1
|
Martin TG, Leinwand LA. Hearts apart: sex differences in cardiac remodeling in health and disease. J Clin Invest 2024; 134:e180074. [PMID: 38949027 PMCID: PMC11213513 DOI: 10.1172/jci180074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
2
|
Vaniya A, Karlstaedt A, Gulkok D, Thottakara T, Liu Y, Fan S, Eades H, Vakrou S, Fukunaga R, Vernon HJ, Fiehn O, Roselle Abraham M. Allele-specific dysregulation of lipid and energy metabolism in early-stage hypertrophic cardiomyopathy. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100073. [PMID: 39430912 PMCID: PMC11485168 DOI: 10.1016/j.jmccpl.2024.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Introduction Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes that increase myocyte energy demand and lead to cardiac hypertrophy. However, it is unknown whether a common metabolic trait underlies cardiac phenotype at the early disease stage. To address this question and define cardiac biochemical pathology in early-stage HCM, we studied two HCM mouse models that express pathogenic variants in cardiac troponin T (Tnt2) or myosin heavy chain (Myh6) genes, and have marked differences in cardiac imaging phenotype, mitochondrial function at early disease stage. Methods We used a combination of echocardiography, transcriptomics, mass spectrometry-based untargeted metabolomics (GC-TOF, HILIC, CSH-QTOF), and computational modeling (CardioNet) to examine cardiac structural and metabolic remodeling at early disease stage (5 weeks of age) in R92W-TnT+/- and R403Q-MyHC+/- mutant mice. Data from mutants was compared with respective littermate controls (WT). Results Allele-specific differences in cardiac phenotype, gene expression and metabolites were observed at early disease stage. LV diastolic dysfunction was prominent in TnT mutants. Differentially-expressed genes in TnT mutant hearts were predominantly enriched in the Krebs cycle, respiratory electron transport, and branched-chain amino acid metabolism, whereas MyHC mutants were enriched in mitochondrial biogenesis, calcium homeostasis, and liver-X-receptor signaling. Both mutant hearts demonstrated significant alterations in levels of purine nucleosides, trisaccharides, dicarboxylic acids, acylcarnitines, phosphatidylethanolamines, phosphatidylinositols, ceramides and triglycerides; 40.4 % of lipids and 24.7 % of metabolites were significantly different in TnT mutants, whereas 10.4 % of lipids and 5.8 % of metabolites were significantly different in MyHC mutants. Both mutant hearts had a lower abundance of unsaturated long-chain acyl-carnitines (18:1, 18:2, 20:1), but only TnT mutants showed enrichment of FA18:0 in ceramide and cardiolipin species. CardioNet predicted impaired energy substrate metabolism and greater phospholipid remodeling in TnT mutants than in MyHC mutants. Conclusions Our systems biology approach revealed marked differences in metabolic remodeling in R92W-TnT and R403Q-MyHC mutant hearts, with TnT mutants showing greater derangements than MyHC mutants, at early disease stage. Changes in cardiolipin composition in TnT mutants could contribute to impairment of energy metabolism and diastolic dysfunction observed in this study, and predispose to energetic stress, ventricular arrhythmias under high workloads such as exercise.
Collapse
Affiliation(s)
- Arpana Vaniya
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Anja Karlstaedt
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States of America
| | - Damla Gulkok
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Tilo Thottakara
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Sili Fan
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - Hannah Eades
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins University, Baltimore, MD, United States of America
| | - Hilary J. Vernon
- McKusick Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Pediatrics, Johns Hopkins University, Baltimore, MD, United States of America
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States of America
| | - M. Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Division of Cardiology, University of California San Francisco, San Francisco, CA, United States of America
| |
Collapse
|
3
|
Vaniya A, Karlstaedt A, Gulkok DA, Thottakara T, Liu Y, Fan S, Eades H, Fukunaga R, Vernon HJ, Fiehn O, Roselle Abraham M. Lipid metabolism drives allele-specific early-stage hypertrophic cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.564562. [PMID: 38014251 PMCID: PMC10680657 DOI: 10.1101/2023.11.10.564562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) results from pathogenic variants in sarcomeric protein genes, that increase myocyte energy demand and lead to cardiac hypertrophy. But it is unknown whether a common metabolic trait underlies the cardiac phenotype at early disease stage. This study characterized two HCM mouse models (R92W-TnT, R403Q-MyHC) that demonstrate differences in mitochondrial function at early disease stage. Using a combination of cardiac phenotyping, transcriptomics, mass spectrometry-based metabolomics and computational modeling, we discovered allele-specific differences in cardiac structure/function and metabolic changes. TnT-mutant hearts had impaired energy substrate metabolism and increased phospholipid remodeling compared to MyHC-mutants. TnT-mutants showed increased incorporation of saturated fatty acid residues into ceramides, cardiolipin, and increased lipid peroxidation, that could underlie allele-specific differences in mitochondrial function and cardiomyopathy.
Collapse
|
4
|
Broadway-Stringer S, Jiang H, Wadmore K, Hooper C, Douglas G, Steeples V, Azad AJ, Singer E, Reyat JS, Galatik F, Ehler E, Bennett P, Kalisch-Smith JI, Sparrow DB, Davies B, Djinovic-Carugo K, Gautel M, Watkins H, Gehmlich K. Insights into the Role of a Cardiomyopathy-Causing Genetic Variant in ACTN2. Cells 2023; 12:721. [PMID: 36899856 PMCID: PMC10001372 DOI: 10.3390/cells12050721] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Pathogenic variants in ACTN2, coding for alpha-actinin 2, are known to be rare causes of Hypertrophic Cardiomyopathy. However, little is known about the underlying disease mechanisms. Adult heterozygous mice carrying the Actn2 p.Met228Thr variant were phenotyped by echocardiography. For homozygous mice, viable E15.5 embryonic hearts were analysed by High Resolution Episcopic Microscopy and wholemount staining, complemented by unbiased proteomics, qPCR and Western blotting. Heterozygous Actn2 p.Met228Thr mice have no overt phenotype. Only mature males show molecular parameters indicative of cardiomyopathy. By contrast, the variant is embryonically lethal in the homozygous setting and E15.5 hearts show multiple morphological abnormalities. Molecular analyses, including unbiased proteomics, identified quantitative abnormalities in sarcomeric parameters, cell-cycle defects and mitochondrial dysfunction. The mutant alpha-actinin protein is found to be destabilised, associated with increased activity of the ubiquitin-proteasomal system. This missense variant in alpha-actinin renders the protein less stable. In response, the ubiquitin-proteasomal system is activated; a mechanism that has been implicated in cardiomyopathies previously. In parallel, a lack of functional alpha-actinin is thought to cause energetic defects through mitochondrial dysfunction. This seems, together with cell-cycle defects, the likely cause of the death of the embryos. The defects also have wide-ranging morphological consequences.
Collapse
Affiliation(s)
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Kirsty Wadmore
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Charlotte Hooper
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Gillian Douglas
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Violetta Steeples
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Amar J. Azad
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Evie Singer
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Jasmeet S. Reyat
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Frantisek Galatik
- Department of Physiology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Elisabeth Ehler
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 9RT, UK
- School of Cardiovascular and Metabolic Medicine and Sciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9RT, UK
| | - Pauline Bennett
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London SE1 9RT, UK
| | | | - Duncan B. Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Benjamin Davies
- Transgenic Core, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Kristina Djinovic-Carugo
- European Molecular Biology Laboratory, 38000 Grenoble, France
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, 1030 Vienna, Austria
| | - Mathias Gautel
- School of Basic and Medical Biosciences, British Heart Foundation Centre of Research Excellence, King’s College London, London SE1 9RT, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Chen YZ, Zhao XS, Yuan JS, Zhang Y, Liu W, Qiao SB. Sex-related differences in left ventricular remodeling and outcome after alcohol septal ablation in hypertrophic obstructive cardiomyopathy: insights from cardiovascular magnetic resonance imaging. Biol Sex Differ 2022; 13:37. [PMID: 35799208 PMCID: PMC9264620 DOI: 10.1186/s13293-022-00447-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Background Alcohol septal ablation (ASA) has been proven to reverse left ventricular (LV) remodeling in hypertrophic cardiomyopathy (HCM). However, there are no studies on the effect of sex on LV remodeling after ASA. We aimed to investigate whether sex differences affect the process of LV remodeling and outcome after ASA. Methods A total of 107 patients with obstructive HCM (54 men and 53 women, mean age 51 ± 8 years) were recruited. Cardiovascular magnetic resonance (CMR) was performed at baseline and 16 months after ASA. The extent of late gadolinium enhancement (LGE) was measured. Results Women had a higher indexed LV mass and smaller indexed LV end-systolic volumes than men at the time of ASA. After ASA, both men and women exhibited a regression of LV mass, and the percentage of mass regression was greater in men than women (15.3% ± 4.3% vs. 10.7% ± 1.8%, p < 0.001). In multivariable analysis, male sex, higher reduction of LV outflow tract (LVOT) gradient and lower baseline LV mass index were independently associated with greater LV mass regression after ASA. Kaplan–Meier analysis showed significantly higher cardiovascular events in women than in men (p = 0.015). Female sex [hazard ratio (HR) 3.913, p = 0.038] and LV mass preablation (HR, 1.019, p = 0.010) were independent predictors of cardiovascular outcomes. Conclusions Males with HCM had favorable reverse remodeling with greater LV mass regression post-ASA than female patients. This favorable LV reverse remodeling might provide a mechanistic explanation for the survival advantage in men. Female patients with HCM showed worse LV remodeling with a higher indexed LV mass and a smaller indexed LV end-diastolic volume (measured by CMR) at the time of ASA. Both men and women exhibited the LV reverse remodeling, however, men experienced more favorable LV reverse remodeling than women after ASA. The overall percentage of the LVM index regression was greater among men than women. Women with HCM had worse relative composite endpoint than men. Sex and LV mass preablation were independent predictors of cardiovascular outcomes. Sex appears to be a significant modifier in HCM patients receiving ASA treatment and highlighted the need for a different approach to women with HCM, such as improving women’s awareness of diagnosis and follow-up management as well as earlier referral for advanced therapies (e.g., septal reduction therapy and ICD implantation).
