of inhibitory and excitatory postsynaptic currents (IPSCs and EPSCs), in large part due to AVP-induced firing in inhibitory (mainly glycinergic) and excitatory (glutamatergic) neurons synapsing on the recorded cells. An increase in frequency but not amplitude of miniature IPSCs and EPSCs also indicated an AVP enhancement of neurotransmitter release from axon terminals of inhibitory and excitatory interneurons. These observations provide support for a broad presynaptic and postsynaptic distribution of AVP V(1) type receptors and indicate that their activation can enhance the excitability of a majority of neurons in neonatal ventral spinal cord.
Collapse
Affiliation(s)
- M Oz
- National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
17
|
Thibonnier M, Plesnicher CL, Berrada K, Berti-Mattera L. Role of the human V1 vasopressin receptor COOH terminus in internalization and mitogenic signal transduction. Am J Physiol Endocrinol Metab 2001; 281:E81-92. [PMID: 11404225 DOI: 10.1152/ajpendo.2001.281.1.e81] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied the role played by the intracellular COOH-terminal region of the human arginine vasopressin (AVP) V1-vascular receptor (V1R) in ligand binding, trafficking, and mitogenic signal transduction in Chinese hamster ovary cells stably transfected with the human AVP receptor cDNA clones that we had isolated previously. Truncations, mutations, or chimeric alterations of the V1R COOH terminus did not alter ligand binding, but agonist-induced V1R internalization and recycling were reduced in the absence of the proximal region of the V(1)R COOH terminus. Coupling to phospholipase C was altered as a function of the COOH-terminal length. Deletion of the proximal portion of the V1R COOH terminus or its replacement by the V2-renal receptor COOH terminus prevented AVP stimulation of DNA synthesis and progression through the cell cycle. Mutation of a kinase consensus motif in the proximal region of the V1R COOH terminus also abolished the mitogenic response. Thus the V1R cytoplasmic COOH terminus is not involved in ligand specificity but is instrumental in receptor trafficking and facilitates the interaction between the intracellular loops of the receptor, G protein, and phospholipase C. It is absolutely required for transmission of the mitogenic action of AVP, probably via a specific kinase phosphorylation site.
Collapse
Affiliation(s)
- M Thibonnier
- Division of Clinical and Molecular Endocrinology, Department of Medicine, University Hospitals of Cleveland and Case Western Reserve University School of Medicine, Cleveland, Ohio, 44106, USA.
| | | | | | | |
Collapse
|