1
|
Cubuk J, Greenberg L, Greenberg AE, Emenecker RJ, Stuchell-Brereton MD, Holehouse AS, Soranno A, Greenberg MJ. Structural dynamics of the intrinsically disordered linker region of cardiac troponin T. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596451. [PMID: 38853835 PMCID: PMC11160775 DOI: 10.1101/2024.05.30.596451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The cardiac troponin complex, composed of troponins I, T, and C, plays a central role in regulating the calcium-dependent interactions between myosin and the thin filament. Mutations in troponin can cause cardiomyopathies; however, it is still a major challenge to connect how changes in sequence affect troponin's function. Recent high-resolution structures of the thin filament revealed critical insights into the structure-function relationship of troponin, but there remain large, unresolved segments of troponin, including the troponin-T linker region that is a hotspot for cardiomyopathy mutations. This linker region is predicted to be intrinsically disordered, with behaviors that are not well described by traditional structural approaches; however, this proposal has not been experimentally verified. Here, we used a combination of single-molecule Förster resonance energy transfer (FRET), molecular dynamics simulations, and functional reconstitution assays to investigate the troponin-T linker region. We show that in the context of both isolated troponin and the fully regulated troponin complex, the linker behaves as a dynamic, intrinsically disordered region. This region undergoes polyampholyte expansion in the presence of high salt and distinct conformational changes during the assembly of the troponin complex. We also examine the ΔE160 hypertrophic cardiomyopathy mutation in the linker and demonstrate that it does not affect the conformational dynamics of the linker, rather it allosterically affects interactions with other troponin complex subunits, leading to increased molecular contractility. Taken together, our data clearly demonstrate the importance of disorder within the troponin-T linker and provide new insights into the molecular mechanisms driving the pathogenesis of cardiomyopathies.
Collapse
Affiliation(s)
- Jasmine Cubuk
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Akiva E. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| | - Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Melissa D. Stuchell-Brereton
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
- Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130, Saint Louis, MO, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 Euclid Ave, 63110, Saint Louis, MO, USA
| |
Collapse
|
2
|
Rosas PC, Solaro RJ. Implications of S-glutathionylation of sarcomere proteins in cardiac disorders, therapies, and diagnosis. Front Cardiovasc Med 2023; 9:1060716. [PMID: 36762302 PMCID: PMC9902711 DOI: 10.3389/fcvm.2022.1060716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/29/2022] [Indexed: 01/25/2023] Open
Abstract
The discovery that cardiac sarcomere proteins are substrates for S-glutathionylation and that this post-translational modification correlates strongly with diastolic dysfunction led to new concepts regarding how levels of oxidative stress affect the heartbeat. Major sarcomere proteins for which there is evidence of S-glutathionylation include cardiac myosin binding protein C (cMyBP-C), actin, cardiac troponin I (cTnI) and titin. Our hypothesis is that these S-glutathionylated proteins are significant factors in acquired and familial disorders of the heart; and, when released into the serum, provide novel biomarkers. We consider the molecular mechanisms for these effects in the context of recent revelations of how these proteins control cardiac dynamics in close collaboration with Ca2+ fluxes. These revelations were made using powerful approaches and technologies that were focused on thin filaments, thick filaments, and titin filaments. Here we integrate their regulatory processes in the sarcomere as modulated mainly by neuro-humoral control of phosphorylation inasmuch evidence indicates that S-glutathionylation and protein phosphorylation, promoting increased dynamics and modifying the Frank-Starling relation, may be mutually exclusive. Earlier studies demonstrated that in addition to cTnI as a well-established biomarker for cardiac disorders, serum levels of cMyBP-C are also a biomarker for cardiac disorders. We describe recent studies approaching the question of whether serum levels of S-glutathionylated-cMyBP-C could be employed as an important clinical tool in patient stratification, early diagnosis in at risk patients before HFpEF, determination of progression, effectiveness of therapeutic approaches, and as a guide in developing future therapies.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of Pharmacy, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Martin AA, Thompson BR, Hahn D, Angulski ABB, Hosny N, Cohen H, Metzger JM. Cardiac Sarcomere Signaling in Health and Disease. Int J Mol Sci 2022; 23:16223. [PMID: 36555864 PMCID: PMC9782806 DOI: 10.3390/ijms232416223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph M. Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Pioner JM, Vitale G, Gentile F, Scellini B, Piroddi N, Cerbai E, Olivotto I, Tardiff J, Coppini R, Tesi C, Poggesi C, Ferrantini C. Genotype-Driven Pathogenesis of Atrial Fibrillation in Hypertrophic Cardiomyopathy: The Case of Different TNNT2 Mutations. Front Physiol 2022; 13:864547. [PMID: 35514357 PMCID: PMC9062294 DOI: 10.3389/fphys.2022.864547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Atrial dilation and atrial fibrillation (AF) are common in Hypertrophic CardioMyopathy (HCM) patients and associated with a worsening of prognosis. The pathogenesis of atrial myopathy in HCM remains poorly investigated and no specific association with genotype has been identified. By re-analysis of our cohort of thin-filament HCM patients (Coppini et al. 2014) AF was identified in 10% of patients with sporadic mutations in the cardiac Troponin T gene (TNNT2), while AF occurrence was much higher (25-75%) in patients carrying specific "hot-spot" TNNT2 mutations. To determine the molecular basis of arrhythmia occurrence, two HCM mouse models expressing human TNNT2 variants (a "hot-spot" one, R92Q, and a "sporadic" one, E163R) were selected according to the different pathophysiological pathways previously demonstrated in ventricular tissue. Echocardiography studies showed a significant left atrial dilation in both models, but more pronounced in the R92Q. In E163R atrial trabeculae, in line with what previously observed in ventricular preparations, the energy cost of tension generation was markedly increased. However, no changes of twitch amplitude and kinetics were observed, and there was no atrial arrhythmic propensity. R92Q atrial trabeculae, instead, displayed normal ATP consumption but markedly increased myofilament calcium sensitivity, as previously observed in ventricular preparations. This was associated with reduced inotropic reserve and slower kinetics of twitch contractions and, importantly, with an increased occurrence of spontaneous beats and triggered contractions that represent an intrinsic arrhythmogenic mechanism promoting AF. The association of specific TNNT2 mutations with AF occurrence depends on the mutation-driven pathomechanism (i.e., increased atrial myofilament calcium sensitivity rather than increased myofilament tension cost) and may influence the individual response to treatment.
Collapse
Affiliation(s)
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Jil Tardiff
- Department of Medicine and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
5
|
Helms AS, Thompson AD, Day SM. Translation of New and Emerging Therapies for Genetic Cardiomyopathies. JACC Basic Transl Sci 2022; 7:70-83. [PMID: 35128211 PMCID: PMC8807730 DOI: 10.1016/j.jacbts.2021.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 11/05/2022]
Abstract
The primary etiology of a diverse range of cardiomyopathies is now understood to be genetic, creating a new paradigm for targeting treatments on the basis of the underlying molecular cause. This review provides a genetic and etiologic context for the traditional clinical classifications of cardiomyopathy, including molecular subtypes that may exhibit differential responses to existing or emerging treatments. The authors describe several emerging cardiomyopathy treatments, including gene therapy, direct targeting of myofilament function, protein quality control, metabolism, and others. The authors discuss advantages and disadvantages of these approaches and indicate areas of high potential for short- and longer term efficacy.
Collapse
Key Words
- AAV, adeno-associated virus
- ACM, arrhythmogenic cardiomyopathy
- ARVC, arrhythmogenic right ventricular cardiomyopathy
- ATPase, adenosine triphosphatase
- DCM, dilated cardiomyopathy
- DMD, Duchenne muscular dystrophy
- DNA, DNA
- DSP, desmoplakin
- FDA, U.S. Food and Drug Administration
- GRT, gene replacement therapy
- GST, gene silencing therapy
- HCM, hypertrophic cardiomyopathy
- HR, homologous recombination
- LNP, lipid nanoparticle
- LVOT, left ventricular outflow tract
- RNA, RNA
- TTR, transthyretin
- arrhythmogenic cardiomyopathy
- dilated cardiomyopathy
- genetics
- hypertrophic cardiomyopathy
- therapeutics
Collapse
Affiliation(s)
- Adam S. Helms
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea D. Thompson
- Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharlene M. Day
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Ion Channel Impairment and Myofilament Ca 2+ Sensitization: Two Parallel Mechanisms Underlying Arrhythmogenesis in Hypertrophic Cardiomyopathy. Cells 2021; 10:cells10102789. [PMID: 34685769 PMCID: PMC8534456 DOI: 10.3390/cells10102789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Life-threatening ventricular arrhythmias are the main clinical burden in patients with hypertrophic cardiomyopathy (HCM), and frequently occur in young patients with mild structural disease. While massive hypertrophy, fibrosis and microvascular ischemia are the main mechanisms underlying sustained reentry-based ventricular arrhythmias in advanced HCM, cardiomyocyte-based functional arrhythmogenic mechanisms are likely prevalent at earlier stages of the disease. In this review, we will describe studies conducted in human surgical samples from HCM patients, transgenic animal models and human cultured cell lines derived from induced pluripotent stem cells. Current pieces of evidence concur to attribute the increased risk of ventricular arrhythmias in early HCM to different cellular mechanisms. The increase of late sodium current and L-type calcium current is an early observation in HCM, which follows post-translation channel modifications and increases the occurrence of early and delayed afterdepolarizations. Increased myofilament Ca2+ sensitivity, commonly observed in HCM, may promote afterdepolarizations and reentry arrhythmias with direct mechanisms. Decrease of K+-currents due to transcriptional regulation occurs in the advanced disease and contributes to reducing the repolarization-reserve and increasing the early afterdepolarizations (EADs). The presented evidence supports the idea that patients with early-stage HCM should be considered and managed as subjects with an acquired channelopathy rather than with a structural cardiac disease.
Collapse
|
7
|
A Heterozygous Mutation in Cardiac Troponin T Promotes Ca 2+ Dysregulation and Adult Cardiomyopathy in Zebrafish. J Cardiovasc Dev Dis 2021; 8:jcdd8040046. [PMID: 33924051 PMCID: PMC8072640 DOI: 10.3390/jcdd8040046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiomyopathies are a group of heterogeneous diseases that affect the muscles of the heart, leading to early morbidity and mortality in young and adults. Genetic forms of cardiomyopathy are caused predominantly by mutations in structural components of the cardiomyocyte sarcomeres, the contractile units of the heart, which includes cardiac Troponin T (TnT). Here, we generated mutations with CRISPR/Cas9 technology in the zebrafish tnnt2a gene, encoding cardiac TnT, at a mutational “hotspot” site to establish a zebrafish model for genetic cardiomyopathies. We found that a heterozygous tnnt2a mutation deleting Arginine at position 94 and Lysine at position 95 of TnT causes progressive cardiac structural changes resulting in heart failure. The cardiac remodeling is presented by an enlarged atrium, decreased ventricle size, increased myocardial stress as well as increased fibrosis. As early as five days post fertilization, larvae carrying the TnT RK94del mutation display diastolic dysfunction and impaired calcium dynamics related to increased Ca2+ sensitivity. In conclusion, adult zebrafish with a heterozygous TnT-RK94del mutation develop cardiomyopathy as seen in patients with TnT mutations and therefore represent a promising model to study disease mechanisms and to screen for putative therapeutic compounds.