Collapse
Affiliation(s)
- You-Zhou Chen
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng, Beijing, 100035, China.
| | - Xing-Shan Zhao
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng, Beijing, 100035, China
| | - Jian-Song Yuan
- Department of Cardiology, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, XiCheng, Beijing, 100037, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, XiCheng, Beijing, 100037, China
| | - Wei Liu
- Department of Cardiology, Beijing Jishuitan Hosptial, No. 31 East Street, Xinjiekou, XiCheng, Beijing, 100035, China.
| | - Shu-Bin Qiao
- Department of Cardiology, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Road, XiCheng, Beijing, 100037, China.
| |
Collapse
|
6
|
Age-related sex differences in the outcomes of patients with hypertrophic cardiomyopathy. PLoS One 2022; 17:e0264580. [PMID: 35213653 PMCID: PMC8880392 DOI: 10.1371/journal.pone.0264580] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/13/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND We aimed to clarify the sex differences in various cardiovascular and non-cardiovascular outcomes, and to investigate whether sex differences in outcomes are affected by age in hypertrophic cardiomyopathy (HCM). METHODS A cohort of 835 patients with HCM initially evaluated during 2007-2019 were followed for a median of 6.4 years. Study outcomes were all-cause death, cardiovascular and non-cardiovascular death, sudden cardiac death (SCD)/SCD equivalent events, heart failure (HF) events, and the composite cardiovascular outcome including cardiovascular death, SCD/SCD equivalent events, admission for HF, and heart transplantation. RESULTS Women were 5 years older (women 59.9±13.5 vs. men 54.9±11.4 years), had worse dyspnea, and greater left ventricular (LV) diastolic dysfunction and obstructive physiology at presentation. Women compared to men had higher all-cause mortality and cardiovascular event rates, driven by more cardiovascular deaths and heart failure (HF) events. Conversely, non-cardiovascular mortality was not different between the sexes. Female sex was independently associated with all-cause death (HR 1.88, 95% CI 1.11-3.20) and composite cardiovascular events (HR 3.60, 95% CI 2.00-6.49), independent of age, body mass index, New York Heart Association class, SCD risk score, and LV ejection fraction. When stratified by the age of 60, sex differences were not significant at <60 years; however, at ≥60 years, women had worse LV diastolic function, greater obstructive physiology, as well as worse survival and composite cardiovascular outcomes. Sex differences in outcomes remained consistent after propensity score matching for age and other clinical characteristics. CONCLUSIONS Women with HCM have worse cardiovascular prognosis than men, driven by higher cardiovascular mortality and HF events. The negative impact of female sex on cardiac function and cardiovascular outcome became prominent at age ≥60 years, suggesting age-related sex differences in the prognosis of HCM.
Collapse
|
7
|
Ueda K, Fukuma N, Adachi Y, Numata G, Tokiwa H, Toyoda M, Otani A, Hashimoto M, Liu PY, Takimoto E. Sex Differences and Regulatory Actions of Estrogen in Cardiovascular System. Front Physiol 2021; 12:738218. [PMID: 34650448 PMCID: PMC8505986 DOI: 10.3389/fphys.2021.738218] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Great progress has been made in the understanding of the pathophysiology of cardiovascular diseases (CVDs), and this has improved the prevention and prognosis of CVDs. However, while sex differences in CVDs have been well documented and studied for decades, their full extent remains unclear. Results of the latest clinical studies provide strong evidence of sex differences in the efficacy of drug treatment for heart failure, thereby possibly providing new mechanistic insights into sex differences in CVDs. In this review, we discuss the significance of sex differences, as rediscovered by recent studies, in the pathogenesis of CVDs. First, we provide an overview of the results of clinical trials to date regarding sex differences and hormone replacement therapy. Then, we discuss the role of sex differences in the maintenance and disruption of cardiovascular tissue homeostasis.
Collapse
Affiliation(s)
- Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Hiroyuki Tokiwa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Masayuki Toyoda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Akira Otani
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Masaki Hashimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Pang-Yen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyô, Japan.,Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Damen FW, Salvas JP, Pereyra AS, Ellis JM, Goergen CJ. Improving characterization of hypertrophy-induced murine cardiac dysfunction using four-dimensional ultrasound-derived strain mapping. Am J Physiol Heart Circ Physiol 2021; 321:H197-H207. [PMID: 34085843 DOI: 10.1152/ajpheart.00133.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mouse models of cardiac disease have become essential tools in the study of pathological mechanisms, but the small size of rodents makes it challenging to quantify heart function with noninvasive imaging. Building off recent developments in high-frequency four-dimensional ultrasound (4DUS) imaging, we have applied this technology to study cardiac dysfunction progression in a murine model of metabolic cardiomyopathy. Cardiac knockout of carnitine palmitoyltransferase 2 (Cpt2M-/-) in mice hinders cardiomyocyte bioenergetic metabolism of long-chain fatty acids, and leads to progressive cardiac hypertrophy and heart failure. The proposed analysis provides a standardized approach to measure localized wall kinematics and simultaneously extracts metrics of global cardiac function, LV morphometry, regional circumferential strain, and regional longitudinal strain from an interpolated 4-D mesh of the endo- and epicardial boundaries. Comparison of metric changes due to aging suggests that circumferential strain at the base and longitudinal strain along the posterior wall are most sensitive to disease progression. We further introduce a novel hybrid strain index (HSI) that incorporates information from these two regions and may have greater utility to characterize disease progression relative to other extracted metrics. Potential applications to additional disease models are discussed that could further demonstrate the utility of metrics derived from 4DUS imaging and strain mapping.NEW & NOTEWORTHY High-frequency four-dimensional ultrasound can be used in conjunction with standardized analysis procedures to simultaneously extract left-ventricular global function, morphometry, and regional strain metrics. Furthermore, a novel hybrid strain index (HSI) formula demonstrates greater performance compared with all other metrics in characterizing disease progression in a model of metabolic cardiomyopathy.
Collapse
Affiliation(s)
- Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - John P Salvas
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Andrea S Pereyra
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Jessica M Ellis
- Department of Physiology, East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| |
Collapse
|
9
|
Fourny N, Beauloye C, Bernard M, Horman S, Desrois M, Bertrand L. Sex Differences of the Diabetic Heart. Front Physiol 2021; 12:661297. [PMID: 34122133 PMCID: PMC8192974 DOI: 10.3389/fphys.2021.661297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/12/2021] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes is a chronic disease associated with micro- and macro-vascular complications, including myocardial ischemia, and also with a specific and intrinsic cardiac dysfunction called diabetic cardiomyopathy (DCM). Both clinical and animal studies demonstrate significant sex differences in prevalence, pathophysiology, and outcomes of cardiovascular diseases (CVDs), including those associated with diabetes. The increased risk of CVDs with diabetes is higher in women compared to men with 50% higher risk of coronary artery diseases and increased mortality when exposed to acute myocardial infarction. Clinical studies also reveal a sexual dimorphism in the incidence and outcomes of DCM. Based on these clinical findings, growing experimental research was initiated to understand the impact of sex on CVDs associated with diabetes and to identify the molecular mechanisms involved. Endothelial dysfunction, atherosclerosis, coagulation, and fibrosis are mechanisms found to be sex-differentially modulated in the diabetic cardiovascular system. Recently, impairment of energy metabolism also emerged as a determinant of multiple CVDs associated with diabetes. Therefore, future studies should thoroughly analyze the sex-specific metabolic determinants to propose new therapeutic targets. With current medicine tending toward more personalized care of patients, we finally propose to discuss the importance of sex as determinant in the treatment of diabetes-associated cardiac diseases to promote a more systemic inclusion of both males and females in clinical and preclinical studies.
Collapse
Affiliation(s)
- Natacha Fourny
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Christophe Beauloye
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | | | - Sandrine Horman
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | | | - Luc Bertrand
- Pôle de Recherche Cardiovasculaire, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Sowithayasakul P, Buschmann LK, Boekhoff S, Müller HL. Cardiac remodeling in patients with childhood-onset craniopharyngioma-results of HIT-Endo and KRANIOPHARYNGEOM 2000/2007. Eur J Pediatr 2021; 180:1593-1602. [PMID: 33459867 PMCID: PMC8032608 DOI: 10.1007/s00431-020-03915-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022]
Abstract
Hypothalamic obesity caused by childhood-onset craniopharyngioma results in long-term cardiovascular morbidity. Knowledge about clinical markers and risk factors for cardiovascular morbidity is scarce. A cross-sectional study on transthoracic echocardiographic parameters was performed to determine the associations with clinical and anthropometric parameters in 36 craniopharyngioma patients. BMI correlated with the thickness of interventricular septum in diastole (IVSd) (r = 0.604, p < 0.001) and left ventricular posterior wall thickness in diastole (LVPWd) (r = 0.460, p = 0.011). In multivariate analyses on risk factors for cardiac remodeling, sex hormone replacement therapy, BMI, and male gender were positively correlated with increased left ventricular internal diameter in diastole (LVIDd), R2 = 0.596, F = 10.323, p < 0.001. BMI and insulin resistance were selected as significant independent determinants of IVSd, produced R2 = 0.655, F = 29.441, p < 0.001. Due to a wide range of disease duration, 17 pediatric and 19 adult patients were analyzed separately. In the adult subgroup (age at study ≥ 18 years), BMI correlated with IVSd (r = 0.707, p = 0.003), LVPWd (r = 0.592, p = 0.020), and LVIDd (r = 0.571, p = 0.026). In the pediatric subgroup (age at study < 18 years), no correlation between transthoracic echocardiography (TTE) parameters and BMI was observed. Only LVIDd correlated with disease duration (r = 0.645, p < 0.001). All cardiac functions were within the normal range, indicating no association with functional impairments.Conclusion: Cardiac remodeling in patients with craniopharyngioma correlated with the degree of hypothalamic obesity, disease duration, sex hormone replacement therapy, male gender, and insulin resistance. As echocardiography has limited sensitivity in patients with obesity, further research on more sensitive techniques for cardiac diagnostics in craniopharyngioma patients is warranted. What is Known: •Long-term prognosis in survivors of craniopharyngioma is impaired by obesity and cardiovascular disease. •Associations between echocardiographic findings and clinical and anthropometric parameters after craniopharyngioma are not yet analyzed. What is New: •In patients with childhood-onset craniopharyngioma, cardiac remodeling was associated with hypothalamic obesity, duration of disease, male gender sex hormone replacement, and insulin resistance. •Due to reduced echocardiographic sensitivity caused by obesity-related technical limitations, more sensitive cardiac diagnostics should be considered.
