1
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
2
|
Qiao P, Sun Y, Wang Y, Lin S, An Y, Wang L, Liu J, Huang Y, Yang B, Zhou H. Activation of NRF2 Signaling Pathway Delays the Progression of Hyperuricemic Nephropathy by Reducing Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12051022. [PMID: 37237889 DOI: 10.3390/antiox12051022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Hyperuricemia (HUA)-induced oxidative stress is a crucial contributor to hyperuricemic nephropathy (HN), but the molecular mechanisms underlying the disturbed redox homeostasis in kidneys remain elusive. Using RNA sequencing, together with biochemical analyses, we found that nuclear factor erythroid 2-related factor 2 (NRF2) expression and nuclear localization levels were increased in early HN progression and then gradually declined below the baseline level. We identified the impaired activity of the NRF2-activated antioxidant pathway as a driver of oxidative damage in HN progression. Through nrf2 deletion, we further confirmed aggravated kidney damage in nrf2 knockout HN mice compared with HN mice. In contrast, the pharmacological agonist of NRF2 improved kidney function and alleviated renal fibrosis in mice. Mechanistically, the activation of NRF2 signaling reduced oxidative stress by restoring mitochondrial homeostasis and reducing NADPH oxidase 4 (NOX4) expression in vivo or in vitro. Moreover, the activation of NRF2 promoted the expression levels of heme oxygenase 1 (HO-1) and quinone oxidoreductase 1 (NQO1) and enhanced the antioxidant capacity of cells. Furthermore, the activation of NRF2 ameliorated renal fibrosis in HN mice through the downregulation of the transforming growth factor-beta 1 (TGF-β1) signaling pathway and ultimately delayed the progression of HN. Collectively, these results suggested NRF2 as a key regulator in improving mitochondrial homeostasis and fibrosis in renal tubular cells by reducing oxidative stress, upregulating the antioxidant signaling pathway, and downregulating the TGF-β1 signaling pathway. The activation of NRF2 represents a promising strategy to restore redox homeostasis and combat HN.
Collapse
Affiliation(s)
- Panshuang Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yi Sun
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yiming Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Simei Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yongpan An
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Liang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jihan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yajun Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Department of the Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Liu Y, Gong S, Li K, Wu G, Zheng X, Zheng J, Lu X, Zhang L, Li J, Su Z, Liu Y, Xie J, Chen J, Li Y. Coptisine protects against hyperuricemic nephropathy through alleviating inflammation, oxidative stress and mitochondrial apoptosis via PI3K/Akt signaling pathway. Biomed Pharmacother 2022; 156:113941. [DOI: 10.1016/j.biopha.2022.113941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/07/2022] Open
|
4
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
5
|
TASK-1 regulates mitochondrial function under hypoxia. Biochem Biophys Res Commun 2021; 578:163-169. [PMID: 34571371 DOI: 10.1016/j.bbrc.2021.09.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022]
Abstract
TASK-1, TWIK-related acid-sensitive potassium channel 1, is a member of the two-pore- domain potassium channel family. It is constitutively active at resting potentials and strongly expressed in the heart. However, little is known about the role of TASK-1 channels in hypoxia. A cellular model of hypoxia and reoxygenation from rat heart-derived H9c2 cells or TASK-1 deficient HEK293T cells was employed to explore the role of TASK-1 channels in cytoprotection against hypoxia. The cell viability assay revealed that TASK-1 expression increased the number of viable cells subjected to 2 h of hypoxia followed by 2 h of reoxygenation (H/R). To dissect the protective role of TASK-1 on mitochondrial function, mitochondrial membrane potential (MMP) was assessed by tetramethylrhodamine fluorescence. It was demonstrated that MMP was significantly decreased by H/R, but it was maintained by TASK-1 expression or pretreatment with cyclosporin A, an inhibitor of mitochondrial permeability transition pore (mPTP). The effect of cyclosporin A on MMP was not further altered by TASK-1 expression. Moreover, TASK-1 expression significantly blocked cytochrome c release induced by H/R. While a small fraction of endogenous TASK-1 was found to colocalize with the mitochondrial marker MitoTracker in H9c2 cells, H/R did not alter the extent of colocalization of TASK-1 with MitoTracker. The total TASK-1 protein level was not significantly affected by H/R. In summary, we provided the evidence that TASK-1 channels confer cytoprotection against hypoxia-reoxygenation injury, possibly by their capacity of maintaining the mitochondrial membrane potential via inhibiting MPTP opening.