Collapse
|
8
|
Clippinger SR, Cloonan PE, Wang W, Greenberg L, Stump WT, Angsutararux P, Nerbonne JM, Greenberg MJ. Mechanical dysfunction of the sarcomere induced by a pathogenic mutation in troponin T drives cellular adaptation. J Gen Physiol 2021; 153:211992. [PMID: 33856419 PMCID: PMC8054178 DOI: 10.1085/jgp.202012787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (HCM), a leading cause of sudden cardiac death, is primarily caused by mutations in sarcomeric proteins. The pathogenesis of HCM is complex, with functional changes that span scales, from molecules to tissues. This makes it challenging to deconvolve the biophysical molecular defect that drives the disease pathogenesis from downstream changes in cellular function. In this study, we examine an HCM mutation in troponin T, R92Q, for which several models explaining its effects in disease have been put forward. We demonstrate that the primary molecular insult driving disease pathogenesis is mutation-induced alterations in tropomyosin positioning, which causes increased molecular and cellular force generation during calcium-based activation. Computational modeling shows that the increased cellular force is consistent with the molecular mechanism. These changes in cellular contractility cause downstream alterations in gene expression, calcium handling, and electrophysiology. Taken together, our results demonstrate that molecularly driven changes in mechanical tension drive the early disease pathogenesis of familial HCM, leading to activation of adaptive mechanobiological signaling pathways.
Collapse
Affiliation(s)
- Sarah R Clippinger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Paige E Cloonan
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Wei Wang
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lina Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - W Tom Stump
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Jeanne M Nerbonne
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael J Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
9
|
Greenberg MJ, Tardiff JC. Complexity in genetic cardiomyopathies and new approaches for mechanism-based precision medicine. J Gen Physiol 2021; 153:e202012662. [PMID: 33512404 PMCID: PMC7852459 DOI: 10.1085/jgp.202012662] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic cardiomyopathies have been studied for decades, and it has become increasingly clear that these progressive diseases are more complex than originally thought. These complexities can be seen both in the molecular etiologies of these disorders and in the clinical phenotypes observed in patients. While these disorders can be caused by mutations in cardiac genes, including ones encoding sarcomeric proteins, the disease presentation varies depending on the patient mutation, where mutations even within the same gene can cause divergent phenotypes. Moreover, it is challenging to connect the mutation-induced molecular insult that drives the disease pathogenesis with the various compensatory and maladaptive pathways that are activated during the course of the subsequent progressive, pathogenic cardiac remodeling. These inherent complexities have frustrated our ability to understand and develop broadly effective treatments for these disorders. It has been proposed that it might be possible to improve patient outcomes by adopting a precision medicine approach. Here, we lay out a practical framework for such an approach, where patient subpopulations are binned based on common underlying biophysical mechanisms that drive the molecular disease pathogenesis, and we propose that this function-based approach will enable the development of targeted therapeutics that ameliorate these effects. We highlight several mutations to illustrate the need for mechanistic molecular experiments that span organizational and temporal scales, and we describe recent advances in the development of novel therapeutics based on functional targets. Finally, we describe many of the outstanding questions for the field and how fundamental mechanistic studies, informed by our more nuanced understanding of the clinical disorders, will play a central role in realizing the potential of precision medicine for genetic cardiomyopathies.
Collapse
Affiliation(s)
- Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | - Jil C. Tardiff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
10
|
Chowdhury SAK, Warren CM, Simon JN, Ryba DM, Batra A, Varga P, Kranias EG, Tardiff JC, Solaro RJ, Wolska BM. Modifications of Sarcoplasmic Reticulum Function Prevent Progression of Sarcomere-Linked Hypertrophic Cardiomyopathy Despite a Persistent Increase in Myofilament Calcium Response. Front Physiol 2020; 11:107. [PMID: 32210830 PMCID: PMC7075858 DOI: 10.3389/fphys.2020.00107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/30/2020] [Indexed: 01/12/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder caused by mutations in different genes mainly encoding myofilament proteins and therefore called a “disease of the sarcomere.” Despite the discovery of sarcomere protein mutations linked to HCM almost 30 years ago, the cellular mechanisms responsible for the development of this disease are not completely understood and likely vary among different mutations. Moreover, despite many efforts to develop effective treatments for HCM, these have largely been unsuccessful, and more studies are needed to better understand the cellular mechanisms of the disease. In experiments reported here, we investigated a mouse model expressing the mutant cTnT-R92Q, which is linked to HCM and induces an increase in myofilament Ca2+ sensitivity and diastolic dysfunction. We found that early correction of the diastolic dysfunction by phospholamban knockout (PLNKO) was able to prevent the development of the HCM phenotype in troponin T (TnT)-R92Q transgenic (TG) mice. Four groups of mice in FVB/N background were generated and used for the experiments: (1) non-transgenic (NTG)/PLN mice, which express wild-type TnT and normal level of PLN; (2) NTG/PLNKO mice, which express wild-type TnT and no PLN; (3) TG/PLN mice, which express TnT-R92Q and normal level of PLN; (4) TG/PLNKO mice, which express TnT-R92Q and no PLN. Cardiac function was determined using both standard echocardiographic parameters and speckle tracking strain measurements. We found that both atrial morphology and diastolic function were altered in TG/PLN mice but normal in TG/PLNKO mice. Histological analysis showed a disarray of myocytes and increased collagen deposition only in TG/PLN hearts. We also observed increased Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation only in TG/PLN hearts but not in TG/PLNKO hearts. The rescue of the HCM phenotype was not associated with differences in myofilament Ca2+ sensitivity between TG/PLN and TG/PLNKO mice. Moreover, compared to standard systolic echo parameters, such as ejection fraction (EF), speckle strain measurements provided a more sensitive approach to detect early systolic dysfunction in TG/PLN mice. In summary, our results indicate that targeting diastolic dysfunction through altering Ca2+ fluxes with no change in myofilament response to Ca2+ was able to prevent the development of the HCM phenotype and should be considered as a potential additional treatment for HCM patients.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Jillian N Simon
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - David M Ryba
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Peter Varga
- Department of Pediatrics, Section of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
| | - Jil C Tardiff
- Department of Medicine, Division of Cardiology, The University of Arizona, Tucson, AZ, United States
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States.,Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
11
|
Lin YH, Schmidt W, Fritz KS, Jeong MY, Cammarato A, Foster DB, Biesiadecki BJ, McKinsey TA, Woulfe KC. Site-specific acetyl-mimetic modification of cardiac troponin I modulates myofilament relaxation and calcium sensitivity. J Mol Cell Cardiol 2020; 139:135-147. [PMID: 31981571 DOI: 10.1016/j.yjmcc.2020.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Cardiac troponin I (cTnI) is an essential physiological and pathological regulator of cardiac relaxation. Significant to this regulation, the post-translational modification of cTnI through phosphorylation functions as a key mechanism to accelerate myofibril relaxation. Similar to phosphorylation, post-translational modification by acetylation alters amino acid charge and protein function. Recent studies have demonstrated that the acetylation of cardiac myofibril proteins accelerates relaxation and that cTnI is acetylated in the heart. These findings highlight the potential significance of myofilament acetylation; however, it is not known if site-specific acetylation of cTnI can lead to changes in myofilament, myofibril, and/or cellular mechanics. The objective of this study was to determine the effects of mimicking acetylation at a single site of cTnI (lysine-132; K132) on myofilament, myofibril, and cellular mechanics and elucidate its influence on molecular function. METHODS To determine if pseudo-acetylation of cTnI at 132 modulates thin filament regulation of the acto-myosin interaction, we reconstituted thin filaments containing WT or K132Q (to mimic acetylation) cTnI and assessed in vitro motility. To test if mimicking acetylation at K132 alters cellular relaxation, adult rat ventricular cardiomyocytes were infected with adenoviral constructs expressing either cTnI K132Q or K132 replaced with arginine (K132R; to prevent acetylation) and cell shortening and isolated myofibril mechanics were measured. Finally, to confirm that changes in cell shortening and myofibril mechanics were directly due to pseudo-acetylation of cTnI at K132, we exchanged troponin containing WT or K132Q cTnI into isolated myofibrils and measured myofibril mechanical properties. RESULTS Reconstituted thin filaments containing K132Q cTnI exhibited decreased calcium sensitivity compared to thin filaments reconstituted with WT cTnI. Cardiomyocytes expressing K132Q cTnI had faster relengthening and myofibrils isolated from these cells had faster relaxation along with decreased calcium sensitivity compared to cardiomyocytes expressing WT or K132R cTnI. Myofibrils exchanged with K132Q cTnI ex vivo demonstrated faster relaxation and decreased calcium sensitivity. CONCLUSIONS Our results indicate for the first time that mimicking acetylation of a specific cTnI lysine accelerates myofilament, myofibril, and myocyte relaxation. This work underscores the importance of understanding how acetylation of specific sarcomeric proteins affects cardiac homeostasis and disease and suggests that modulation of myofilament lysine acetylation may represent a novel therapeutic target to alter cardiac relaxation.
Collapse
Affiliation(s)
- Ying H Lin
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - William Schmidt
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kristofer S Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark Y Jeong
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony Cammarato
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States of America
| | - Timothy A McKinsey
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America; Consortium for Fibrosis Research & Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| | - Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
12
|
Poetsch MS, Guan K. iPSCs for modeling of sarcomeric cardiomyopathies. RECENT ADVANCES IN IPSC DISEASE MODELING, VOLUME 1 2020:237-273. [DOI: 10.1016/b978-0-12-822227-0.00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Kuster DWD, Lynch TL, Barefield DY, Sivaguru M, Kuffel G, Zilliox MJ, Lee KH, Craig R, Namakkal-Soorappan R, Sadayappan S. Altered C10 domain in cardiac myosin binding protein-C results in hypertrophic cardiomyopathy. Cardiovasc Res 2019; 115:1986-1997. [PMID: 31050699 PMCID: PMC6872972 DOI: 10.1093/cvr/cvz111] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS A 25-base pair deletion in the cardiac myosin binding protein-C (cMyBP-C) gene (MYBPC3), proposed to skip exon 33, modifies the C10 domain (cMyBP-CΔC10mut) and is associated with hypertrophic cardiomyopathy (HCM) and heart failure, affecting approximately 100 million South Asians. However, the molecular mechanisms underlying the pathogenicity of cMyBP-CΔC10mutin vivo are unknown. We hypothesized that expression of cMyBP-CΔC10mut exerts a poison polypeptide effect leading to improper assembly of cardiac sarcomeres and the development of HCM. METHODS AND RESULTS To determine whether expression of cMyBP-CΔC10mut is sufficient to cause HCM and contractile dysfunction in vivo, we generated transgenic (TG) mice having cardiac-specific protein expression of cMyBP-CΔC10mut at approximately half the level of endogenous cMyBP-C. At 12 weeks of age, significant hypertrophy was observed in TG mice expressing cMyBP-CΔC10mut (heart weight/body weight ratio: 4.43 ± 0.11 mg/g non-transgenic (NTG) vs. 5.34 ± 0.25 mg/g cMyBP-CΔC10mut, P < 0.05). Furthermore, haematoxylin and eosin, Masson's trichrome staining, as well as second-harmonic generation imaging revealed the presence of significant fibrosis and a greater relative nuclear area in cMyBP-CΔC10mut hearts compared with NTG controls. M-mode echocardiography analysis revealed hypercontractile hearts (EF: 53.4%±2.9% NTG vs. 66.4% ± 4.7% cMyBP-CΔC10mut; P < 0.05) and early diastolic dysfunction (E/E': 28.7 ± 3.7 NTG vs. 46.3 ± 8.4 cMyBP-CΔC10mut; P < 0.05), indicating the presence of an HCM phenotype. To assess whether these changes manifested at the myofilament level, contractile function of single skinned cardiomyocytes was measured. Preserved maximum force generation and increased Ca2+-sensitivity of force generation were observed in cardiomyocytes from cMyBP-CΔC10mut mice compared with NTG controls (EC50: 3.6 ± 0.02 µM NTG vs. 2.90 ± 0.01 µM cMyBP-CΔC10mut; P < 0.0001). CONCLUSION Expression of cMyBP-C protein with a modified C10 domain is sufficient to cause contractile dysfunction and HCM in vivo.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/pathology
- Cardiomyopathy, Hypertrophic/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Disease Models, Animal
- Fibrosis
- Gene Expression Regulation
- Gene Regulatory Networks
- Genetic Predisposition to Disease
- Mice, Transgenic
- Mutation
- Myocardial Contraction
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Protein Domains
- Sarcomeres/genetics
- Sarcomeres/metabolism
- Sarcomeres/pathology
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/pathology
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Remodeling
Collapse
Affiliation(s)
- Diederik W D Kuster
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Thomas L Lynch
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - David Y Barefield
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Mayandi Sivaguru
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Gina Kuffel
- Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | | | - Kyoung Hwan Lee
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roger Craig
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rajasekaran Namakkal-Soorappan
- Molecular and Cellular Pathology, Department of Pathology, School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sakthivel Sadayappan
- Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
- Heart, Lung and Vascular Institute, Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| |
Collapse
|
14
|
Wijnker PJ, Sequeira V, Kuster DW, van der Velden J. Hypertrophic Cardiomyopathy: A Vicious Cycle Triggered by Sarcomere Mutations and Secondary Disease Hits. Antioxid Redox Signal 2019; 31:318-358. [PMID: 29490477 PMCID: PMC6602117 DOI: 10.1089/ars.2017.7236] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 02/23/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Significance: Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction, and myocardial disarray. Disease onset occurs between 20 and 50 years of age, thus affecting patients in the prime of their life. HCM is caused by mutations in sarcomere proteins, the contractile building blocks of the heart. Despite increased knowledge of causal mutations, the exact path from genetic defect leading to cardiomyopathy is complex and involves additional disease hits. Recent Advances: Laboratory-based studies indicate that HCM development not only depends on the primary sarcomere impairment caused by the mutation but also on secondary disease-related alterations in the heart. Here we propose a vicious mutation-induced disease cycle, in which a mutation-induced energy depletion alters cellular metabolism with increased mitochondrial work, which triggers secondary disease modifiers that will worsen disease and ultimately lead to end-stage HCM. Critical Issues: Evidence shows excessive cellular reactive oxygen species (ROS) in HCM patients and HCM animal models. Oxidative stress markers are increased in the heart (oxidized proteins, DNA, and lipids) and serum of HCM patients. In addition, increased mitochondrial ROS production and changes in endogenous antioxidants are reported in HCM. Mutant sarcomeric protein may drive excessive levels of cardiac ROS via changes in cardiac efficiency and metabolism, mitochondrial activation and/or dysfunction, impaired protein quality control, and microvascular dysfunction. Future Directions: Interventions restoring metabolism, mitochondrial function, and improved ROS balance may be promising therapeutic approaches. We discuss the effects of current HCM pharmacological therapies and potential future therapies to prevent and reverse HCM. Antioxid. Redox Signal. 31, 318-358.