Collapse
Affiliation(s)
- Panjarat Sowithayasakul
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Carl von Ossietzky University Oldenburg, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany ,Department of Pediatrics, Faculty of Medicine, Srinakharinwirot University, Bangkok, 26120 Thailand
| | - Leona Katharin Buschmann
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Carl von Ossietzky University Oldenburg, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Svenja Boekhoff
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Carl von Ossietzky University Oldenburg, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| | - Hermann L. Müller
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children’s Hospital, Carl von Ossietzky University Oldenburg, Klinikum Oldenburg AöR, 26133 Oldenburg, Germany
| |
Collapse
|
11
|
Grilo GA, Shaver PR, Stoffel HJ, Morrow CA, Johnson OT, Iyer RP, de Castro Brás LE. Age- and sex-dependent differences in extracellular matrix metabolism associate with cardiac functional and structural changes. J Mol Cell Cardiol 2020; 139:62-74. [PMID: 31978395 PMCID: PMC11017332 DOI: 10.1016/j.yjmcc.2020.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/19/2019] [Accepted: 01/10/2020] [Indexed: 01/08/2023]
Abstract
Age-related remodeling of the heart causes structural and functional changes in the left ventricle (LV) that are associated with a high index of morbidities and mortality worldwide. Some cardiac pathologies in the elderly population vary between genders revealing that cardiac remodeling during aging may be sex-dependent. Herein, we analyzed the effects of cardiac aging in male and female C57Bl/6 mice in four age groups, 3, 6, 12, and 18 month old (n = 6-12 animals/sex/age), to elucidate which age-related characteristics of LV remodeling are sex-specific. We focused particularly in parameters associated with age-dependent remodeling of the LV extracellular matrix (ECM) that are involved in collagen metabolism. LV function and anatomical structure were assessed both by conventional echocardiography and speckle tracking echocardiography (STE). We then measured ECM proteins that directly affect LV contractility and remodeling. All data were analyzed across ages and between sexes and were directly linked to LV functional changes. Echocardiography confirmed an age-dependent decrease in chamber volumes and LV internal diameters, indicative of concentric remodeling. As in humans, animals displayed preserved ejection fraction with age. Notably, changes to chamber dimensions and volumes were temporally distinct between sexes. Complementary to the traditional echocardiography, STE revealed that circumferential strain rate declined in 18 month old females, compared to younger animals, but not in males, suggesting STE as an earlier indicator for changes in cardiac function between sexes. Age-dependent collagen deposition and expression in the endocardium did not differ between sexes; however, other factors involved in collagen metabolism were sex-specific. Specifically, while decorin, osteopontin, Cthrc1, and Ddr1 expression were age-dependent but sex-independent, periostin, lysyl oxidase, and Mrc2 displayed age-dependent and sex-specific differences. Moreover, our data also suggest that with age males and females have distinct TGFβ signaling pathways. Overall, our results give evidence of sex-specific molecular changes during physiological cardiac remodeling that associate with age-dependent structural and functional dysfunction. These data highlight the importance of including sex-differences analysis when studying cardiac aging.
Collapse
Affiliation(s)
- Gabriel A Grilo
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Patti R Shaver
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Hamilton J Stoffel
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Caleb Anthony Morrow
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Octavious T Johnson
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Rugmani P Iyer
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America; Department of Cardiovascular Sciences, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States of America.
| |
Collapse
|
12
|
Cardioprotective Effects of Dietary Phytochemicals on Oxidative Stress in Heart Failure by a Sex-Gender-Oriented Point of View. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:2176728. [PMID: 31998434 PMCID: PMC6975222 DOI: 10.1155/2020/2176728] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/03/2019] [Accepted: 11/29/2019] [Indexed: 01/18/2023]
Abstract
Dietary phytochemicals are considered an innovative strategy that helps to reduce cardiovascular risk factors. Some phytochemicals have been shown to play a beneficial role in lipid metabolism, to improve endothelial function and to modify oxidative stress pathways in experimental and clinical models of cardiovascular impairment. Importantly, investigation on phytochemical effect on cardiac remodeling appears to be promising. Nowadays, drug therapy and implantation of devices have demonstrated to ameliorate survival. Of interest, sex-gender seems to influence the response to HF canonical therapies. In fact, starting by the evidence of the feminization of world population and the scarce efficacy and safety of the traditional drugs in women, the search of alternative therapeutic tools has become mandatory. The aim of this review is to summarize the possible role of dietary phytochemicals in HF therapy and the evidence of a different sex-gender-oriented response.
Collapse
|
13
|
Ueda K, Adachi Y, Liu P, Fukuma N, Takimoto E. Regulatory Actions of Estrogen Receptor Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2019; 10:909. [PMID: 31998238 PMCID: PMC6965027 DOI: 10.3389/fendo.2019.00909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/12/2019] [Indexed: 01/09/2023] Open
Abstract
Premenopausal females have a lower incidence of death from cardiovascular disease (CVD) than male counterparts, supporting the notion that estrogen is protective against the development and progression of CVD. Although large-scale randomized trials of postmenopausal hormone replacement therapy failed to show cardiovascular benefits, recent ELITE study demonstrated anti-atherosclerotic benefits of exogenous estrogen depending on the initiation timing of the therapy. These results have urged us to better understand the mechanisms for actions of estrogens on CVD. Here, we review experimental and human studies, highlighting the emerging role of estrogen's non-nuclear actions linking to NO-cGMP signaling pathways.
Collapse
Affiliation(s)
- Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Pangyen Liu
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuaki Fukuma
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Eiki Takimoto
| |
Collapse
|
14
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
15
|
van Velzen HG, Schinkel AF, Baart SJ, Oldenburg RA, Frohn-Mulder IM, van Slegtenhorst MA, Michels M. Outcomes of Contemporary Family Screening in Hypertrophic Cardiomyopathy. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2018; 11:e001896. [DOI: 10.1161/circgen.117.001896] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/25/2018] [Indexed: 01/16/2023]
Abstract
Background:
Contemporary hypertrophic cardiomyopathy (HCM) family screening includes clinical evaluation and genetic testing (GT). This screening strategy requires the identification of a pathogenic mutation in the proband. Our aim was to examine the results of this HCM screening strategy.
Methods:
Between 1985 and 2016, 777 relatives of 209 probands were assessed in the context of HCM screening. Genotype-positive (G+) relatives and relatives without genetic testing (GT) underwent repeated clinical evaluations. In genotype-negative (G-) relatives mortality was assessed during follow-up.
Results:
A pathogenic mutation was identified in 72% of probands. After counseling, GT was performed in 620 (80%) relatives: 264 (43%) were G+ (age 41±18 y) and 356 (57%) were G- (age 48±17 y). At first screening, HCM was diagnosed in 98 (37%) G+ relatives and 28 (17%) relatives without GT (
p
<0.001). During 9 years follow-up of relatives diagnosed with HCM, 8 (6%) underwent septal reduction therapy, 16 (16%) received primary prevention ICDs, and cardiac mortality was 0.3%/year. During 7 years follow-up of relatives without HCM, 29 (16%) developed HCM. Survival at 5/10 years was 99%/95% in G+ relatives, 97%/94% in G- relatives (
p
=0.8), and 100%/100% in relatives without GT.
Conclusions:
HCM was identified in 30% of relatives at first screening, and 16% developed HCM during 7 years of repeated evaluation. GT led to a discharge from clinical follow-up in 46% of the study population. Survival in the relatives was good.
Collapse
Affiliation(s)
- Hannah G. van Velzen
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arend F.L. Schinkel
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sara J. Baart
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Rogier A. Oldenburg
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ingrid M.E. Frohn-Mulder
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marjon A. van Slegtenhorst
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michelle Michels
- Department of Cardiology, Thoraxcenter (H.G.v.V., A.F.L.S., S.J.B., M.M.), Department of Clinical Genetics (R.A.O., M.A.v.S.), and Department of Pediatrics (I.M.E.F.-M.), Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Vakrou S, Fukunaga R, Foster DB, Sorensen L, Liu Y, Guan Y, Woldemichael K, Pineda-Reyes R, Liu T, Tardiff JC, Leinwand LA, Tocchetti CG, Abraham TP, O'Rourke B, Aon MA, Abraham MR. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight 2018; 3:94493. [PMID: 29563334 DOI: 10.1172/jci.insight.94493] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 02/14/2018] [Indexed: 01/06/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) stems from mutations in sarcomeric proteins that elicit distinct biophysical sequelae, which in turn may yield radically different intracellular signaling and molecular pathologic profiles. These signaling events remain largely unaddressed by clinical trials that have selected patients based on clinical HCM diagnosis, irrespective of genotype. In this study, we determined how two mouse models of HCM differ, with respect to cellular/mitochondrial function and molecular biosignatures, at an early stage of disease. We show that hearts from young R92W-TnT and R403Q-αMyHC mutation-bearing mice differ in their transcriptome, miRNome, intracellular redox environment, mitochondrial antioxidant defense mechanisms, and susceptibility to mitochondrial permeability transition pore opening. Pathway analysis of mRNA-sequencing data and microRNA profiles indicate that R92W-TnT mutants exhibit a biosignature consistent with activation of profibrotic TGF-β signaling. Our results suggest that the oxidative environment and mitochondrial impairment in young R92W-TnT mice promote activation of TGF-β signaling that foreshadows a pernicious phenotype in young individuals. Of the two mutations, R92W-TnT is more likely to benefit from anti-TGF-β signaling effects conferred by angiotensin receptor blockers and may be responsive to mitochondrial antioxidant strategies in the early stage of disease. Molecular and functional profiling may therefore serve as aids to guide precision therapy for HCM.
Collapse
Affiliation(s)
- Styliani Vakrou
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ryuya Fukunaga
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - D Brian Foster
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Lars Sorensen
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Yamin Liu
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Yufan Guan
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kirubel Woldemichael
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Roberto Pineda-Reyes
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ting Liu
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jill C Tardiff
- Department of Internal Medicine and Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and the BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Carlo G Tocchetti
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| | - Brian O'Rourke
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - M Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Cardiology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Division of Cardiology, UCSF, San Francisco, California, USA
| |
Collapse
|
17
|
O’Mahony C, Elliott P. Affairs of the heart: outcomes in men and women with hypertrophic cardiomyopathy. Eur Heart J 2017; 38:3441-3433. [DOI: 10.1093/eurheartj/ehx639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
18
|
Harrington J, Fillmore N, Gao S, Yang Y, Zhang X, Liu P, Stoehr A, Chen Y, Springer D, Zhu J, Wang X, Murphy E. A Systems Biology Approach to Investigating Sex Differences in Cardiac Hypertrophy. J Am Heart Assoc 2017; 6:e005838. [PMID: 28862954 PMCID: PMC5586433 DOI: 10.1161/jaha.117.005838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/21/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Heart failure preceded by hypertrophy is a leading cause of death, and sex differences in hypertrophy are well known, although the basis for these sex differences is poorly understood. METHODS AND RESULTS This study used a systems biology approach to investigate mechanisms underlying sex differences in cardiac hypertrophy. Male and female mice were treated for 2 and 3 weeks with angiotensin II to induce hypertrophy. Sex differences in cardiac hypertrophy were apparent after 3 weeks of treatment. RNA sequencing was performed on hearts, and sex differences in mRNA expression at baseline and following hypertrophy were observed, as well as within-sex differences between baseline and hypertrophy. Sex differences in mRNA were substantial at baseline and reduced somewhat with hypertrophy, as the mRNA differences induced by hypertrophy tended to overwhelm the sex differences. We performed an integrative analysis to identify mRNA networks that were differentially regulated in the 2 sexes by hypertrophy and obtained a network centered on PPARα (peroxisome proliferator-activated receptor α). Mouse experiments further showed that acute inhibition of PPARα blocked sex differences in the development of hypertrophy. CONCLUSIONS The data in this study suggest that PPARα is involved in the sex-dimorphic regulation of cardiac hypertrophy.