Collapse
Affiliation(s)
- Paul J.M. Wijnker
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Vasco Sequeira
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Diederik W.D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Center, Amsterdam, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| |
Collapse
|
15
|
Sequeira V, Bertero E, Maack C. Energetic drain driving hypertrophic cardiomyopathy. FEBS Lett 2019; 593:1616-1626. [PMID: 31209876 DOI: 10.1002/1873-3468.13496] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/09/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common form of hereditary cardiomyopathy and is mainly caused by mutations of genes encoding cardiac sarcomeric proteins. HCM is characterized by hypertrophy of the left ventricle, frequently involving the septum, that is not explained solely by loading conditions. HCM has a heterogeneous clinical profile, but diastolic dysfunction and ventricular arrhythmias represent two dominant features of the disease. Preclinical evidence indicates that the enhanced Calcium (Ca2+ ) sensitivity of the myofilaments plays a key role in the pathophysiology of HCM. Notably, this is not always a direct consequence of sarcomeric mutations, but can also result from secondary mutation-driven alterations. Here, we review experimental and clinical evidence indicating that increased myofilament Ca2+ sensitivity lies upstream of numerous cellular derangements which potentially contribute to the progression of HCM toward heart failure and sudden cardiac death.
Collapse
Affiliation(s)
- Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| |
Collapse
|
16
|
Viola HM, Hool LC. Impaired calcium handling and mitochondrial metabolic dysfunction as early markers of hypertrophic cardiomyopathy. Arch Biochem Biophys 2019; 665:166-174. [PMID: 30885674 DOI: 10.1016/j.abb.2019.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder, characterised by myocyte remodeling, disorganisation of sarcomeric proteins, impaired energy metabolism and altered cardiac contractility. Gene mutations encoding cardiac contractile proteins account for 60% of HCM aetiology. Current drug therapy including L-type calcium channel antagonists, are used to manage symptoms in patients with overt HCM, but no treatment exists that can reverse or prevent the cardiomyopathy. Design of effective drug therapy will require a clear understanding of the early pathophysiological mechanisms of the disease. Numerous studies have investigated specific aspects of HCM pathophysiology. This review brings these findings together, in order to develop a holistic understanding of the early pathophysiological mechanisms of the disease. We focus on gene mutations in cardiac myosin binding protein-C, β-cardiac myosin heavy chain, cardiac troponin I, and cardiac troponin T, that comprise the majority of all HCM sarcomeric gene mutations. We find that although some similarities exist, each mutation leads to mutation-specific alterations in calcium handling, myofilament calcium sensitivity and mitochondrial metabolic function. This may contribute to the observed clinical phenotypic variability in sarcomeric-related HCM. An understanding of early mutation-specific mechanisms of the disease may provide useful markers of disease progression, and inform therapeutic design.
Collapse
Affiliation(s)
- Helena M Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia
| | - Livia C Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, WA, Australia; Victor Chang Cardiac Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
17
|
van der Velden J, Stienen GJM. Cardiac Disorders and Pathophysiology of Sarcomeric Proteins. Physiol Rev 2019; 99:381-426. [PMID: 30379622 DOI: 10.1152/physrev.00040.2017] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The sarcomeric proteins represent the structural building blocks of heart muscle, which are essential for contraction and relaxation. During recent years, it has become evident that posttranslational modifications of sarcomeric proteins, in particular phosphorylation, tune cardiac pump function at rest and during exercise. This delicate, orchestrated interaction is also influenced by mutations, predominantly in sarcomeric proteins, which cause hypertrophic or dilated cardiomyopathy. In this review, we follow a bottom-up approach starting from a description of the basic components of cardiac muscle at the molecular level up to the various forms of cardiac disorders at the organ level. An overview is given of sarcomere changes in acquired and inherited forms of cardiac disease and the underlying disease mechanisms with particular reference to human tissue. A distinction will be made between the primary defect and maladaptive/adaptive secondary changes. Techniques used to unravel functional consequences of disease-induced protein changes are described, and an overview of current and future treatments targeted at sarcomeric proteins is given. The current evidence presented suggests that sarcomeres not only form the basis of cardiac muscle function but also represent a therapeutic target to combat cardiac disease.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Ger J M Stienen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, Amsterdam , The Netherlands ; and Department of Physiology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
18
|
Li KL, Methawasin M, Tanner BCW, Granzier HL, Solaro RJ, Dong WJ. Sarcomere length-dependent effects on Ca 2+-troponin regulation in myocardium expressing compliant titin. J Gen Physiol 2018; 151:30-41. [PMID: 30523116 PMCID: PMC6314383 DOI: 10.1085/jgp.201812218] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022] Open
Abstract
Increases in sarcomere length cause enhanced force generation in cardiomyocytes by an unknown mechanism. Li et al. reveal that titin-based passive tension contributes to length-dependent activation of myofilaments and that tightly bound myosin–actin cross-bridges are associated with this effect. Cardiac performance is tightly regulated at the cardiomyocyte level by sarcomere length, such that increases in sarcomere length lead to sharply enhanced force generation at the same Ca2+ concentration. Length-dependent activation of myofilaments involves dynamic and complex interactions between a multitude of thick- and thin-filament components. Among these components, troponin, myosin, and the giant protein titin are likely to be key players, but the mechanism by which these proteins are functionally linked has been elusive. Here, we investigate this link in the mouse myocardium using in situ FRET techniques. Our objective was to monitor how length-dependent Ca2+-induced conformational changes in the N domain of cardiac troponin C (cTnC) are modulated by myosin–actin cross-bridge (XB) interactions and increased titin compliance. We reconstitute FRET donor- and acceptor-modified cTnC(13C/51C)AEDANS-DDPM into chemically skinned myocardial fibers from wild-type and RBM20-deletion mice. The Ca2+-induced conformational changes in cTnC are quantified and characterized using time-resolved FRET measurements as XB state and sarcomere length are varied. The RBM20-deficient mouse expresses a more compliant N2BA titin isoform, leading to reduced passive tension in the myocardium. This provides a molecular tool to investigate how altered titin-based passive tension affects Ca2+-troponin regulation in response to mechanical stretch. In wild-type myocardium, we observe a direct association of sarcomere length–dependent enhancement of troponin regulation with both Ca2+ activation and strongly bound XB states. In comparison, measurements from titin RBM20-deficient animals show blunted sarcomere length–dependent effects. These results suggest that titin-based passive tension contributes to sarcomere length–dependent Ca2+-troponin regulation. We also conclude that strong XB binding plays an important role in linking the modulatory effect of titin compliance to Ca2+-troponin regulation of the myocardium.
Collapse
Affiliation(s)
- King-Lun Li
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Bertrand C W Tanner
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - R John Solaro
- The Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Wen-Ji Dong
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA .,Integrative Physiology and Neuroscience, Washington State University, Pullman, WA
| |
Collapse
|
19
|
Abstract
This article focuses on three "bins" that comprise sets of biophysical derangements elicited by cardiomyopathy-associated mutations in the myofilament. Current therapies focus on symptom palliation and do not address the disease at its core. We and others have proposed that a more nuanced classification could lead to direct interventions based on early dysregulation changing the trajectory of disease progression in the preclinical cohort. Continued research is necessary to address the complexity of cardiomyopathic progression and develop efficacious therapeutics.
Collapse
Affiliation(s)
- Melissa L Lynn
- Department of Medicine, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Sarah J Lehman
- Department of Physiological Sciences, University of Arizona, Room 317, 1656 East Mabel Street, Tucson, AZ 85724, USA
| | - Jil C Tardiff
- Department of Medicine, University of Arizona, Room 312, 1656 East Mabel Street, Tucson, AZ 85724, USA.