Collapse
Affiliation(s)
- Josephine Harrington
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Natasha Fillmore
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Shouguo Gao
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Yanqin Yang
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Xue Zhang
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Poching Liu
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Andrea Stoehr
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Ye Chen
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
- DNA Sequencing & Genomics Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Xujing Wang
- System Biology Core, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute National Institutes of Health, Bethesda, MD
| |
Collapse
|
19
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 417] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
20
|
Dossat AM, Sanchez-Gonzalez MA, Koutnik AP, Leitner S, Ruiz EL, Griffin B, Rosenberg JT, Grant SC, Fincham FD, Pinto JR, Kabbaj M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy. FASEB J 2017; 31:2492-2506. [PMID: 28235781 DOI: 10.1096/fj.201600955rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 01/04/2023]
Abstract
Cardiovascular dysfunction is highly comorbid with mood disorders, such as anxiety and depression. However, the mechanisms linking cardiovascular dysfunction with the core behavioral features of mood disorder remain poorly understood. In this study, we used mice bearing a knock-in sarcomeric mutation, which is exhibited in human hypertrophic cardiomyopathy (HCM), to investigate the influence of HCM over the development of anxiety and depression. We employed behavioral, MRI, and biochemical techniques in young (3-4 mo) and aged adult (7-8 mo) female mice to examine the effects of HCM on the development of anxiety- and depression-like behaviors. We focused on females because in both humans and rodents, they experience a 2-fold increase in mood disorder prevalence vs. males. Our results showed that young and aged HCM mice displayed echocardiographic characteristics of the heart disease condition, yet only aged HCM females displayed anxiety- and depression-like behaviors. Electrocardiographic parameters of sympathetic nervous system activation were increased in aged HCM females vs. controls and correlated with mood disorder-related symptoms. In addition, when compared with controls, aged HCM females exhibited adrenal gland hypertrophy, reduced volume in mood-related brain regions, and reduced hippocampal signaling proteins, such as brain-derived neurotrophic factor and its downstream targets vs. controls. In conclusion, prolonged systemic HCM stress can lead to development of mood disorders, possibly through inducing structural and functional brain changes, and thus, mood disorders in patients with heart disease should not be considered solely a psychologic or situational condition.-Dossat, A. M., Sanchez-Gonzalez, M. A., Koutnik, A. P., Leitner, S., Ruiz, E. L., Griffin, B., Rosenberg, J. T., Grant, S. C., Fincham, F. D., Pinto, J. R. Kabbaj, M. Pathogenesis of depression- and anxiety-like behavior in an animal model of hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Amanda M Dossat
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Marcos A Sanchez-Gonzalez
- Division of Clinical and Translational Research, Larkin Community Hospital, South Miami, Florida, USA
| | - Andrew P Koutnik
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Stefano Leitner
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Edda L Ruiz
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Brittany Griffin
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Center for Interdisciplinary Magnetic Resonance, Florida State University, Tallahassee, Florida, USA; and
| | - Francis D Fincham
- Family Institute, Florida State University, Tallahassee, Florida, USA
| | - Jose R Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| | - Mohamed Kabbaj
- Department of Biomedical Sciences, Florida State University, Tallahassee, Florida, USA;
| |
Collapse
|
21
|
Heo P, Seo JH, Han SD, Ryu Y, Byun JD, Kim KN, Lee JH. Multi-port-driven birdcage coil for multiple-mouse MR imaging at 7 T. SCANNING 2016; 38:747-756. [PMID: 27162104 DOI: 10.1002/sca.21324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
In ultra-high field (UHF) imaging environments, it has been demonstrated that multiple-mouse magnetic resonance imaging (MM-MRI) is dependent on key factors such as the radiofrequency (RF) coil hardware, imaging protocol, and experimental setup for obtaining high-resolution MR images. A key aspect is the RF coil, and a number of MM-MRI studies have investigated the application of single-channel RF transmit (Tx)/receive (Rx) coils or multi-channel phased array (PA) coil configurations under a single gradient coil set. However, despite applying a variety of RF coils, Tx (|B1+ |)-field inhomogeneity still remains a major problem due to the relative shortening of the effective RF wavelength in the UHF environment. To address this issue, we propose a relatively smaller size of individual Tx-only coils in a multiple birdcage (MBC) coil for MM-MRI to image up to three mice. We use electromagnetic (EM) simulations in the finite-difference time-domain (FDTD) environment to obtain the |B1 |-field distribution. Our results clearly show that the single birdcage (SBC) high-pass filter (HPF) configuration, which is referred to as the SBCHPF , under the absence of an RF shield exhibits a high |B1 |-field intensity in comparison with other coil configurations such as the low-pass filter (LPF) and band-pass filter (BPF) configurations. In a 7-T MRI experiment, the signal-to-noise ratio (SNR) map of the SBCHPF configuration shows the highest coil performance compared to other coil configurations. The MBCHPF coil, which is comprised of a triple-SBCHPF configuration combined with additional decoupling techniques, is developed for simultaneous image acquisition of three mice. SCANNING 38:747-756, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Phil Heo
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
| | - Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Sang-Doc Han
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Yeunchul Ryu
- Neuroscience Research Institute, Gachon University, Incheon, Korea
| | - Jong-Deok Byun
- Department of Mechanical and Biomedical Engineering, Gangwon University, Gangwon, Korea
| | - Kyoung-Nam Kim
- Neuroscience Research Institute, Gachon University, Incheon, Korea
- Department of Biomedical Engineering, Gachon University, Incheon, Korea
| | - Jung Hee Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, Korea
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
22
|
Blenck CL, Harvey PA, Reckelhoff JF, Leinwand LA. The Importance of Biological Sex and Estrogen in Rodent Models of Cardiovascular Health and Disease. Circ Res 2016; 118:1294-312. [PMID: 27081111 DOI: 10.1161/circresaha.116.307509] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/21/2016] [Indexed: 01/01/2023]
Abstract
Nearly one-third of deaths in the United States are caused by cardiovascular disease (CVD) each year. In the past, CVD was thought to mainly affect men, leading to the exclusion of women and female animals from clinical studies and preclinical research. In light of sexual dimorphisms in CVD, a need exists to examine baseline cardiac differences in humans and the animals used to model CVD. In humans, sex differences are apparent at every level of cardiovascular physiology from action potential duration and mitochondrial energetics to cardiac myocyte and whole-heart contractile function. Biological sex is an important modifier of the development of CVD with younger women generally being protected, but this cardioprotection is lost later in life, suggesting a role for estrogen. Although endogenous estrogen is most likely a mediator of the observed functional differences in both health and disease, the signaling mechanisms involved are complex and are not yet fully understood. To investigate how sex modulates CVD development, animal models are essential tools and should be useful in the development of therapeutics. This review will focus on describing the cardiovascular sexual dimorphisms that exist both physiologically and in common animal models of CVD.
Collapse
Affiliation(s)
- Christa L Blenck
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Pamela A Harvey
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Jane F Reckelhoff
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology & BioFrontiers Institute, University of Colorado, Boulder (C.L.B., P.A.H., L.A.L.); and Women's Health Research Center and Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson (J.F.R.).
| |
Collapse
|
23
|
Birch CL, Behunin SM, Lopez-Pier MA, Danilo C, Lipovka Y, Saripalli C, Granzier H, Konhilas JP. Sex dimorphisms of crossbridge cycling kinetics in transgenic hypertrophic cardiomyopathy mice. Am J Physiol Heart Circ Physiol 2016; 311:H125-36. [PMID: 27199124 DOI: 10.1152/ajpheart.00592.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 05/03/2016] [Indexed: 11/22/2022]
Abstract
Familial hypertrophic cardiomyopathy (HCM) is a disease of the sarcomere and may lead to hypertrophic, dilated, restrictive, and/or arrhythmogenic cardiomyopathy, congestive heart failure, or sudden cardiac death. We hypothesized that hearts from transgenic HCM mice harboring a mutant myosin heavy chain increase the energetic cost of contraction in a sex-specific manner. To do this, we assessed Ca(2+) sensitivity of tension and crossbridge kinetics in demembranated cardiac trabeculas from male and female wild-type (WT) and HCM hearts at an early time point (2 mo of age). We found a significant effect of sex on Ca(2+) sensitivity such that male, but not female, HCM mice displayed a decrease in Ca(2+) sensitivity compared with WT counterparts. The HCM transgene and sex significantly impacted the rate of force redevelopment by a rapid release-restretch protocol and tension cost by the ATPase-tension relationship. In each of these measures, HCM male trabeculas displayed a gain-of-function when compared with WT counterparts. In addition, cardiac remodeling measured by echocardiography, histology, morphometry, and posttranslational modifications demonstrated sex- and HCM-specific effects. In conclusion, female and male HCM mice display sex dimorphic crossbridge kinetics accompanied by sex- and HCM-dependent cardiac remodeling at the morphometric, histological, and cellular level.