| |
Collapse
|
20
|
Mickelson AV, Chandra M. Hypertrophic cardiomyopathy mutation in cardiac troponin T (R95H) attenuates length-dependent activation in guinea pig cardiac muscle fibers. Am J Physiol Heart Circ Physiol 2017; 313:H1180-H1189. [PMID: 28842439 DOI: 10.1152/ajpheart.00369.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/22/2017] [Indexed: 01/14/2023]
Abstract
The central region of cardiac troponin T (TnT) is important for modulating the dynamics of muscle length-mediated cross-bridge recruitment. Therefore, hypertrophic cardiomyopathy mutations in the central region may affect cross-bridge recruitment dynamics to alter myofilament Ca2+ sensitivity and length-dependent activation of cardiac myofilaments. Given the importance of the central region of TnT for cardiac contractile dynamics, we studied if hypertrophic cardiomyopathy-linked mutation (TnTR94H)-induced effects on contractile function would be differently modulated by sarcomere length (SL). Recombinant wild-type TnT (TnTWT) and the guinea pig analog of the human R94H mutation (TnTR95H) were reconstituted into detergent-skinned cardiac muscle fibers from guinea pigs. Steady-state and dynamic contractile measurements were made at short and long SLs (1.9 and 2.3 µm, respectively). Our results demonstrated that TnTR95H increased pCa50 (-log of free Ca2+ concentration) to a greater extent at short SL; TnTR95H increased pCa50 by 0.11 pCa units at short SL and 0.07 pCa units at long SL. The increase in pCa50 associated with an increase in SL from 1.9 to 2.3 µm (ΔpCa50) was attenuated nearly twofold in TnTR95H fibers; ΔpCa50 was 0.09 pCa units for TnTWT fibers but only 0.05 pCa units for TnTR95H fibers. The SL dependency of rate constants of cross-bridge distortion dynamics and tension redevelopment was also blunted by TnTR95H Collectively, our observations on the SL dependency of pCa50 and rate constants of cross-bridge distortion dynamics and tension redevelopment suggest that mechanisms underlying the length-dependent activation cardiac myofilaments are attenuated by TnTR95HNEW & NOTEWORTHY Mutant cardiac troponin T (TnTR95H) differently affects myofilament Ca2+ sensitivity at short and long sarcomere length, indicating that mechanisms underlying length-dependent activation are altered by TnTR95H TnTR95H enhances myofilament Ca2+ sensitivity to a greater extent at short sarcomere length, thus attenuating the length-dependent increase in myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Alexis V Mickelson
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Murali Chandra
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
21
|
Ferrantini C, Coppini R, Pioner JM, Gentile F, Tosi B, Mazzoni L, Scellini B, Piroddi N, Laurino A, Santini L, Spinelli V, Sacconi L, De Tombe P, Moore R, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Tesi C, Poggesi C. Pathogenesis of Hypertrophic Cardiomyopathy is Mutation Rather Than Disease Specific: A Comparison of the Cardiac Troponin T E163R and R92Q Mouse Models. J Am Heart Assoc 2017; 6:JAHA.116.005407. [PMID: 28735292 PMCID: PMC5586279 DOI: 10.1161/jaha.116.005407] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background In cardiomyocytes from patients with hypertrophic cardiomyopathy, mechanical dysfunction and arrhythmogenicity are caused by mutation‐driven changes in myofilament function combined with excitation‐contraction (E‐C) coupling abnormalities related to adverse remodeling. Whether myofilament or E‐C coupling alterations are more relevant in disease development is unknown. Here, we aim to investigate whether the relative roles of myofilament dysfunction and E‐C coupling remodeling in determining the hypertrophic cardiomyopathy phenotype are mutation specific. Methods and Results Two hypertrophic cardiomyopathy mouse models carrying the R92Q and the E163R TNNT2 mutations were investigated. Echocardiography showed left ventricular hypertrophy, enhanced contractility, and diastolic dysfunction in both models; however, these phenotypes were more pronounced in the R92Q mice. Both E163R and R92Q trabeculae showed prolonged twitch relaxation and increased occurrence of premature beats. In E163R ventricular myofibrils or skinned trabeculae, relaxation following Ca2+ removal was prolonged; resting tension and resting ATPase were higher; and isometric ATPase at maximal Ca2+ activation, the energy cost of tension generation, and myofilament Ca2+ sensitivity were increased compared with that in wild‐type mice. No sarcomeric changes were observed in R92Q versus wild‐type mice, except for a large increase in myofilament Ca2+ sensitivity. In R92Q myocardium, we found a blunted response to inotropic interventions, slower decay of Ca2+ transients, reduced SERCA function, and increased Ca2+/calmodulin kinase II activity. Contrarily, secondary alterations of E‐C coupling and signaling were minimal in E163R myocardium. Conclusions In E163R models, mutation‐driven myofilament abnormalities directly cause myocardial dysfunction. In R92Q, diastolic dysfunction and arrhythmogenicity are mediated by profound cardiomyocyte signaling and E‐C coupling changes. Similar hypertrophic cardiomyopathy phenotypes can be generated through different pathways, implying different strategies for a precision medicine approach to treatment.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Calcium-Calmodulin-Dependent Protein Kinases/metabolism
- Cardiomyopathy, Hypertrophic/diagnostic imaging
- Cardiomyopathy, Hypertrophic/genetics
- Cardiomyopathy, Hypertrophic/metabolism
- Cardiomyopathy, Hypertrophic/physiopathology
- Disease Models, Animal
- Excitation Contraction Coupling
- Fibrosis
- Genetic Markers
- Genetic Predisposition to Disease
- Hypertrophy, Left Ventricular/diagnostic imaging
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myofibrils/metabolism
- Myofibrils/pathology
- Phenotype
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Troponin T/genetics
- Ventricular Dysfunction, Left/diagnostic imaging
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Function, Left
- Ventricular Remodeling
Collapse
Affiliation(s)
- Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Francesca Gentile
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Benedetta Tosi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Luca Mazzoni
- Department of NeuroFarBa, University of Florence, Italy
| | - Beatrice Scellini
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | | | | | - Leonardo Sacconi
- LENS, University of Florence & National Institute of Optics (INO-CNR), Florence, Italy
| | - Pieter De Tombe
- Loyola University Medical Center Department of Physiology, Chicago, IL
| | | | | | - Alessandro Mugelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | | | | | - Chiara Tesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| |
Collapse
|
22
|
Coppini R, Mazzoni L, Ferrantini C, Gentile F, Pioner JM, Laurino A, Santini L, Bargelli V, Rotellini M, Bartolucci G, Crocini C, Sacconi L, Tesi C, Belardinelli L, Tardiff J, Mugelli A, Olivotto I, Cerbai E, Poggesi C. Ranolazine Prevents Phenotype Development in a Mouse Model of Hypertrophic Cardiomyopathy. Circ Heart Fail 2017; 10:CIRCHEARTFAILURE.116.003565. [PMID: 28255011 DOI: 10.1161/circheartfailure.116.003565] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/30/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Current therapies are ineffective in preventing the development of cardiac phenotype in young carriers of mutations associated with hypertrophic cardiomyopathy (HCM). Ranolazine, a late Na+ current blocker, reduced the electromechanical dysfunction of human HCM myocardium in vitro. METHODS AND RESULTS To test whether long-term treatment prevents cardiomyopathy in vivo, transgenic mice harboring the R92Q troponin-T mutation and wild-type littermates received an oral lifelong treatment with ranolazine and were compared with age-matched vehicle-treated animals. In 12-months-old male R92Q mice, ranolazine at therapeutic plasma concentrations prevented the development of HCM-related cardiac phenotype, including thickening of the interventricular septum, left ventricular volume reduction, left ventricular hypercontractility, diastolic dysfunction, left-atrial enlargement and left ventricular fibrosis, as evaluated in vivo using echocardiography and magnetic resonance. Left ventricular cardiomyocytes from vehicle-treated R92Q mice showed marked excitation-contraction coupling abnormalities, including increased diastolic [Ca2+] and Ca2+ waves, whereas cells from treated mutants were undistinguishable from those from wild-type mice. Intact trabeculae from vehicle-treated mutants displayed inotropic insufficiency, increased diastolic tension, and premature contractions; ranolazine treatment counteracted the development of myocardial mechanical abnormalities. In mutant myocytes, ranolazine inhibited the enhanced late Na+ current and reduced intracellular [Na+] and diastolic [Ca2+], ultimately preventing the pathological increase of calmodulin kinase activity in treated mice. CONCLUSIONS Owing to the sustained reduction of intracellular Ca2+ and calmodulin kinase activity, ranolazine prevented the development of morphological and functional cardiac phenotype in mice carrying a clinically relevant HCM-related mutation. Pharmacological inhibitors of late Na+ current are promising candidates for an early preventive therapy in young phenotype-negative subjects carrying high-risk HCM-related mutations.
Collapse
Affiliation(s)
- Raffaele Coppini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.).
| | - Luca Mazzoni
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Cecilia Ferrantini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Francesca Gentile
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Josè Manuel Pioner
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Annunziatina Laurino
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Lorenzo Santini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Valentina Bargelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Matteo Rotellini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Gianluca Bartolucci
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Claudia Crocini
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Leonardo Sacconi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Chiara Tesi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Luiz Belardinelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Jil Tardiff
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Alessandro Mugelli
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Iacopo Olivotto
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Elisabetta Cerbai
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| | - Corrado Poggesi
- From the Department NeuroFarBa (R.C., L.M., T.L., L. Santini, V.B., G.B., A.M., E.C.) and Department of Experimental and Clinical Medicine (C.F., F.G., J.M.P., C.T., C.P.), University of Florence, Italy; European Laboratory for Non-linear Spectroscopy (LENS), University of Florence & National Institute of Optics (INO-CNR), Sesto Fiorentino, Italy (C.C., L. Sacconi); Gilead Sciences Inc., Foster City, CA (L.B.); Department of Cellular and Molecular Medicine University of Arizona at Tucson, USA (J.T.); and Referral Center for Cardiomyopathies, Careggi University Hospital, Florence, Italy (M.R., I.O.)
| |
Collapse
|
23
|
Ghashghaee NB, Li KL, Dong WJ. Direct interaction between troponin and myosin enhances the ATPase activity of heavy meromyosin. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Karam CN, Warren CM, Henze M, Banke NH, Lewandowski ED, Solaro RJ. Peroxisome proliferator-activated receptor-α expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy. Am J Physiol Heart Circ Physiol 2017; 312:H681-H690. [PMID: 28130336 DOI: 10.1152/ajpheart.00469.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 01/04/2017] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Although alterations in fatty acid (FA) metabolism have been shown to have a negative impact on contractility of the hypertrophied heart, the targets of action remain elusive. In this study we compared the function of skinned fiber bundles from transgenic (Tg) mice that overexpress a relatively low level of the peroxisome proliferator-activated receptor α (PPARα), and nontransgenic (NTg) littermates. The mice (NTg-T and Tg-T) were stressed by transverse aortic constriction (TAC) and compared with shams (NTg-S and Tg-S). There was an approximate 4-fold increase in PPARα expression in Tg-S compared with NTg-S, but Tg-T hearts showed the same PPARα expression as NTg-T. Expression of PPARα did not alter the hypertrophic response to TAC but did reduce ejection fraction (EF) in Tg-T hearts compared with other groups. The rate of actomyosin ATP hydrolysis was significantly higher in Tg-S skinned fiber bundles compared with all other groups. Tg-T hearts showed an increase in phosphorylation of specific sites on cardiac myosin binding protein-C (cMyBP-C) and β-myosin heavy chain isoform. These results advance our understanding of potential signaling to the myofilaments induced by altered FA metabolism under normal and pathological states. We demonstrate that chronic and transient PPARα activation during pathological stress alters myofilament response to Ca2+ through a mechanism that is possibly mediated by MyBP-C phosphorylation and myosin heavy chain isoforms.NEW & NOTEWORTHY Data presented here demonstrate novel signaling to sarcomeric proteins by chronic alterations in fatty acid metabolism induced by PPARα. The mechanism involves modifications of key myofilament regulatory proteins modifying cross-bridge dynamics with differential effects in controls and hearts stressed by pressure overload.