Collapse
Affiliation(s)
- Camille L Birch
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Samantha M Behunin
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Marissa A Lopez-Pier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Christiane Danilo
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona
| | - Yulia Lipovka
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona; and
| | - Chandra Saripalli
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Henk Granzier
- Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - John P Konhilas
- Department of Physiology, University of Arizona, Tucson, Arizona; Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona;
| |
Collapse
|
24
|
Genotype–phenotype correlation between the cardiac myosin binding protein C mutation A31P and hypertrophic cardiomyopathy in a cohort of Maine Coon cats: a longitudinal study. J Vet Cardiol 2015; 17 Suppl 1:S268-81. [DOI: 10.1016/j.jvc.2015.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/27/2022]
|
25
|
Chen Y, Zhang Z, Hu F, Yang W, Yuan J, Cui J, Hao S, Hu J, Zhou Y, Qiao S. 17β-estradiol prevents cardiac diastolic dysfunction by stimulating mitochondrial function: a preclinical study in a mouse model of a human hypertrophic cardiomyopathy mutation. J Steroid Biochem Mol Biol 2015; 147:92-102. [PMID: 25541436 DOI: 10.1016/j.jsbmb.2014.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated the effect of ovariectomy (OVX) and 17β-estradiol (E2) replacement on both mitochondrial and myocardial function in cTnT-Q92 transgenic mice generated by cardiac-restricted expression of a human hypertrophic cardiomyopathy (HCM) mutation. METHODS The cTnT-Q92 mice were ovariectomized at twenty weeks of age and were treated with either placebo (OVX group) or E2 (OVX+E2 group) for twelve weeks before being sacrificed. Wild-type and cTnT-Q92 female mice receiving sham operation were used as controls. Indices of diastolic function such as mitral early (E) and late (A) inflow as well as isovolumic relaxation time (IVRT) were measured by echocardiography. A Clark-type electrode was used to detect respiratory control, and ATP levels were determined at the mitochondrial level using HPLC. Key components related to mitochondrial energy metabolism, such as peroxisome proliferator-activated receptor α (PPARα), PPARγ coactivator 1α (PGC-1α) and nuclear respiratory factor-1 (NRF-1), were also analyzed using Western blot and RT-PCR. The levels of oxidative stress markers were determined by measuring malondialdehyde (MDA) using the thiobarbituric acid assay. RESULTS The cTnT-Q92 mice had impaired diastolic function compared with wild-type mice (E/A ratio, 1.39 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 19.17 ± 0.85 vs. 22.15 ± 1.43 ms, p=0.028). In response to ovariectomy, cardiac function further decreased compared with that observed in cTnT-Q92 mice that received the sham operation (E/A ratio, 1.15 ± 0.04 vs. 1.21 ± 0.01, p<0.001; IVRT, 28.31 ± 0.39 vs. 22.15 ± 1.43 ms, p=0.002). Myocardial energy metabolism, as determined by ATP levels (3.49 ± 0.31 vs. 5.07 ± 0.47 μmol/g, p<0.001), and the mitochondrial respiratory ratio (2.04 ± 0.10 vs. 2.63 ± 0.11, p=0.01) also decreased significantly. By contrast, myocardial concentrations of MDA increased significantly in the OVX group, and PGC-1α, PPARα and NRF-1decreased significantly. E2 supplementation significantly elevated myocardial ATP levels (4.55 ± 0.21 vs. 3.49 ± 0.31 μmol/g, p=0.003) and mitochondrial respiratory function (3.93 ± 0.05 vs. 2.63 ± 0.11, p=0.001); however, it reduced the MDA level (0.21 ± 0.02 vs. 0.36 ± 0.03 nmol/g, p<0.001), which subsequently improved diastolic function (E/A ratio, 1.35 ± 0.06 vs. 1.15 ± 0.04, p<0.001; IVRT, 18.22 ± 1.16 vs. 28.31 ± 0.39 ms, p=0.007). CONCLUSIONS Our study has shown that 17β-estradiol improved myocardial diastolic function, prevented myocardial energy dysregulation, and reduced myocardial oxidative stress in cTnT-Q92 mice.
Collapse
Affiliation(s)
- Youzhou Chen
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Zhuoli Zhang
- Department of Radiology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, 737 N Michigan Ave., 16th Floor, Chicago, USA
| | - Fenghuan Hu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Weixian Yang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jiansong Yuan
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jingang Cui
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shujing Hao
- Clinical Laboratory of Zhongke, Beijing, China
| | - Jie Hu
- Clinical Laboratory of Zhongke, Beijing, China
| | - Ying Zhou
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Shubin Qiao
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
26
|
Nijenkamp LLAM, Güçlü A, Appelman Y, van der Velden J, Kuster DWD. Sex-dependent pathophysiological mechanisms in hypertrophic cardiomyopathy: implications for rhythm disorders. Heart Rhythm 2014; 12:433-9. [PMID: 25446151 DOI: 10.1016/j.hrthm.2014.10.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Indexed: 12/19/2022]
Abstract
Differences in cardiac physiology are seen between men and women in terms of health and disease. Sex differences start to develop at puberty and are maintained during aging. The prevalence of almost all cardiovascular diseases is found to be higher in men than in women, and disease progression tends to be more rapid in male than in female patients. In cohorts of patients with hypertrophic cardiomyopathy (HCM), the most common autosomal inherited cardiac disease, men are overrepresented, suggesting increased penetrance of HCM-causing mutations in male patients. Cardiac remodeling in patients with HCM is higher in men than in women, the same is seen in HCM animal models. Patients with HCM are at increased risk of sudden cardiac death (SCD) and developing rhythm disorders. There seems to be no sex effect on the risk of SCD or arrhythmias in patients with HCM; however, animal studies suggest that certain mutations predispose men to SCD.
Collapse
Affiliation(s)
| | - Ahmet Güçlü
- Department of Physiology, Institute for Cardiovascular Research; Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yolande Appelman
- Department of Cardiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda van der Velden
- Department of Physiology, Institute for Cardiovascular Research; ICIN - Netherlands Heart Institute, Utrecht, The Netherlands
| | | |
Collapse
|
27
|
Najafi A, Schlossarek S, van Deel ED, van den Heuvel N, Güçlü A, Goebel M, Kuster DWD, Carrier L, van der Velden J. Sexual dimorphic response to exercise in hypertrophic cardiomyopathy-associated MYBPC3-targeted knock-in mice. Pflugers Arch 2014; 467:1303-17. [PMID: 25010737 DOI: 10.1007/s00424-014-1570-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 01/02/2023]
Abstract
Hypertrophic cardiomyopathy (HCM), the most common genetic cardiac disorder, is frequently caused by mutations in MYBPC3, encoding cardiac myosin-binding protein C (cMyBP-C). Moreover, HCM is the leading cause of sudden cardiac death (SCD) in young athletes. Interestingly, SCD is more likely to occur in male than in female athletes. However, the pathophysiological mechanisms leading to sex-specific differences are poorly understood. Therefore, we studied the effect of sex and exercise on functional properties of the heart and sarcomeres in mice carrying a MYBPC3 point mutation (G > A transition in exon 6) associated with human HCM. Echocardiography followed by isometric force measurements in left ventricular (LV) membrane-permeabilized cardiomyocytes was performed in wild-type (WT) and heterozygous (HET) knock-in mice of both sex (N = 5 per group) in sedentary mice and mice that underwent an 8-week voluntary wheel-running exercise protocol. Isometric force measurements in single cardiomyocytes revealed a lower maximal force generation (F max) of the sarcomeres in male sedentary HET (13.0 ± 1.1 kN/m(2)) compared to corresponding WT (18.4 ± 1.8 kN/m(2)) male mice. Exercise induced a higher F max in HET male mice, while it did not affect HET females. Interestingly, a low cardiac troponin I bisphosphorylation, increased myofilament Ca(2+)-sensitivity, and LV hypertrophy were particularly observed in exercised HET females. In conclusion, in sedentary animals, contractile differences are seen between male and female HET mice. Male and female HET hearts adapted differently to a voluntary exercise protocol, indicating that physiological stimuli elicit a sexually dimorphic cardiac response in heterozygous MYBPC3-targeted knock-in mice.
Collapse
Affiliation(s)
- Aref Najafi
- Department of Physiology, VU University Medical Center, Room B-156, Van der Boechorstraat 7, 1081 BT, Amsterdam, The Netherlands,
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Elf K, Shevchenko G, Nygren I, Larsson L, Bergquist J, Askmark H, Artemenko K. Alterations in muscle proteome of patients diagnosed with amyotrophic lateral sclerosis. J Proteomics 2014; 108:55-64. [PMID: 24846852 DOI: 10.1016/j.jprot.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/24/2014] [Accepted: 05/11/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Amyotrophic lateral sclerosis (ALS) is a motor neuron disease characterized by progressive muscle paralysis. Currently clinical tools for ALS diagnostics do not perform well enough and their improvement is needed. The objective of this study was to identify specific protein alterations related to the development of ALS using tiny muscle biopsies. We applied a shotgun proteomics and quantitative dimethyl labeling in order to analyze the global changes in human skeletal muscle proteome of ALS versus healthy subjects for the first time. 235 proteins were quantified and 11 proteins were found significantly regulated in ALS muscles. These proteins are involved in muscle development and contraction, metabolic processes, enzyme activity, regulation of apoptosis and transport activity. In order to eliminate a risk to confuse ALS with other denervations, muscle biopsies of patients with postpolio syndrome and Charcot-Marie-Tooth disease (negative controls) were compared to those of ALS and controls. Only few proteins significantly regulated in ALS patients compared to controls were affected differently in negative controls. These proteins (BTB and kelch domain-containing protein 10, myosin light chain 3, glycogen debranching enzyme, transitional endoplasmic reticulum ATPase), individually or as a panel, could be selected for estimation of ALS diagnosis and development. BIOLOGICAL SIGNIFICANCE ALS is a devastating neurodegenerative disease, and luckily, very rare: only one to two people out of 100,000 develop ALS yearly. This fact, however, makes studies of ALS very challenging since it is very difficult to collect the representative set of clinical samples and this may take up to several years. In this study we collected the muscle biopsies from 12 ALS patients and compared the ALS muscle proteome against the one from control subjects. We suggested the efficient method for such comprehensive quantitative analysis by LC-MS and performed it for the first time using human ALS material. This gel- and antibody-free method can be widely applied for muscle proteome studies and has been used by us for revealing of the specific protein alterations associated with ALS.
Collapse
Affiliation(s)
- Kristin Elf
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Ganna Shevchenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Ingela Nygren
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Lars Larsson
- Department of Neuroscience, Unit of Neurophysiology, Uppsala University, Uppsala, Sweden
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden
| | - Håkan Askmark
- Department of Neuroscience, Unit of Neurology, Uppsala University, Uppsala, Sweden
| | - Konstantin Artemenko
- Department of Chemistry-BMC, Analytical Chemistry, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
29
|
Koch SE, Haworth KJ, Robbins N, Smith MA, Lather N, Anjak A, Jiang M, Varma P, Jones WK, Rubinstein J. Age- and gender-related changes in ventricular performance in wild-type FVB/N mice as evaluated by conventional and vector velocity echocardiography imaging: a retrospective study. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:2034-2043. [PMID: 23791351 PMCID: PMC4857602 DOI: 10.1016/j.ultrasmedbio.2013.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 03/28/2013] [Accepted: 04/04/2013] [Indexed: 06/02/2023]
Abstract
Detailed studies in animal models to assess the importance of aging animals in cardiovascular research are rather scarce. The increase in mouse models used to study cardiovascular disease makes the establishment of physiologic aging parameters in myocardial function in both male and female mice critical. Forty-four FVB/N mice were studied at multiple time points between the ages of 3 and 16 mo using high-frequency echocardiography. Our study found that there is an age-dependent decrease in several systolic and diastolic function parameters in male mice, but not in female mice. This study establishes the physiologic age- and gender-related changes in myocardial function that occur in mice and can be measured with echocardiography. We report baseline values for traditional echocardiography and advanced echocardiographic techniques to measure discrete changes in cardiac function in the commonly employed FVB/N strain.