Collapse
Affiliation(s)
- Chehade N Karam
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Chad M Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Marcus Henze
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - Natasha H Banke
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| | - E Douglas Lewandowski
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and.,Sanford Burnham Presbyterian Medical Discovery Institute, Orlando, Florida
| | - R John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, Illinois; and
| |
Collapse
|
25
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
26
|
Dvornikov AV, Smolin N, Zhang M, Martin JL, Robia SL, de Tombe PP. Restrictive Cardiomyopathy Troponin I R145W Mutation Does Not Perturb Myofilament Length-dependent Activation in Human Cardiac Sarcomeres. J Biol Chem 2016; 291:21817-21828. [PMID: 27557662 DOI: 10.1074/jbc.m116.746172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/23/2016] [Indexed: 02/05/2023] Open
Abstract
The cardiac troponin I (cTnI) R145W mutation is associated with restrictive cardiomyopathy (RCM). Recent evidence suggests that this mutation induces perturbed myofilament length-dependent activation (LDA) under conditions of maximal protein kinase A (PKA) stimulation. Some cardiac disease-causing mutations, however, have been associated with a blunted response to PKA-mediated phosphorylation; whether this includes LDA is unknown. Endogenous troponin was exchanged in isolated skinned human myocardium for recombinant troponin containing either cTnI R145W, PKA/PKC phosphomimetic charge mutations (S23D/S24D and T143E), or various combinations thereof. Myofilament Ca2+ sensitivity of force, tension cost, LDA, and single myofibril activation/relaxation parameters were measured. Our results show that both R145W and T143E uncouple the impact of S23D/S24D phosphomimetic on myofilament function, including LDA. Molecular dynamics simulations revealed a marked reduction in interactions between helix C of cTnC (residues 56, 59, and 63), and cTnI (residue 145) in the presence of either cTnI RCM mutation or cTnI PKC phosphomimetic. These results suggest that the RCM-associated cTnI R145W mutation induces a permanent structural state that is similar to, but more extensive than, that induced by PKC-mediated phosphorylation of cTnI Thr-143. We suggest that this structural conformational change induces an increase in myofilament Ca2+ sensitivity and, moreover, uncoupling from the impact of phosphorylation of cTnI mediated by PKA at the Ser-23/Ser-24 target sites. The R145W RCM mutation by itself, however, does not impact LDA. These perturbed biophysical and biochemical myofilament properties are likely to significantly contribute to the diastolic cardiac pump dysfunction that is seen in patients suffering from a restrictive cardiomyopathy that is associated with the cTnI R145W mutation.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Nikolai Smolin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Seth L Robia
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| |
Collapse
|
27
|
In Vivo Cannulation Methods for Cardiomyocytes Isolation from Heart Disease Models. PLoS One 2016; 11:e0160605. [PMID: 27500929 PMCID: PMC4976940 DOI: 10.1371/journal.pone.0160605] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Isolation of high quality cardiomyocytes is critically important for achieving successful experiments in many cellular and molecular cardiology studies. Methods for isolating cardiomyocytes from the murine heart generally are time-sensitive and experience-dependent, and often fail to produce high quality cells. Major technical difficulties can be related to the surgical procedures needed to explant the heart and to cannulate the vessel to mount onto the Langendorff system before in vitro reperfusion can begin. During this period, transient hypoxia and ischemia may damage the heart, resulting in low yield and poor quality of cells, especially for heart disease models that have fragile cells. We have developed novel in vivo cannulation methods to minimize hypoxia and ischemia, and fine-tuned the entire protocol to produce high quality ventricular myocytes. The high cell quality has been confirmed using important structural and functional criteria such as morphology, t-tubule structure, action potential morphology, Ca2+ signaling, responsiveness to beta-adrenergic agonist, and ability to have robust contraction under mechanically loaded condition. Together these assessments show the preservation of the cardiac excitation–contraction machinery in cells isolated using this technique. The in vivo cannulation method enables consistent isolation of high-quality cardiomyocytes, even from heart disease models that were notoriously difficult for cell isolation using traditional methods.
Collapse
|
28
|
Zhang M, Martin JL, Kumar M, Khairallah RJ, de Tombe PP. Rapid large-scale purification of myofilament proteins using a cleavable His6-tag. Am J Physiol Heart Circ Physiol 2015; 309:H1509-15. [PMID: 26386113 PMCID: PMC4666967 DOI: 10.1152/ajpheart.00598.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/15/2015] [Indexed: 11/22/2022]
Abstract
With the advent of high-throughput DNA sequencing, the number of identified cardiomyopathy-causing mutations has increased tremendously. As the majority of these mutations affect myofilament proteins, there is a need to understand their functional consequence on contraction. Permeabilized myofilament preparations coupled with protein exchange protocols are a common method for examining into contractile mechanics. However, producing large quantities of myofilament proteins can be time consuming and requires different approaches for each protein of interest. In the present study, we describe a unified automated method to produce troponin C, troponin T, and troponin I as well as myosin light chain 2 fused to a His6-tag followed by a tobacco etch virus (TEV) protease site. TEV protease has the advantage of a relaxed P1' cleavage site specificity, allowing for no residues left after proteolysis and preservation of the native sequence of the protein of interest. After expression in Esherichia coli, cells were lysed by sonication in imidazole-containing buffer. The His6-tagged protein was then purified using a HisTrap nickel metal affinity column, and the His6-tag was removed by His6-TEV protease digestion for 4 h at 30°C. The protease was then removed using a HisTrap column, and complex assembly was performed via column-assisted sequential desalting. This mostly automated method allows for the purification of protein in 1 day and can be adapted to most soluble proteins. It has the advantage of greatly increasing yield while reducing the time and cost of purification. Therefore, production and purification of mutant proteins can be accelerated and functional data collected in a faster, less expensive manner.
Collapse
Affiliation(s)
- Mengjie Zhang
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Jody L Martin
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Mohit Kumar
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Ramzi J Khairallah
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| | - Pieter P de Tombe
- Department of Cell and Molecular Physiology, Loyola University, Chicago, Illinois
| |
Collapse
|
29
|
Kumar M, Govindan S, Zhang M, Khairallah RJ, Martin JL, Sadayappan S, de Tombe PP. Cardiac Myosin-binding Protein C and Troponin-I Phosphorylation Independently Modulate Myofilament Length-dependent Activation. J Biol Chem 2015; 290:29241-9. [PMID: 26453301 DOI: 10.1074/jbc.m115.686790] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Indexed: 11/06/2022] Open
Abstract
β-Adrenergic stimulation in heart leads to increased contractility and lusitropy via activation of protein kinase A (PKA). In the cardiac sarcomere, both cardiac myosin binding protein C (cMyBP-C) and troponin-I (cTnI) are prominent myofilament targets of PKA. Treatment of permeabilized myocardium with PKA induces enhanced myofilament length-dependent activation (LDA), the cellular basis of the Frank-Starling cardiac regulatory mechanism. It is not known, however, which of these targets mediates the altered LDA and to what extent. Here, we employed two genetic mouse models in which the three PKA sites in cMyBP-C were replaced with either phospho-mimic (DDD) or phospho-null (AAA) residues. AAA- or DDD-permeabilized myocytes (n = 12-17) were exchanged (~93%) for recombinant cTnI in which the two PKA sites were mutated to either phospho-mimic (DD) or phospho-null (AA) residues. Force-[Ca(2+)] relationships were determined at two sarcomere lengths (SL = 1.9 μm and SL = 2.3 μm). Data were fit to a modified Hill equation for each individual cell preparation at each SL. LDA was indexed as ΔEC50, the difference in [Ca(2+)] required to achieve 50% force activation at the two SLs. We found that PKA-mediated phosphorylation of cMyBP-C and cTnI each independently contribute to enhance myofilament length-dependent activation properties of the cardiac sarcomere, with relative contributions of ~67 and ~33% for cMyBP-C for cTnI, respectively. We conclude that β-adrenergic stimulation enhances the Frank-Starling regulatory mechanism predominantly via cMyBP-C PKA-mediated phosphorylation. We speculate that this molecular mechanism enhances cross-bridge formation at long SL while accelerating cross-bridge detachment and relaxation at short SLs.
Collapse
Affiliation(s)
- Mohit Kumar
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Suresh Govindan
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Mengjie Zhang
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Ramzi J Khairallah
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Jody L Martin
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Sakthivel Sadayappan
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| | - Pieter P de Tombe
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Ilinois 60153
| |
Collapse
|
30
|
Mamidi R, Gresham KS, Li A, dos Remedios CG, Stelzer JE. Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. J Mol Cell Cardiol 2015; 85:262-72. [PMID: 26100051 DOI: 10.1016/j.yjmcc.2015.06.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/28/2015] [Accepted: 06/15/2015] [Indexed: 01/03/2023]
Abstract
Decreased expression of cardiac myosin binding protein-C (cMyBP-C) in the myocardium is thought to be a contributing factor to hypertrophic cardiomyopathy in humans, and the initial molecular defect is likely abnormal cross-bridge (XB) function which leads to impaired force generation, decreased contractile performance, and hypertrophy in vivo. The myosin activator omecamtiv mecarbil (OM) is a pharmacological drug that specifically targets the myosin XB and recent evidence suggests that OM induces a significant decrease in the in vivo motility velocity and an increase in the XB duty cycle. Thus, the molecular effects of OM maybe beneficial in improving contractile function in skinned myocardium lacking cMyBP-C because absence of cMyBP-C in the sarcomere accelerates XB kinetics and enhances XB turnover rate, which presumably reduces contractile efficiency. Therefore, parameters of XB function were measured in skinned myocardium lacking cMyBP-C prior to and following OM incubation. We measured ktr, the rate of force redevelopment as an index of XB transition from both the weakly- to strongly-bound state and from the strongly- to weakly-bound states and performed stretch activation experiments to measure the rates of XB detachment (krel) and XB recruitment (kdf) in detergent-skinned ventricular preparations isolated from hearts of wild-type (WT) and cMyBP-C knockout (KO) mice. Samples from donor human hearts were also used to assess the effects of OM in cardiac muscle expressing a slow β-myosin heavy chain (β-MHC). Incubation of skinned myocardium with OM produced large enhancements in steady-state force generation which were most pronounced at low levels of [Ca(2+)] activations, suggesting that OM cooperatively recruits additional XB's into force generating states. Despite a large increase in steady-state force generation following OM incubation, parallel accelerations in XB kinetics as measured by ktr were not observed, and there was a significant OM-induced decrease in krel which was more pronounced in the KO skinned myocardium compared to WT skinned myocardium (58% in WT vs. 76% in KO at pCa 6.1), such that baseline differences in krel between KO and WT skinned myocardium were no longer apparent following OM-incubation. A significant decrease in the kdf was also observed following OM incubation in all groups, which may be related to the increase in the number of cooperatively recruited XB's at low Ca(2+)-activations which slows the overall rate of force generation. Our results indicate that OM may be a useful pharmacological approach to normalize hypercontractile XB kinetics in myocardium with decreased cMyBP-C expression due to its molecular effects on XB behavior.
Collapse
Affiliation(s)
- Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Kenneth S Gresham
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Amy Li
- Muscle Research Unit, Bosch Institute, University of Sydney, Sydney Australia
| | | | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA.
| |
Collapse
|
31
|
Jian Z, Han H, Zhang T, Puglisi J, Izu LT, Shaw JA, Onofiok E, Erickson JR, Chen YJ, Horvath B, Shimkunas R, Xiao W, Li Y, Pan T, Chan J, Banyasz T, Tardiff JC, Chiamvimonvat N, Bers DM, Lam KS, Chen-Izu Y. Mechanochemotransduction during cardiomyocyte contraction is mediated by localized nitric oxide signaling. Sci Signal 2014; 7:ra27. [PMID: 24643800 DOI: 10.1126/scisignal.2005046] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiomyocytes contract against a mechanical load during each heartbeat, and excessive mechanical stress leads to heart diseases. Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, we found that nitric oxide synthase (NOS) was involved in transducing mechanical load to alter Ca(2+) dynamics. In mouse ventricular myocytes, afterload increased the systolic Ca(2+) transient, which enhanced contractility to counter mechanical load but also caused spontaneous Ca(2+) sparks during diastole that could be arrhythmogenic. The increases in the Ca(2+) transient and sparks were attributable to increased ryanodine receptor (RyR) sensitivity because the amount of Ca2(+) in the sarcoplasmic reticulum load was unchanged. Either pharmacological inhibition or genetic deletion of nNOS (or NOS1), but not of eNOS (or NOS3), prevented afterload-induced Ca2(+) sparks. This differential effect may arise from localized NO signaling, arising from the proximity of nNOS to RyR, as determined by super-resolution imaging. Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) also contributed to afterload-induced Ca(2+) sparks. Cardiomyocytes from a mouse model of familial hypertrophic cardiomyopathy exhibited enhanced mechanotransduction and frequent arrhythmogenic Ca(2+) sparks. Inhibiting nNOS and CaMKII, but not NOX2, in cardiomyocytes from this model eliminated the Ca2(+) sparks, suggesting mechanotransduction activated nNOS and CaMKII independently from NOX2. Thus, our data identify nNOS, CaMKII, and NOX2 as key mediators in mechanochemotransduction during cardiac contraction, which provides new therapeutic targets for treating mechanical stress-induced Ca(2+) dysregulation, arrhythmias, and cardiomyopathy.