Collapse
Affiliation(s)
- Sheryl E. Koch
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Kevin J. Haworth
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nathan Robbins
- Emergency Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Margaret A. Smith
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Navneet Lather
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ahmad Anjak
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Min Jiang
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Priyanka Varma
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| | - W. Keith Jones
- Department of Pharmacology & Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jack Rubinstein
- Internal Medicine, Division of Cardiology, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
30
|
Chen H, Hwang H, McKee LAK, Perez JN, Regan JA, Constantopoulos E, Lafleur B, Konhilas JP. Temporal and morphological impact of pressure overload in transgenic FHC mice. Front Physiol 2013; 4:205. [PMID: 23986715 PMCID: PMC3753457 DOI: 10.3389/fphys.2013.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/19/2013] [Indexed: 01/19/2023] Open
Abstract
Although familial hypertrophic cardiomyopathy (FHC) is characterized as cardiac disease in the absence of overt stressors, disease penetrance, and pathological progression largely depend on modifying factors. Accordingly, pressure overload by transverse aortic constriction (TAC) was induced in 2-month-old, male mice with and without a FHC (R403Q) mutation in α-myosin heavy chain. A significantly greater number of FHC mice (n = 8) than wild-type (WT) mice (n = 5) died during the 9-week study period. TAC induced a significant increase in cardiac mass whether measured at 2 or 9 weeks post-TAC in both WT and FHC mice, albeit to a different extent. However, the temporal and morphological trajectory of ventricular remodeling was impacted by the FHC transgene. Both WT and FHC hearts responded to TAC with an early (2 weeks post-TAC) and significant augmentation of the relative wall thickness (RWT) indicative of concentric hypertrophy. By 9 weeks post-TAC, RWT decreased in WT hearts (eccentric hypertrophy) but remained elevated in FHC hearts. WT hearts following TAC demonstrated enhanced cardiac function as measured by the end-systolic pressure-volume relationship, pre-load recruitable stroke work (PRSW), and myocardial relaxation indicative of compensatory hypertrophy. Similarly, TAC induced differential histological and cellular remodeling; TAC reduced expression of the sarcoplasmic reticulum Ca(2+)-ATPase (2a) (SERCA2a; 2 and 9 weeks) and phospholamban (PLN; 2 weeks) but increased PLN phosphorylation (2 weeks) and β-myosin heavy chain (β-MyHC; 9 weeks) in WT hearts. FHC-TAC hearts showed increased β-MyHC (2 and 9 weeks) and a late (9 weeks) decrease in PLN expression concomitant with a significant increase in PLN phosphorylation. We conclude that FHC hearts respond to TAC induced pressure overload with increased premature death, severe concentric hypertrophy, and a differential ability to undergo morphological, functional, or cellular remodeling compared to WT hearts.
Collapse
Affiliation(s)
- Hao Chen
- Molecular Cardiovascular Research Program, Department of Physiology, University of Arizona Tucson, AZ, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
McKee LA, Chen H, Regan JA, Behunin SM, Walker JW, Walker JS, Konhilas JP. Sexually dimorphic myofilament function and cardiac troponin I phosphospecies distribution in hypertrophic cardiomyopathy mice. Arch Biochem Biophys 2013; 535:39-48. [PMID: 23352598 PMCID: PMC3640654 DOI: 10.1016/j.abb.2012.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 11/16/2022]
Abstract
The pathological progression of hypertrophic cardiomyopathy (HCM) is sexually dimorphic such that male HCM mice develop phenotypic indicators of cardiac disease well before female HCM mice. Here, we hypothesized that alterations in myofilament function underlies, in part, this sex dimorphism in HCM disease development. Firstly, 10-12month female HCM (harboring a mutant [R403Q] myosin heavy chain) mice presented with proportionately larger hearts than male HCM mice. Next, we determined Ca(2+)-sensitive tension development in demembranated cardiac trabeculae excised from 10-12month female and male HCM mice. Whereas HCM did not impact Ca(2+)-sensitive tension development in male trabeculae, female HCM trabeculae were more sensitive to Ca(2+) than wild-type (WT) counterparts and both WT and HCM males. We hypothesized that the underlying cause of this sex difference in Ca(2+)-sensitive tension development was due to changes in Ca(2+) handling and sarcomeric proteins, including expression of SR Ca(2+) ATPase (2a) (SERCA2a), β-myosin heavy chain (β-MyHC) and post-translational modifications of myofilament proteins. Female HCM hearts showed an elevation of SERCA2a and β-MyHC protein whereas male HCM hearts showed a similar elevation of β-MyHC protein but a reduced level of cardiac troponin T (cTnT) phosphorylation. We also measured the distribution of cardiac troponin I (cTnI) phosphospecies using phosphate-affinity SDS-PAGE. The distribution of cTnI phosphospecies depended on sex and HCM. In conclusion, female and male HCM mice display sex dimorphic myofilament function that is accompanied by a sex- and HCM-dependent distribution of sarcomeric proteins and cTnI phosphospecies.
Collapse
Affiliation(s)
- Laurel A.K. McKee
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Hao Chen
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jessica A. Regan
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Samantha M. Behunin
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Jeffery W. Walker
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - John S. Walker
- University of Colorado Denver, Department of Medicine/Cardiology, Aurora, CO 80045, USA
| | - John P. Konhilas
- Department of Physiology, Sarver Molecular Cardiovascular Research Program, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| |
Collapse
|
32
|
Lakdawala NK, Thune JJ, Colan SD, Cirino AL, Farrohi F, Rivero J, McDonough B, Sparks E, Orav EJ, Seidman JG, Seidman CE, Ho CY. Subtle abnormalities in contractile function are an early manifestation of sarcomere mutations in dilated cardiomyopathy. ACTA ACUST UNITED AC 2012; 5:503-10. [PMID: 22949430 DOI: 10.1161/circgenetics.112.962761] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Sarcomere mutations cause both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM); however, the steps leading from mutation to disease are not well described. By studying mutation carriers before a clinical diagnosis develops, we characterize the early manifestations of sarcomere mutations in DCM and investigate how these manifestations differ from sarcomere mutations associated with HCM. METHODS AND RESULTS Sixty-two genotyped individuals in families with sarcomeric DCM underwent clinical evaluation including strain echocardiography. The group included 12 subclinical DCM mutation carriers with normal cardiac dimensions and left ventricular ejection fraction (LVEF ≥55%), 21 overt DCM subjects, and 29 related mutation (-) normal controls. Results were compared with a previously characterized cohort of 60 subclinical HCM subjects (sarcomere mutation carriers without left ventricular hypertrophy). Systolic myocardial tissue velocity, longitudinal, circumferential, and radial strain, and longitudinal and radial strain rate were reduced by 10%-23% in subclinical DCM mutation carriers compared with controls (P<0.001 for all comparisons), after adjusting for age and family relations. No significant differences in diastolic parameters were identified comparing the subclinical and control cohorts. The opposite pattern of contractile abnormalities with reduced diastolic but preserved systolic function was seen in subclinical HCM. CONCLUSIONS Subtle abnormalities in systolic function are present in subclinical DCM mutation carriers, despite normal left ventricular size and ejection fraction. In contrast, impaired relaxation and preserved systolic function appear to be the predominant early manifestations of sarcomere mutations that lead to HCM. These findings support the theory that the mutation's intrinsic impact on sarcomere function influences whether a dilated or hypertrophic phenotype develops.
Collapse
Affiliation(s)
- Neal K Lakdawala
- Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. PLoS One 2012; 7:e41574. [PMID: 22844503 PMCID: PMC3402395 DOI: 10.1371/journal.pone.0041574] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/27/2012] [Indexed: 02/07/2023] Open
Abstract
Background Recently, MicroRNAs (miR) and AMP-kinase (AMPK) have emerged as prominent players in the development of cardiac hypertrophy and heart failure. We hypothesized that components of the adenosine monophosphate-activated kinase (AMPK) pathway are targeted by miRs and alter AMPK signaling during pathological cardiac stress. Methodology/Principal Findings Using a mouse model of hypertrophic cardiomyopathy (HCM), we demonstrated early elevation of miR-195 and miR-451 in HCM hearts, which targets MO25, a central component of the MO25/STRAD/LKB1 complex that acts as an upstream kinase for AMPK. We show functional targeting of MO25 by miR-195 and -451. Further in vitro interrogation of MO25 as a functional target validated this hypothesis where over-expression of miR-195 in C2C12 cells knocked down MO25 expression levels and downstream AMPK signaling (phosphorylation of Acetyl CoA carboxylase [ACC] and AMPK activity assay), similar to MO25 knockdown in C2C12 cells by siRNA. Parallel changes were measured in 60 day R403Q HCM male hearts that were rescued by short-term administration of AICAR, an AMPK agonist. Conclusions/Significance Elevated miR-195 targets the LKB1/AMPK signaling axis in HCM progression and implicates a functional role in HCM disease progression. MiR-195 may serve as potential therapeutics or therapeutic targets for heart disease.
Collapse
|
34
|
Lawton JS. Sex and gender differences in coronary artery disease. Semin Thorac Cardiovasc Surg 2012; 23:126-30. [PMID: 22041042 DOI: 10.1053/j.semtcvs.2011.07.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2011] [Indexed: 01/10/2023]
Abstract
Significant sex differences exist between men and women with regard to coronary artery disease. Most notably, this lethal disease kills more women than men each year and remains the leading cause of death for both men and women. Women and men clearly have different risk profiles when diagnosed with coronary artery disease and fare much differently after myocardial infarction and coronary artery bypass grafting. This review summarizes the sex differences in clinical presentation, diagnosis, and the surgical treatment of coronary artery disease between men and women; and potential multifactorial reasons for sex disparities are suggested.
Collapse
Affiliation(s)
- Jennifer S Lawton
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
35
|
What we know and do not know about sex and cardiac disease. J Biomed Biotechnol 2010; 2010:562051. [PMID: 20445744 PMCID: PMC2860154 DOI: 10.1155/2010/562051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 02/16/2010] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the single leading cause of death in both men and women. A large proportion of the population with CVD will die with a diagnosis of congestive heart failure (CHF). It is becoming increasingly recognized that sex differences exist in the etiology, development, and outcome of CHF. For example, compared to male counterparts, women that present with CHF are typically older and have systolic cardiac function that is not impaired. Despite a growing body of literature addressing the underlying mechanisms of sex dimorphisms in cardiac disease, there remain significant inconsistencies reported in these studies. Given that the development of CHF results from the complex integration of genetic and nongenetic cues, it is not surprising that the elucidation and subsequent identification of molecular mechanisms remains unclear. In this review, key aspects of sex differences in CVD and CHF will be highlighted with an emphasis on some of the unanswered questions regarding these differences. The contention is presented that it becomes critical to reference cellular mechanisms within the context of each sex to better understand these sex dimorphisms.