Collapse
Affiliation(s)
- Zhong Jian
- 1Department of Pharmacology, University of California, Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Witayavanitkul N, Ait Mou Y, Kuster DWD, Khairallah RJ, Sarkey J, Govindan S, Chen X, Ge Y, Rajan S, Wieczorek DF, Irving T, Westfall MV, de Tombe PP, Sadayappan S. Myocardial infarction-induced N-terminal fragment of cardiac myosin-binding protein C (cMyBP-C) impairs myofilament function in human myocardium. J Biol Chem 2014; 289:8818-27. [PMID: 24509847 PMCID: PMC3979389 DOI: 10.1074/jbc.m113.541128] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Myocardial infarction (MI) is associated with depressed cardiac contractile function and progression to heart failure. Cardiac myosin-binding protein C, a cardiac-specific myofilament protein, is proteolyzed post-MI in humans, which results in an N-terminal fragment, C0-C1f. The presence of C0-C1f in cultured cardiomyocytes results in decreased Ca2+ transients and cell shortening, abnormalities sufficient for the induction of heart failure in a mouse model. However, the underlying mechanisms remain unclear. Here, we investigate the association between C0-C1f and altered contractility in human cardiac myofilaments in vitro. To accomplish this, we generated recombinant human C0-C1f (hC0C1f) and incorporated it into permeabilized human left ventricular myocardium. Mechanical properties were studied at short (2 μm) and long (2.3 μm) sarcomere length (SL). Our data demonstrate that the presence of hC0C1f in the sarcomere had the greatest effect at short, but not long, SL, decreasing maximal force and myofilament Ca2+ sensitivity. Moreover, hC0C1f led to increased cooperative activation, cross-bridge cycling kinetics, and tension cost, with greater effects at short SL. We further established that the effects of hC0C1f occur through direct interaction with actin and α-tropomyosin. Our data demonstrate that the presence of hC0C1f in the sarcomere is sufficient to induce depressed myofilament function and Ca2+ sensitivity in otherwise healthy human donor myocardium. Decreased cardiac function post-MI may result, in part, from the ability of hC0C1f to bind actin and α-tropomyosin, suggesting that cleaved C0-C1f could act as a poison polypeptide and disrupt the interaction of native cardiac myosin-binding protein C with the thin filament.
Collapse
Affiliation(s)
- Namthip Witayavanitkul
- From the Department of Cell and Molecular Physiology, Health Sciences Division, Loyola University Chicago, Maywood, Illinois 60153
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
McKee LA, Chen H, Regan JA, Behunin SM, Walker JW, Walker JS, Konhilas JP. Sexually dimorphic myofilament function and cardiac troponin I phosphospecies distribution in hypertrophic cardiomyopathy mice. Arch Biochem Biophys 2013; 535:39-48. [PMID: 23352598 PMCID: PMC3640654 DOI: 10.1016/j.abb.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/16/2022]
Abstract
The pathological progression of hypertrophic cardiomyopathy (HCM) is sexually dimorphic such that male HCM mice develop phenotypic indicators of cardiac disease well before female HCM mice. Here, we hypothesized that alterations in myofilament function underlies, in part, this sex dimorphism in HCM disease development. Firstly, 10-12month female HCM (harboring a mutant [R403Q] myosin heavy chain) mice presented with proportionately larger hearts than male HCM mice. Next, we determined Ca(2+)-sensitive tension development in demembranated cardiac trabeculae excised from 10-12month female and male HCM mice. Whereas HCM did not impact Ca(2+)-sensitive tension development in male trabeculae, female HCM trabeculae were more sensitive to Ca(2+) than wild-type (WT) counterparts and both WT and HCM males. We hypothesized that the underlying cause of this sex difference in Ca(2+)-sensitive tension development was due to changes in Ca(2+) handling and sarcomeric proteins, including expression of SR Ca(2+) ATPase (2a) (SERCA2a), β-myosin heavy chain (β-MyHC) and post-translational modifications of myofilament proteins. Female HCM hearts showed an elevation of SERCA2a and β-MyHC protein whereas male HCM hearts showed a similar elevation of β-MyHC protein but a reduced level of cardiac troponin T (cTnT) phosphorylation. We also measured the distribution of cardiac troponin I (cTnI) phosphospecies using phosphate-affinity SDS-PAGE. The distribution of cTnI phosphospecies depended on sex and HCM. In conclusion, female and male HCM mice display sex dimorphic myofilament function that is accompanied by a sex- and HCM-dependent distribution of sarcomeric proteins and cTnI phosphospecies.
Collapse
Affiliation(s)
- Laurel A.K. McKee
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Hao Chen
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jessica A. Regan
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Samantha M. Behunin
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jeffery W. Walker
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - John S. Walker
- University of Colorado Denver, Department of Medicine/Cardiology, Aurora, CO 80045, USA
| | - John P. Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| |
Collapse
|
34
|
Lu QW, Wu XY, Morimoto S. Inherited cardiomyopathies caused by troponin mutations. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2013; 10:91-101. [PMID: 23610579 PMCID: PMC3627712 DOI: 10.3969/j.issn.1671-5411.2013.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/13/2012] [Accepted: 01/30/2013] [Indexed: 01/25/2023]
Abstract
Genetic investigations of cardiomyopathy in the recent two decades have revealed a large number of mutations in the genes encoding sarcomeric proteins as a cause of inherited hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), or restrictive cardiomyopathy (RCM). Most functional analyses of the effects of mutations on cardiac muscle contraction have revealed significant changes in the Ca(2+)-regulatory mechanism, in which cardiac troponin (cTn) plays important structural and functional roles as a key regulatory protein. Over a hundred mutations have been identified in all three subunits of cTn, i.e., cardiac troponins T, I, and C. Recent studies on cTn mutations have provided plenty of evidence that HCM- and RCM-linked mutations increase cardiac myofilament Ca(2+) sensitivity, while DCM-linked mutations decrease it. This review focuses on the functional consequences of mutations found in cTn in terms of cardiac myofilament Ca(2+) sensitivity, ATPase activity, force generation, and cardiac troponin I phosphorylation, to understand potential molecular and cellular pathogenic mechanisms of the three types of inherited cardiomyopathy.
Collapse
Affiliation(s)
- Qun-Wei Lu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | |
Collapse
|
35
|
Henze M, Patrick SE, Hinken A, Scruggs SB, Goldspink P, de Tombe PP, Kobayashi M, Ping P, Kobayashi T, Solaro RJ. New insights into the functional significance of the acidic region of the unique N-terminal extension of cardiac troponin I. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:823-32. [PMID: 22940544 PMCID: PMC3548050 DOI: 10.1016/j.bbamcr.2012.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 08/10/2012] [Accepted: 08/18/2012] [Indexed: 11/29/2022]
Abstract
Previous structural studies indicated a special functional role for an acidic region composed of residues 1-10 in the unique N-terminal peptide of cardiac troponin I (cTnI). Employing LC-MS/MS, we determined the presence of phosphorylation sites at S5/S6 in cTnI from wild type mouse hearts as well as in hearts of mice chronically expressing active protein kinase C-ε (PKCε) and exhibiting severe dilated cardiomyopathy (DCM). To determine the functional significance of these phosphorylations, we cloned and expressed wild-type cTnI, (Wt), and cTnI variants expressing pseudo-phosphorylation cTnI-(S5D), cTnI(S6D), as well as cTnI(S5A) and cTnI(S6A). We exchanged native Tn of detergent-extracted (skinned) fiber bundles with Tn reconstituted with the variant cTnIs and measured tension and cross-bridge dynamics. Compared to controls, myofilaments controlled by cTnI with pseudo-phosphorylation (S6D) or Ala substitution (S6A) demonstrated a significant depression in maximum tension, ATPase rate, and ktr, but no change in half-maximally activating Ca(2+). In contrast, pseudo-phosphorylation at position 5 (S5D) had no effects, although S5A induced an increase in Ca(2+)-sensitivity with no change in maximum tension or ktr. We further tested the impact of acidic domain modifications on myofilament function in studies examining the effects of cTnI(A2V), a mutation linked to DCM. This mutation significantly altered the inhibitory activity of cTnI as well as cooperativity of activation of myofilament tension, but not when S23/S24 were pseudo-phosphorylated. Our data indicate a new functional and pathological role of amino acid modifications in the N-terminal acidic domain of cTnI that is modified by phosphorylations at cTnI(S23/S24). This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Marcus Henze
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Stacey E. Patrick
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Aaron Hinken
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Sarah B. Scruggs
- Departments of Physiology and Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Paul Goldspink
- Department of Physiology Medical College of Wisconsin, Milwaukee, WI, 53226
| | - Pieter P. de Tombe
- Department of Cellular and Molecular Physiology, Loyola University, Maywood, IL 60153
| | - Minae Kobayashi
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - Peipei Ping
- Departments of Physiology and Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Tomoyoshi Kobayashi
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| | - R. John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612
| |
Collapse
|
36
|
Sequeira V, Wijnker PJM, Nijenkamp LLAM, Kuster DWD, Najafi A, Witjas-Paalberends ER, Regan JA, Boontje N, Ten Cate FJ, Germans T, Carrier L, Sadayappan S, van Slegtenhorst MA, Zaremba R, Foster DB, Murphy AM, Poggesi C, Dos Remedios C, Stienen GJM, Ho CY, Michels M, van der Velden J. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 2013; 112:1491-505. [PMID: 23508784 DOI: 10.1161/circresaha.111.300436] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE High-myofilament Ca(2+) sensitivity has been proposed as a trigger of disease pathogenesis in familial hypertrophic cardiomyopathy (HCM) on the basis of in vitro and transgenic mice studies. However, myofilament Ca(2+) sensitivity depends on protein phosphorylation and muscle length, and at present, data in humans are scarce. OBJECTIVE To investigate whether high myofilament Ca(2+) sensitivity and perturbed length-dependent activation are characteristics for human HCM with mutations in thick and thin filament proteins. METHODS AND RESULTS Cardiac samples from patients with HCM harboring mutations in genes encoding thick (MYH7, MYBPC3) and thin (TNNT2, TNNI3, TPM1) filament proteins were compared with sarcomere mutation-negative HCM and nonfailing donors. Cardiomyocyte force measurements showed higher myofilament Ca(2+) sensitivity in all HCM samples and low phosphorylation of protein kinase A (PKA) targets compared with donors. After exogenous PKA treatment, myofilament Ca(2+) sensitivity was similar (MYBPC3mut, TPM1mut, sarcomere mutation-negative HCM), higher (MYH7mut, TNNT2mut), or even significantly lower (TNNI3mut) compared with donors. Length-dependent activation was significantly smaller in all HCM than in donor samples. PKA treatment increased phosphorylation of PKA-targets in HCM myocardium and normalized length-dependent activation to donor values in sarcomere mutation-negative HCM and HCM with truncating MYBPC3 mutations but not in HCM with missense mutations. Replacement of mutant by wild-type troponin in TNNT2mut and TNNI3mut corrected length-dependent activation to donor values. CONCLUSIONS High-myofilament Ca(2+) sensitivity is a common characteristic of human HCM and partly reflects hypophosphorylation of PKA targets compared with donors. Length-dependent sarcomere activation is perturbed by missense mutations, possibly via posttranslational modifications other than PKA hypophosphorylation or altered protein-protein interactions, and represents a common pathomechanism in HCM.
Collapse
Affiliation(s)
- Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Michael JJ, Gollapudi SK, Ford SJ, Kazmierczak K, Szczesna-Cordary D, Chandra M. Deletion of 1-43 amino acids in cardiac myosin essential light chain blunts length dependency of Ca(2+) sensitivity and cross-bridge detachment kinetics. Am J Physiol Heart Circ Physiol 2013; 304:H253-9. [PMID: 23144314 PMCID: PMC3543674 DOI: 10.1152/ajpheart.00572.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 11/01/2012] [Indexed: 11/22/2022]
Abstract
The role of cardiac myosin essential light chain (ELC) in the sarcomere length (SL) dependency of myofilament contractility is unknown. Therefore, mechanical and dynamic contractile properties were measured at SL 1.9 and 2.2 μm in cardiac muscle fibers from two groups of transgenic (Tg) mice: 1) Tg-wild-type (WT) mice that expressed WT human ventricular ELC and 2) Tg-Δ43 mice that expressed a mutant ELC lacking 1-43 amino acids. In agreement with previous studies, Ca(2+)-activated maximal tension decreased significantly in Tg-Δ43 fibers. pCa(50) (-log(10) [Ca(2+)](free) required for half maximal activation) values at SL of 1.9 μm were 5.64 ± 0.02 and 5.70 ± 0.02 in Tg-WT and Tg-Δ43 fibers, respectively. pCa(50) values at SL of 2.2 μm were 5.70 ± 0.01 and 5.71 ± 0.01 in Tg-WT and Tg-Δ43 fibers, respectively. The SL-mediated increase in the pCa(50) value was statistically significant only in Tg-WT fibers (P < 0.01), indicating that the SL dependency of myofilament Ca(2+) sensitivity was blunted in Tg-Δ43 fibers. The SL dependency of cross-bridge (XB) detachment kinetics was also blunted in Tg-Δ43 fibers because the decrease in XB detachment kinetics was significant (P < 0.001) only at SL 1.9 μm. Thus the increased XB dwell time at the short SL augments Ca(2+) sensitivity at short SL and thus blunts SL-mediated increase in myofilament Ca(2+) sensitivity. Our data suggest that the NH(2)-terminal extension of cardiac ELC not only augments the amplitude of force generation, but it also may play a role in mediating the SL dependency of XB detachment kinetics and myofilament Ca(2+) sensitivity.
Collapse
Affiliation(s)
- John Jeshurun Michael
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | | | |
Collapse
|
38
|
Korte FS, Feest ER, Razumova MV, Tu AY, Regnier M. Enhanced Ca2+ binding of cardiac troponin reduces sarcomere length dependence of contractile activation independently of strong crossbridges. Am J Physiol Heart Circ Physiol 2012; 303:H863-70. [PMID: 22865385 PMCID: PMC3469702 DOI: 10.1152/ajpheart.00395.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/26/2012] [Indexed: 11/22/2022]
Abstract
Calcium sensitivity of the force-pCa relationship depends strongly on sarcomere length (SL) in cardiac muscle and is considered to be the cellular basis of the Frank-Starling law of the heart. SL dependence may involve changes in myofilament lattice spacing and/or myosin crossbridge orientation to increase probability of binding to actin at longer SLs. We used the L48Q cardiac troponin C (cTnC) variant, which has enhanced Ca(2+) binding affinity, to test the hypotheses that the intrinsic properties of cTnC are important in determining 1) thin filament binding site availability and responsiveness to crossbridge activation and 2) SL dependence of force in cardiac muscle. Trabeculae containing L48Q cTnC-cTn lost SL dependence of the Ca(2+) sensitivity of force. This occurred despite maintaining the typical SL-dependent changes in maximal force (F(max)). Osmotic compression of preparations at SL 2.0 μm with 3% dextran increased F(max) but not pCa(50) in L48Q cTnC-cTn exchanged trabeculae, whereas wild-type (WT)-cTnC-cTn exchanged trabeculae exhibited increases in both F(max) and pCa(50). Furthermore, crossbridge inhibition with 2,3-butanedione monoxime at SL 2.3 μm decreased F(max) and pCa(50) in WT cTnC-cTn trabeculae to levels measured at SL 2.0 μm, whereas only F(max) was decreased with L48Q cTnC-cTn. Overall, these results suggest that L48Q cTnC confers reduced crossbridge dependence of thin filament activation in cardiac muscle and that changes in the Ca(2+) sensitivity of force in response to changes in SL are at least partially dependent on properties of thin filament troponin.
Collapse
Affiliation(s)
- F Steven Korte
- Department of Bioengineering, University of Washington, Seattle, WA 98195-7962, USA
| | | | | | | | | |
Collapse
|
39
|
Cardiomyopathy-Related Mutations in Cardiac Troponin C, L29Q and G159D, Have Divergent Effects on Rat Cardiac Myofiber Contractile Dynamics. Biochem Res Int 2012; 2012:824068. [PMID: 23008774 PMCID: PMC3447348 DOI: 10.1155/2012/824068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/06/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Previous studies of cardiomyopathy-related mutations in cardiac troponin C (cTnC)-L29Q and G159D-have shown diverse findings. The link between such mutant effects and their divergent impact on cardiac phenotypes has remained elusive due to lack of studies on contractile dynamics. We hypothesized that a cTnC mutant-induced change in the thin filament will affect global myofilament mechanodynamics because of the interactions of thin filament kinetics with both Ca(2+) binding and crossbridge (XB) cycling kinetics. We measured pCa-tension relationship and contractile dynamics in detergent-skinned rat cardiac papillary muscle fibers reconstituted with the recombinant wild-type rat cTnC (cTnC(WT)), cTnC(L29Q), and cTnC(G159D) mutants. cTnC(L29Q) fibers demonstrated a significant decrease in Ca(2+) sensitivity, but cTnC(G159D) fibers did not. Both mutants had no effect on Ca(2+)-activated maximal tension. The rate of XB recruitment dynamics increased in cTnC(L29Q) (26%) and cTnC(G159D) (25%) fibers. The rate of XB distortion dynamics increased in cTnC(G159D) fibers (15%). Thus, the cTnC(L29Q) mutant modulates the equilibrium between the non-cycling and cycling pool of XB by affecting the on/off kinetics of the regulatory units (Tropomyosin-Troponin); whereas, the cTnC(G159D) mutant increases XB cycling rate. Different effects on contractile dynamics may offer clue regarding how cTnC(L29Q) and cTnC(G159D) cause divergent effects on cardiac phenotypes.
Collapse
|
40
|
Gollapudi S, Mamidi R, Mallampalli S, Chandra M. The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys J 2012; 103:940-8. [PMID: 23009843 PMCID: PMC3433604 DOI: 10.1016/j.bpj.2012.07.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/25/2012] [Accepted: 07/09/2012] [Indexed: 11/21/2022] Open
Abstract
Cardiac troponin T (cTnT) is a key component of contractile regulatory proteins. cTnT is characterized by a ∼32 amino acid N-terminal extension (NTE), the function of which remains unknown. To understand its function, we generated a transgenic (TG) mouse line that expressed a recombinant chimeric cTnT in which the NTE of mouse cTnT was removed by replacing its 1-73 residues with the corresponding 1-41 residues of mouse fast skeletal TnT. Detergent-skinned papillary muscle fibers from non-TG (NTG) and TG mouse hearts were used to measure tension, ATPase activity, Ca(2+) sensitivity (pCa(50)) of tension, rate of tension redevelopment, dynamic muscle fiber stiffness, and maximal fiber shortening velocity at sarcomere lengths (SLs) of 1.9 and 2.3 μm. Ca(2+) sensitivity increased significantly in TG fibers at both short SL (pCa(50) of 5.96 vs. 5.62 in NTG fibers) and long SL (pCa(50) of 6.10 vs. 5.76 in NTG fibers). Maximal cross-bridge turnover and detachment kinetics were unaltered in TG fibers. Our data suggest that the NTE constrains cardiac thin filament activation such that the transition of the thin filament from the blocked to the closed state becomes less responsive to Ca(2+). Our finding has implications regarding the effect of tissue- and disease-related changes in cTnT isoforms on cardiac muscle function.
Collapse
Affiliation(s)
| | | | | | - Murali Chandra
- Department of Veterinary and Comparative Anatomy, Pharmacology, and Physiology, Washington State University, Pullman, Washington
| |
Collapse
|
41
|
Ford SJ, Mamidi R, Jimenez J, Tardiff JC, Chandra M. Effects of R92 mutations in mouse cardiac troponin T are influenced by changes in myosin heavy chain isoform. J Mol Cell Cardiol 2012; 53:542-51. [PMID: 22884844 DOI: 10.1016/j.yjmcc.2012.07.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/26/2012] [Accepted: 07/29/2012] [Indexed: 11/18/2022]
Abstract
One limitation in understanding how different familial hypertrophic cardiomyopathy (FHC)-related mutations lead to divergent cardiac phenotypes is that such mutations are often studied in transgenic (TG) mouse hearts which contain a fast cycling myosin heavy chain isoform (α-MHC). However, the human heart contains a slow cycling MHC isoform (β-MHC). Given the physiological significance of MHC-troponin interplay effects on cardiac contractile function, we hypothesized that cardiac troponin T (cTnT) mutation-mediated effects on contractile function depend on the type of MHC isoform present in the sarcomere. We tested our hypothesis using two variants of cTnT containing mutations at FHC hotspot R92 (R92L or R92Q), expressed against either an α-MHC or β-MHC background in TG mouse hearts. One finding from our study was that R92L attenuated the length-dependent increase in tension and abolished the length-dependent increase in myofilament Ca(2+) sensitivity only when β-MHC was present. In addition, α- and β-MHC isoforms differentially affected how R92 mutations altered crossbridge (XB) recruitment dynamics. For example, the rate of XB recruitment was faster in R92L or R92Q fibers when β-MHC was present, but was unaffected when α-MHC was present. The R92Q mutation sped XB detachment in the presence of β-MHC, but not in the presence of α-MHC. R92Q affected the XB strain-dependent influence on XB recruitment dynamics, an effect not observed for R92L. Our findings have major implications for understanding not only the divergent effects of R92 mutations on cardiac phenotype, but also the distinct effects of MHC isoforms in determining the outcome of mutations in cTnT.
Collapse
Affiliation(s)
- Steven J Ford
- Department of Veterinary and Comparative Anatomy, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
42
|
Manning EP, Guinto PJ, Tardiff JC. Correlation of molecular and functional effects of mutations in cardiac troponin T linked to familial hypertrophic cardiomyopathy: an integrative in silico/in vitro approach. J Biol Chem 2012; 287:14515-23. [PMID: 22334656 DOI: 10.1074/jbc.m111.257436] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nearly 70% of all of the known cTnT mutations that cause familial hypertrophic cardiomyopathy fall within the TNT1 region that is critical to cTn-Tm binding. The high resolution structure of this domain has not been determined, and this lack of information has hindered structure-function analysis. In the current study, a coupled computational experimental approach was employed to correlate changes in cTnT dynamics to basic function using the regulated in vitro motility assay (R-IVM). An in silico approach to calculate forces in terms of a bending coordinate was used to precisely identify decreases in bending forces at residues 105 and 106 within the proposed cTnT "hinge" region. Significant functional changes were observed in multiple functional properties, including a decrease in the cooperativity of calcium activation, the calcium sensitivity of sliding speed, and maximum sliding speed. Correlation of the computational and experimental findings revealed an association between TNT1 flexibility and the cooperativity of thin filament calcium activation where an increase in flexibility led to a decrease in cooperativity. Further analysis of the primary sequence of the TNT1 region revealed a unique pattern of conserved charged TNT1 residues altered by the R92W and R92L mutations and may represent the underlying "structure" modulating this central functional domain. These data provide a framework for further integrated in silico/in vitro approaches that may be extended into a high-throughput predictive screen to overcome the current structural limitations in linking molecular phenotype to genotype in thin filament cardiomyopathies.