Collapse
|
36
|
Konhilas JP, Boucek DM, Horn TR, Johnson GL, Leinwand LA. The Role of MEKK1 in Hypertrophic Cardiomyopathy. Int Heart J 2010; 51:277-84. [DOI: 10.1536/ihj.51.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- John P. Konhilas
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado
| | - Dana M. Boucek
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado
| | - Todd R. Horn
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado
| | - Gary L. Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado
| |
Collapse
|
37
|
Koshman YE, Piano MR, Russell B, Schwertz DW. Signaling responses after exposure to 5 alpha-dihydrotestosterone or 17 beta-estradiol in norepinephrine-induced hypertrophy of neonatal rat ventricular myocytes. J Appl Physiol (1985) 2009; 108:686-96. [PMID: 20044473 DOI: 10.1152/japplphysiol.00994.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Androgens appear to enhance, whereas estrogens mitigate, cardiac hypertrophy. However, signaling pathways in cells for short (3 min) and longer term (48 h) treatment with 17beta-estradiol (E2) or 5 alpha-dihydrotestosterone (DHT) are understudied. We compared the effect of adrenergic stimulation by norepinephrine (NE; 1 microM) alone or in combination with DHT (10 nM) or E2 (10 nM) treatment in neonatal rat ventricular myocytes (NRVMs) by cell area, protein synthesis, sarcomeric structure, gene expression, phosphorylation of extracellular signal-regulated (ERK), and focal adhesion kinases (FAK), and phospho-FAK nuclear localization. NE alone elicited the expected hypertrophy and strong sarcomeric organization, and DHT alone gave a similar but more modest response, whereas E2 did not alter cell size. Effects of NE dominated when used with either E2 or DHT with all combinations. Both sex hormones alone rapidly activated FAK but not ERK. Long-term or brief exposure to E2 attenuated NE-induced FAK phosphorylation, whereas DHT had no effect. Neither hormone altered NE-elicited ERK activation. Longer term exposure to E2 alone reduced FAK phosphorylation and reduced nuclear phospho-FAK, whereas its elevation was seen in the presence of NE with both sex hormones. The mitigating effects of E2 on the NE-elicited increase in cell size and the hypertrophic effect of DHT in NRVMs are in accordance with results observed in whole animal models. This is the first report of rapid, nongenomic sex hormone signaling via FAK activation and altered FAK trafficking to the nucleus in heart cells.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Department of Physiology and Biophysics, University of Illinois at Chicago, MC 901, 835 South Wolcott Ave., Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
38
|
Umar S, de Visser YP, Steendijk P, Schutte CI, Laghmani EH, Wagenaar GTM, Bax WH, Mantikou E, Pijnappels DA, Atsma DE, Schalij MJ, van der Wall EE, van der Laarse A. Allogenic stem cell therapy improves right ventricular function by improving lung pathology in rats with pulmonary hypertension. Am J Physiol Heart Circ Physiol 2009; 297:H1606-16. [DOI: 10.1152/ajpheart.00590.2009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic lung disease that leads to right ventricular (RV) hypertrophy (RVH), remodeling, and failure. We tested treatment with bone marrow-derived mesenchymal stem cells (MSCs) obtained from donor rats with monocrotaline (MCT)-induced PAH to recipient rats with MCT-induced PAH on pulmonary artery pressure, lung pathology, and RV function. This model was chosen to mimic autologous MSC therapy. On day 1, PAH was induced by MCT (60 mg/kg) in 20 female Wistar rats. On day 14, rats were treated with 106 MSCs intravenously (MCT + MSC) or with saline (MCT60). MSCs were obtained from donor rats with PAH at 28 days after MCT. A control group received saline on days 1 and 14. On day 28, the RV function of recipient rats was assessed, followed by isolation of the lungs and heart. RVH was quantified by the weight ratio of the RV/(left ventricle + interventricular septum). MCT induced an increase of RV peak pressure (from 27 ± 5 to 42 ± 17 mmHg) and RVH (from 0.25 ± 0.04 to 0.47 ± 0.12), depressed the RV ejection fraction (from 56 ± 11 to 43 ± 6%), and increased lung weight (from 0.96 ± 0.15 to 1.66 ± 0.32 g), including thickening of the arteriolar walls and alveolar septa. MSC treatment attenuated PAH (31 ± 4 mmHg) and RVH (0.32 ± 0.07), normalized the RV ejection fraction (52 ± 5%), reduced lung weight (1.16 ± 0.24 g), and inhibited the thickening of the arterioles and alveolar septa. We conclude that the application of MSCs from donor rats with PAH reduces RV pressure overload, RV dysfunction, and lung pathology in recipient rats with PAH. These results suggest that autologous MSC therapy may alleviate cardiac and pulmonary symptoms in PAH patients.
Collapse
|
39
|
Huggins CE, Curl CL, Patel R, McLennan PL, Theiss ML, Pedrazzini T, Pepe S, Delbridge LMD. Dietary fish oil is antihypertrophic but does not enhance postischemic myocardial function in female mice. Am J Physiol Heart Circ Physiol 2009; 296:H957-66. [DOI: 10.1152/ajpheart.01151.2008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively ( P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min × mmHg] of FO-fed WT and TG hearts was similar (50 ± 7% vs. 45 ± 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 ± 4% vs. 64 ± 8%) was not enhanced compared with CTR-fed mice (RPP, 60 ± 11% vs. 80 ± 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model.
Collapse
|
40
|
Kilić A, Javadov S, Karmazyn M. Estrogen exerts concentration-dependent pro-and anti-hypertrophic effects on adult cultured ventricular myocytes. Role of NHE-1 in estrogen-induced hypertrophy. J Mol Cell Cardiol 2009; 46:360-9. [DOI: 10.1016/j.yjmcc.2008.11.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/25/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
41
|
Palmer BM, Wang Y, Teekakirikul P, Hinson JT, Fatkin D, Strouse S, Vanburen P, Seidman CE, Seidman JG, Maughan DW. Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex. Am J Physiol Heart Circ Physiol 2008; 294:H1939-47. [PMID: 18281382 DOI: 10.1152/ajpheart.00644.2007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Male but not female mice carrying a single R403Q missense allele for cardiac alpha-myosin heavy chain (M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+), respectively) develop significant hypertrophic cardiomyopathy (HCM) compared with male and female wild-type mice (M-alphaMHC(+/+) and F-alphaMHC(+/+), respectively) after approximately 30 wk of age. We tested the hypothesis that myofilament mechanical performance differs between M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+) at younger ages (10-20 wk) and could account for sex differences in HCM development. The sensitivity of chemically skinned myocardial strips to Ca(2+) activation (pCa(50)) was significantly (P < 0.05) enhanced in male mice independent of genotype (M-alphaMHC(R403Q/+): 5.70 +/- 0.06, M-alphaMHC(+/+): 5.63 +/- 0.05, F-alphaMHC(R403Q/+): 5.57 +/- 0.03, F-alphaMHC(+/+): 5.54 +/- 0.04) by two-way ANOVA, whereas maximum developed tension was significantly enhanced in alpha-MHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 29.3 +/- 2.3, M-alphaMHC(+/+): 26.0 +/- 1.4, F-alphaMHC(R403Q/+): 30.2 +/- 2.1, F-alphaMHC(+/+): 26.2 +/- 1.2 mN/mm(2)). The frequency of maximum work generated by sinusoidal length perturbation was significantly higher in alphaMHC(R403Q/+) mice than in sex-matched controls (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 Hz). Unloaded shortening velocity was significantly enhanced in alphaMHC(R403Q/+) and in female mice (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 muscle lengths/s), and normalized mechanical power, calculated from the tension-velocity relationship, was significantly enhanced in alphaMHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 60 +/- 2 10(-3), M-alphaMHC(+/+): 37 +/- 3 10(-3), F-alphaMHC(R403Q/+): 57 +/- 3 10(-3), F-alphaMHC(+/+) 25 +/- 3 10(-3) muscle lengths/s x normalized tension). We did not find a statistically significant sex x mutation interaction for any measure of myofilament performance. Therefore, sarcomeric incorporation of the R403Q myosin similarly enhanced left ventricular myofilament mechanical performance in both male and female mice. The sex-dependent development of HCM due to the R403Q myosin may then be inhibited by female sex hormones, which may additionally underlie the observed sex differences for pCa(50) and unloaded shortening velocity.
Collapse
Affiliation(s)
- Bradley M Palmer
- Dept. of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Keren A, Syrris P, McKenna WJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. ACTA ACUST UNITED AC 2008; 5:158-68. [PMID: 18227814 DOI: 10.1038/ncpcardio1110] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Accepted: 11/23/2007] [Indexed: 11/09/2022]
Abstract
Hypertrophic cardiomyopathy (HCM), defined clinically by the presence of unexplained left ventricular hypertrophy, is the most common inherited cardiac disorder. This condition is the major cause of sudden death in the young (<30 years of age) and in athletes. The clinical phenotype is heterogeneous, and mutations in a number of sarcomeric contractile-protein genes are responsible for causing the disease in approximately 60% of individuals with HCM. Other inherited syndromes, as well as metabolic and mitochondrial disorders, can present as clinical phenocopies and can be distinguished by their associated cardiac and noncardiac features and on the basis of their unique molecular genetics. The mode of inheritance, natural history and treatment of phenocopies can differ from those of HCM caused by mutations in sarcomere genes. Detailed clinical evaluation and mutation analysis are, therefore, important in providing an accurate diagnosis in order to enable genetic counseling, prognostic evaluation and appropriate clinical management. This Review summarizes current knowledge on the genetics, disease mechanisms, and correlations between phenotype and genotype in patients with HCM, and discusses the implications of genetic testing in routine clinical practice.
Collapse
Affiliation(s)
- Andre Keren
- Department of Cardiology, Hadassah University Hospital, Jerusalem, Israel
| | | | | |
Collapse
|
43
|
Shigeta A, Tanabe N, Shimizu H, Hoshino S, Maruoka M, Sakao S, Tada Y, Kasahara Y, Takiguchi Y, Tatsumi K, Masuda M, Kuriyama T. Gender Differences in Chronic Thromboembolic Pulmonary Hypertension in Japan. Circ J 2008; 72:2069-74. [DOI: 10.1253/circj.cj-08-0377] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ayako Shigeta
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Nobuhiro Tanabe
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Hidefumi Shimizu
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Susumu Hoshino
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Miki Maruoka
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Seiichiro Sakao
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Yasunori Kasahara
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Yuichi Takiguchi
- Department of Respirology, Graduate School of Medicine, Chiba University
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University
| | | | - Takayuki Kuriyama
- Department of Respirology, Graduate School of Medicine, Chiba University
| |
Collapse
|
44
|
Bhuiyan MS, Shioda N, Fukunaga K. Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 2007; 293:E1606-14. [PMID: 17878225 DOI: 10.1152/ajpendo.00246.2007] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the molecular mechanism underlying estrogen-mediated cardioprotection in left ventricular (LV) hypertrophy and remodeling, we analyzed myocardial hypertrophy as well as cardiac function and hypertrophy-related protein expression in ovariectomized, aortic-banded rats. Wistar rats subjected to bilateral ovariectomy (OVX) were further treated with abdominal aortic stenosis. Effects on LV morphology and function were assessed using echocardiography, and expression of protein levels was determined by Western blot analysis. The heart-to-body weight ratio was most significantly increased in the OVX-pressure overload (PO) group compared with the OVX group and in the PO group compared with sham. The LV weight-to-body weight ratio was also significantly increased in the OVX-PO group compared with the OVX group and in the PO group compared with sham. The most significant increases in LV end diastolic pressure, LV developed pressure, and +/-dp/dt(max) were observed in the OVX-PO group compared with the OVX group and represent compensatory phenotypes against hypertrophy. Both endothelial nitric oxide (eNOS) synthase expression and activity was markedly reduced in the OVX-PO group, and protein kinase B (Akt) activity was largely attenuated. Marked breakdown of dystrophin was also seen in hearts of OVX-PO groups. Finally, significantly increased mortality was observed in the OVX-PO group following chronic isoproterenol administration. Our results demonstrate that rats subjected to ovariectomy are unable to compensate for hypertrophy, showed deteriorated heart function, and demonstrated increased mortality. Simultaneous impairment of eNOS and Akt activities and reduced dystrophin by ovariectomy likely contribute to cardiac decompensation during PO-induced hypertrophy in ovariectomized rats.