Collapse
Affiliation(s)
- Edward P Manning
- Department of Physiology and Biophysics, Albert Einstein College of Medicine Bronx, Bronx, New York 10461, USA
| | | | | |
Collapse
|
43
|
Wolfram JA, Lesnefsky EJ, Hoit BD, Smith MA, Lee HG. Therapeutic potential of c-Myc inhibition in the treatment of hypertrophic cardiomyopathy. Ther Adv Chronic Dis 2011; 2:133-44. [PMID: 21858245 DOI: 10.1177/2040622310393059] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Investigating the pathophysiological importance of the molecular and mechanical development of cardiomyopathy is critical to find new and broader means of protection against this disease that is increasing in prevalence and impact. The current available treatment options for cardiomyopathy mainly focus on treating symptoms and strive to make the patient more comfortable while preventing progression of disease and sudden death. The proto-oncogene c-Myc (Myc) has been shown to be increased in many different types of heart disease, including hypertrophic cardiomyopathy, before any signs of the disease are present. As the mechanisms of action and multiple pathways of dependent actions of Myc are being dissected by many research groups, inhibition of Myc is becoming an attractive paradigm for prevention and treatment of cardiomyopathy and heart failure. Elucidating the role Myc plays in the development, propagation and perpetuation of cardiomyopathy and heart failure will one day translate into potential therapeutics for cardiomyopathy.
Collapse
Affiliation(s)
- Julie A Wolfram
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
44
|
Frazier AH, Ramirez-Correa GA, Murphy AM. Molecular mechanisms of sarcomere dysfunction in dilated and hypertrophic cardiomyopathy. PROGRESS IN PEDIATRIC CARDIOLOGY 2011; 31:29-33. [PMID: 21297871 PMCID: PMC3032173 DOI: 10.1016/j.ppedcard.2010.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The sarcomeres form the molecular motor of the cardiomyocyte and consist of a complex multi-protein of thick and thin filaments which are anchored to the cytoskeleton. The thick filament, composed of myosin and associated proteins, and the thin filament composed of actin, tropomyosin and the troponins develop actinmyosin crossbridges which cycle in response to calcium resulting in sliding of the filaments and contraction. The thin filament in fixed to the cardiomyocyte cytoskeleton at the Z-disc, a complex of structural and regulatory proteins. A giant protein, titin, provides an external scaffold and regulates passive force in diastole. Both genetic disorders and acquired conditions may affect proteins of the sarcomere. Genetic disorders of the thick and thin filament proteins are the predominant cause of hypertrophic cardiomyopathy. These mutations lead to abnormal sarcomere function, often an enhanced sensitivity to calcium, and impaired relaxation. This may result in secondary changes in calcium cycling and amplification of hypertrophic signaling cascades. Correcting the abnormal function of the sarcomere as well as intervening in later stages of the pathophysiologic cascades may ameliorate disease. In dilated cardiomyopathy genetic abnormalities in the sarcomere, Z-disc, calcium regulatory and cytoskeletal proteins as well as the dystrophin complex may be causal for disease. In dilated cardiomyopathy, disturbances in post-translational modifications of the sarcomere my also play a prominent role. Experimental models indicate that altered phosphorylation of sarcomeric proteins may impair systolic and diastolic function as well as the response to heart rate and afterload. Thus correcting these post-translational changes are legitimate targets for future therapeutic strategies for dilated cardiomyopathy.
Collapse
Affiliation(s)
- Aisha H Frazier
- Departments of Pediatrics, Division of Cardiology, Johns Hopkins University School of Medicine
| | | | | |
Collapse
|
45
|
Jimenez J, Tardiff JC. Abnormal heart rate regulation in murine hearts with familial hypertrophic cardiomyopathy-related cardiac troponin T mutations. Am J Physiol Heart Circ Physiol 2010; 300:H627-35. [PMID: 21131475 DOI: 10.1152/ajpheart.00247.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in cardiac troponin T (cTnT), Δ160E and R92Q, have been linked to familial hypertrophic cardiomyopathy (FHC), and some studies have indicated that these mutations can lead to a high incidence of sudden cardiac death in the relative absence of significant ventricular hypertrophy. Alterations in autonomic function have been documented in patients with hypertrophic cardiomyopathy. We hypothesize that alterations in autonomic function may contribute to mutation-specific clinical phenotypes in cTnT-related FHC. Heart rate (HR) variability (HRV) has been used to assess autonomic function from an electrocardiograph. Nontransgenic, Δ160E, or R92Q mice were implanted with radiofrequency transmitters to obtain continuous electrocardiograph recordings during 24-h baseline and 30-min recordings after β-adrenergic receptor drug injections. Although Δ160E mice did not differ from nontransgenic mice for any 24-h HRV measurements, R92Q mice had impaired HR regulation, as measured by a decrease in the SD of the R-R interval, a decrease in the low frequency-to-high frequency ratio, a decrease in normalized low frequency, and an increase in normalized high frequency. β-Adrenergic receptor density measurements and HRV analysis after drug injections did not reveal any significant differences for Δ160E or R92Q mice versus nontransgenic mice. Arrhythmia analysis revealed both an increased incidence of heart block in R92Q mice at baseline and frequency of premature ventricular contractions after isoproterenol injections in Δ160E and R92Q mice. In addition, Δ160E and R92Q mice exhibited a prolonged P duration after drug injections. Therefore, between two independent and clinically severe cTnT mutations within the same functional domain, only R92Q mice exhibited altered autonomic function, whereas both mutations demonstrated abnormalities in conduction and ventricular ectopy.
Collapse
Affiliation(s)
- Jesus Jimenez
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Ullmann Bldg. 316, Bronx, NY 10803, USA
| | | |
Collapse
|
46
|
Parvatiyar MS, Pinto JR, Liang J, Potter JD. Predicting cardiomyopathic phenotypes by altering Ca2+ affinity of cardiac troponin C. J Biol Chem 2010; 285:27785-97. [PMID: 20566645 DOI: 10.1074/jbc.m110.112326] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiac diseases associated with mutations in troponin subunits include hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and restrictive cardiomyopathy (RCM). Altered calcium handling in these diseases is evidenced by changes in the Ca(2+) sensitivity of contraction. Mutations in the Ca(2+) sensor, troponin C (TnC), were generated to increase/decrease the Ca(2+) sensitivity of cardiac skinned fibers to create the characteristic effects of DCM, HCM, and RCM. We also used a reconstituted assay to determine the mutation effects on ATPase activation and inhibition. One mutant (A23Q) was found with HCM-like properties (increased Ca(2+) sensitivity of force and normal levels of ATPase inhibition). Three mutants (S37G, V44Q, and L48Q) were identified with RCM-like properties (a large increase in Ca(2+) sensitivity, partial loss of ATPase inhibition, and increased basal force). Two mutations were identified (E40A and I61Q) with DCM properties (decreased Ca(2+) sensitivity, maximal force recovery, and activation of the ATPase at high [Ca(2+)]). Steady-state fluorescence was utilized to assess Ca(2+) affinity in isolated cardiac (c)TnCs containing F27W and did not necessarily mirror the fiber Ca(2+) sensitivity. Circular dichroism of mutant cTnCs revealed a trend where increased alpha-helical content correlated with increased Ca(2+) sensitivity in skinned fibers and vice versa. The main findings from this study were as follows: 1) cTnC mutants demonstrated distinct functional phenotypes reminiscent of bona fide HCM, RCM, and DCM mutations; 2) a region in cTnC associated with increased Ca(2+) sensitivity in skinned fibers was identified; and 3) the F27W reporter mutation affected Ca(2+) sensitivity, maximal force, and ATPase activation of some mutants.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
47
|
Ouyang Y, Mamidi R, Jayasundar JJ, Chandra M, Dong WJ. Structural and kinetic effects of PAK3 phosphorylation mimic of cTnI(S151E) on the cTnC-cTnI interaction in the cardiac thin filament. J Mol Biol 2010; 400:1036-45. [PMID: 20540949 DOI: 10.1016/j.jmb.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 05/29/2010] [Accepted: 06/03/2010] [Indexed: 12/01/2022]
Abstract
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca(2+), but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca(2+)-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca(2+)-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca(2+) by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca(2+) dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI.
Collapse
Affiliation(s)
- Yexin Ouyang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
48
|
Huke S, Knollmann BC. Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol 2010; 48:824-33. [PMID: 20097204 PMCID: PMC2854218 DOI: 10.1016/j.yjmcc.2010.01.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/12/2010] [Accepted: 01/12/2010] [Indexed: 10/19/2022]
Abstract
Increased myofilament Ca(2+) sensitivity is a common attribute of many inherited and acquired cardiomyopathies that are associated with cardiac arrhythmias. Accumulating evidence supports the concept that increased myofilament Ca(2+) sensitivity is an independent risk factor for arrhythmias. This review describes and discusses potential underlying molecular and cellular mechanisms how myofilament Ca(2+) sensitivity affects cardiac excitation and leads to the generation of arrhythmias. Emphasized are downstream effects of increased myofilament Ca(2+) sensitivity: altered Ca(2+) buffering/handling, impaired energy metabolism and increased mechanical stretch, and how they may contribute to arrhythmogenesis.
Collapse
Affiliation(s)
- Sabine Huke
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN 37232-0575, USA
| | | |
Collapse
|
49
|
Rescue of familial cardiomyopathies by modifications at the level of sarcomere and Ca2+ fluxes. J Mol Cell Cardiol 2010; 48:834-42. [PMID: 20079744 DOI: 10.1016/j.yjmcc.2010.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 12/21/2022]
Abstract
Cardiomyopathies are a heterogeneous group of diseases of the myocardium associated with mechanical and/or electrical dysfunction that frequently show inappropriate ventricular hypertrophy or dilation. Current data suggest that numerous mutations in several genes can cause cardiomyopathies, and the severity of their phenotypes is also influenced by modifier genes. Two major types of inherited cardiomyopathies include familial hypertrophic cardiomyopathy (FHC) and dilated cardiomyopathy (DCM). FHC typically involves increased myofilament Ca(2+) sensitivity associated with diastolic dysfunction, whereas DCM often results in decreased myofilament Ca(2+) sensitivity and systolic dysfunction. Besides alterations in myofilament Ca(2+) sensitivity, alterations in the levels of Ca(2+)-handling proteins have also been described in both diseases. Recent work in animal models has attempted to rescue FHC and DCM via modifications at the myofilament level, altering Ca(2+) homeostasis by targeting Ca(2+)-handling proteins, such as the sarcoplasmic reticulum ATPase and phospholamban, or by interfering with the products of different modifiers genes. Although attempts to rescue cardiomyopathies in animal models have shown great promise, further studies are needed to validate these strategies in order to provide more effective and specific treatments.
Collapse
|
50
|
Willott RH, Gomes AV, Chang AN, Parvatiyar MS, Pinto JR, Potter JD. Mutations in Troponin that cause HCM, DCM AND RCM: what can we learn about thin filament function? J Mol Cell Cardiol 2009; 48:882-92. [PMID: 19914256 DOI: 10.1016/j.yjmcc.2009.10.031] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 10/19/2009] [Accepted: 10/30/2009] [Indexed: 12/25/2022]
Abstract
Troponin (Tn) is a critical regulator of muscle contraction in cardiac muscle. Mutations in Tn subunits are associated with hypertrophic, dilated and restrictive cardiomyopathies. Improved diagnosis of cardiomyopathies as well as intensive investigation of new mouse cardiomyopathy models has significantly enhanced this field of research. Recent investigations have showed that the physiological effects of Tn mutations associated with hypertrophic, dilated and restrictive cardiomyopathies are different. Impaired relaxation is a universal finding of most transgenic models of HCM, predicted directly from the significant changes in Ca(2+) sensitivity of force production. Mutations associated with HCM and RCM show increased Ca(2+) sensitivity of force production while mutations associated with DCM demonstrate decreased Ca(2+) sensitivity of force production. This review spotlights recent advances in our understanding on the role of Tn mutations on ATPase activity, maximal force development and heart function as well as the correlation between the locations of these Tn mutations within the thin filament and myofilament function.
Collapse
Affiliation(s)
- Ruth H Willott
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|