Collapse
Affiliation(s)
- Md Shenuarin Bhuiyan
- Dept. of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku Univ., Aramaki-Aoba Aoba-ku, Sendai 980-8578, Japan
| | | | | |
Collapse
|
45
|
Abstract
Clinical observations made over several decades support the existence of gender differences in cardiovascular disease prevalence and severity. For example, women exhibit a delay in the onset of vascular disease compared to men and the temporal link between menopause and the rise in vascular events in women suggests that ovarian hormones may be important in reducing the risk of vascular disease in women. Gender differences have also been observed in the severity and outcome of myocardial diseases such that women with heart failure have a better prognosis than men coupled with gender-specific patterns of ventricular remodeling. These clinical observations have fostered great interest in understanding the mechanisms of gender differences in cardiovascular diseases with the goal being to identify novel therapeutic targets. The purpose of this review is to describe animal models of cardiovascular disease that have demonstrated clear gender differences in the pathophysiologic responses to a given stimulus. Animal models from two broad areas of cardiovascular investigation will be highlighted: vascular disease and heart failure.
Collapse
|
46
|
Ren J. INFLUENCE OF GENDER ON OXIDATIVE STRESS, LIPID PEROXIDATION, PROTEIN DAMAGE AND APOPTOSIS IN HEARTS AND BRAINS FROM SPONTANEOUSLY HYPERTENSIVE RATS. Clin Exp Pharmacol Physiol 2007; 34:432-8. [PMID: 17439412 DOI: 10.1111/j.1440-1681.2007.04591.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. Hypertension leads to oxidative stress, lipid and protein damage, apoptosis and impaired cardiac contractile function. However, impact of gender on these hypertension-associated abnormalities has not been elucidated. 2. The present study evaluated the oxidative stress, lipid/protein damage, apoptosis in heart and brain tissues as well as cardiomyocyte contractile function in Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) of both genders. Oxidative stress, lipid peroxidation, protein damage and apoptosis were assessed by glutathione (GSH) : reduced glutathione (GSSG) ratio, malondialdehyde (MDA) levels, protein carbonyl levels and caspase-3 activity, respectively. Cardiomyocyte contractile function was examined including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR90) and maximal velocity of shortening/relengthening (+/-dL/dt). The SHR cardiomyocytes displayed reduced PS and +/-dL/dt compared with gender-matched WKY counterparts. Male but not female SHR cardiomyocytes possessed longer resting cell length, normal TPS and prolonged TR90. All mechanical parameters were comparable between male and female WKY rats with the exception of a higher TR90 in females. Hypertension did not significantly affect the GSH : GSSG ratio in the heart and brain tissues of either gender. Brain from female WKY rats displayed a reduced GSH : GSSG ratio. The MDA levels were unchanged and elevated, respectively, in SHR heart and SHR brain tissues from both genders. Protein carbonyl formation and caspase-3 activity were elevated in male but not female SHR hearts. Nonetheless, brain protein carbonyl level and caspase-3 activity were unaffected by hypertension or gender. 3. In summary, these results suggest that gender affects hypertension-associated oxidative stress, lipid and protein damage, apoptosis in heart and brain tissues and cardiomyocyte contractile function.
Collapse
Affiliation(s)
- Jun Ren
- Division of Pharmaceutical Sciences & Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
47
|
Murphy E, Korach KS. Actions of estrogen and estrogen receptors in nonclassical target tissues. ERNST SCHERING FOUNDATION SYMPOSIUM PROCEEDINGS 2007:13-24. [PMID: 17824169 DOI: 10.1007/2789_2006_014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hormonal effects on classical endocrine target organs such as the female reproductive tract, mammary gland, ovary, and neuroendocrine system have been thoroughly studied, with significant advancements in our understanding of estrogen actions and disease conditions from both cell culture as well as new experimental animal models. Knowledge of the highly appreciated effects of estrogen in nonclassical endocrine organ systems, arising from epidemiological and clinical findings in the cardiovascular, immune, GI tract, and liver, is only now becoming clarified from the development and use of knock-out or transgenic animal models for the study of both estrogen and ER activities. There are considerable epidemiological data showing that premenopausal females (Barrett-Connor 1997; Crabbe et al. 2003) have reduced risk for cardiovascular disease. However, a recent large clinical trial failed to show cardioprotection for postmenopausal females on estrogen-progestin replacement (Rossouw et al. 2002). In fact, the Women's Health Initiative Study showed increased cardiovascular risk for females taking an estrogen-progestin combination. These studies suggest that we need a better understanding of the mechanisms responsible for cardioprotection in females.
Collapse
Affiliation(s)
- E Murphy
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institute of Health, 111 Alexander Drive, Research Triangle Park, 27709 North Caroline, USA
| | | |
Collapse
|
48
|
Luckey SW, Mansoori J, Fair K, Antos CL, Olson EN, Leinwand LA. Blocking cardiac growth in hypertrophic cardiomyopathy induces cardiac dysfunction and decreased survival only in males. Am J Physiol Heart Circ Physiol 2006; 292:H838-45. [PMID: 17012357 DOI: 10.1152/ajpheart.00615.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations in myosin heavy chain (MyHC) can cause hypertrophic cardiomyopathy (HCM) that is characterized by hypertrophy, histopathology, contractile dysfunction, and sudden death. The signaling pathways involved in the pathology of HCM have not been elucidated, and an unresolved question is whether blocking hypertrophic growth in HCM may be maladaptive or beneficial. To address these questions, a mouse model of HCM was crossed with an antihypertrophic mouse model of constitutive activated glycogen synthase kinase-3beta (caGSK-3beta). Active GSK-3beta blocked cardiac hypertrophy in both male and female HCM mice. However, doubly transgenic males (HCM/GSK-3beta) demonstrated depressed contractile function, reduced sarcoplasmic (endo) reticulum Ca(2+)-ATPase (SERCA) expression, elevated atrial natriuretic factor (ANF) expression, and premature death. In contrast, female HCM/GSK-3beta double transgenic mice exhibited similar cardiac histology, function, and survival to their female HCM littermates. Remarkably, dietary modification from a soy-based diet to a casein-based diet significantly improved survival in HCM/GSK-3beta males. These findings indicate that activation of GSK-3beta is sufficient to limit cardiac growth in this HCM model and the consequence of caGSK-3beta was sexually dimorphic. Furthermore, these results show that blocking hypertrophy by active GSK-3beta in this HCM model is not therapeutic.
Collapse
Affiliation(s)
- Stephen W Luckey
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Campus Box 347, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | |
Collapse
|
49
|
Knapp J, Aleth S, Balzer F, Gergs U, Schmitz W, Neumann J. Comparison of contractile responses in isolated mouse aorta and pulmonary artery: Influence of strain and sex. J Cardiovasc Pharmacol 2006; 48:820-6. [PMID: 16891910 DOI: 10.1097/01.fjc.0000232062.80084.4f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Transgenic mice are often used to study the physiologic role of a known gene. The design of experiments with transgenic mice usually does not take into account strain and sex differences, at least in isolated vessels. Therefore, we have compared the contractile response of isolated aortae and isolated pulmonary arteries of male and female mice of different strains (CD1, BL6, and DBA). Contractile stimulation was achieved by depolarization due to KCl, alpha1-adrenoceptor stimulation by phenylephrine and inhibition of protein phosphatase activity by cantharidin. In isolated aorta, strain-specific differences in contractility and sex-specific differences could be observed. The concentration of phenylephrine (PE) inducing half maximal contraction (EC50) was different between aortae from DBA male mice and the other strains tested. Phasic contractions of isolated aortic rings due to PE were seen in all mice except DBA male. In isolated pulmonary arteries, strain-specific differences and sex-specific differences could be observed. The EC50-values of PE were not different between all groups. Phasic contractions due to PE were only seen in pulmonary arteries from CD1 male and BL6 female. In conclusion, strain- and sex-specific differences should be considered in selecting mice used for transgenesis or gene targeting experiments.
Collapse
Affiliation(s)
- Jörg Knapp
- Institut für Pharmakologie und Toxikologie, Universitätsklinikum Münster, 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Chung AK, Das SR, Leonard D, Peshock RM, Kazi F, Abdullah SM, Canham RM, Levine BD, Drazner MH. Women Have Higher Left Ventricular Ejection Fractions Than Men Independent of Differences in Left Ventricular Volume. Circulation 2006; 113:1597-604. [PMID: 16567580 DOI: 10.1161/circulationaha.105.574400] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Although gender-specific criteria are common for defining cardiac traits such as left ventricular hypertrophy, left ventricular ejection fraction (LVEF) thresholds widely used in clinical practice have traditionally been the same for women and men, perhaps because it remains uncertain whether there is a systematic difference in LVEF between genders.
Methods and Results—
Using cardiac magnetic resonance imaging in a probability-based sample of Dallas County residents aged 30 to 65 years (1435 women and 1183 men), we compared LVEF in women and men. The association of gender with stroke volume independent of end-diastolic volume (EDV) or other potential confounders was assessed by multivariable analysis. Gender-specific thresholds for a low LVEF were defined at the 2.5th percentile in women and men from a healthy reference subpopulation. The median (25th, 75th percentile) LVEF was higher in women than in men (75% [70%, 79%] in women versus 70% [65%, 75%] in men,
P
<0.001). Left ventricular EDV and end-systolic volume indexed to body surface area were smaller in women than in men (
P
<0.001 for both). Gender remained significantly associated with stroke volume, independent of EDV and other potential confounders in multivariable analysis. A low LVEF was defined as below 61% in women and below 55% in men.
Conclusions—
Women have a higher LVEF than men in the general population, secondary to a higher stroke volume for a given EDV independent of known potential confounders.
Collapse
Affiliation(s)
- Anne K Chung
- Donald W. Reynolds Cardiovascular Clinical Research Center, Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9047, USA
| | | | | | | | | | | | | | | | | |
Collapse
|