Collapse
|
6
|
Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. Int J Mol Sci 2021; 22:ijms22157875. [PMID: 34360642 PMCID: PMC8346125 DOI: 10.3390/ijms22157875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
The purpose of this work was to identify the gene defect underlying a relatively mild rod-cone dystrophy (RCD), lacking disease-causing variants in known genes implicated in inherited retinal disorders (IRD), and provide transcriptomic and immunolocalization data to highlight the best candidate. The DNA of the female patient originating from a consanguineous family revealed no large duplication or deletion, but several large homozygous regions. In one of these, a homozygous frameshift variant, c.244_246delins17 p.(Trp82Valfs*4); predicted to lead to a nonfunctional protein, was identified in CCDC51. CCDC51 encodes the mitochondrial coiled-coil domain containing 51 protein, also called MITOK. MITOK ablation causes mitochondrial dysfunction. Here we show for the first time that CCDC51/MITOK localizes in the retina and more specifically in the inner segments of the photoreceptors, well known to contain mitochondria. Mitochondrial proteins have previously been implicated in IRD, although usually in association with syndromic disease, unlike our present case. Together, our findings add another ultra-rare mutation implicated in non-syndromic IRD, whose pathogenic mechanism in the retina needs to be further elucidated.
Collapse
|
7
|
Forini F, Canale P, Nicolini G, Iervasi G. Mitochondria-Targeted Drug Delivery in Cardiovascular Disease: A Long Road to Nano-Cardio Medicine. Pharmaceutics 2020; 12:E1122. [PMID: 33233847 PMCID: PMC7699942 DOI: 10.3390/pharmaceutics12111122] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) represents a major threat for human health. The available preventive and treatment interventions are insufficient to revert the underlying pathological processes, which underscores the urgency of alternative approaches. Mitochondria dysfunction plays a key role in the etiopathogenesis of CVD and is regarded as an intriguing target for the development of innovative therapies. Oxidative stress, mitochondrial permeability transition pore opening, and excessive fission are major noxious pathways amenable to drug therapy. Thanks to the advancements of nanotechnology research, several mitochondria-targeted drug delivery systems (DDS) have been optimized with improved pharmacokinetic and biocompatibility, and lower toxicity and antigenicity for application in the cardiovascular field. This review summarizes the recent progress and remaining obstacles in targeting mitochondria as a novel therapeutic option for CVD. The advantages of nanoparticle delivery over un-targeted strategies are also discussed.
Collapse
Affiliation(s)
- Francesca Forini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Paola Canale
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
- Department of Biology, University of Pisa, Via Volta 4 bis, 56126 Pisa, Italy
| | - Giuseppina Nicolini
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| | - Giorgio Iervasi
- CNR Intitute of Clinical Physiology, Via G.Moruzzi 1, 56124 Pisa, Italy; (P.C.); (G.N.); (G.I.)
| |
Collapse
|
8
|
Revisiting Traumatic Brain Injury: From Molecular Mechanisms to Therapeutic Interventions. Biomedicines 2020; 8:biomedicines8100389. [PMID: 33003373 PMCID: PMC7601301 DOI: 10.3390/biomedicines8100389] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/15/2022] Open
Abstract
Studying the complex molecular mechanisms involved in traumatic brain injury (TBI) is crucial for developing new therapies for TBI. Current treatments for TBI are primarily focused on patient stabilization and symptom mitigation. However, the field lacks defined therapies to prevent cell death, oxidative stress, and inflammatory cascades which lead to chronic pathology. Little can be done to treat the mechanical damage that occurs during the primary insult of a TBI; however, secondary injury mechanisms, such as inflammation, blood-brain barrier (BBB) breakdown, edema formation, excitotoxicity, oxidative stress, and cell death, can be targeted by therapeutic interventions. Elucidating the many mechanisms underlying secondary injury and studying targets of neuroprotective therapeutic agents is critical for developing new treatments. Therefore, we present a review on the molecular events following TBI from inflammation to programmed cell death and discuss current research and the latest therapeutic strategies to help understand TBI-mediated secondary injury.
Collapse
|
9
|
Berry BJ, Trewin AJ, Milliken AS, Baldzizhar A, Amitrano AM, Lim Y, Kim M, Wojtovich AP. Optogenetic control of mitochondrial protonmotive force to impact cellular stress resistance. EMBO Rep 2020; 21:e49113. [PMID: 32043300 PMCID: PMC7132214 DOI: 10.15252/embr.201949113] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/26/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial respiration generates an electrochemical proton gradient across the mitochondrial inner membrane called protonmotive force (PMF) to drive diverse functions and synthesize ATP. Current techniques to manipulate the PMF are limited to its dissipation; yet, there is no precise and reversible method to increase the PMF. To address this issue, we aimed to use an optogenetic approach and engineered a mitochondria-targeted light-activated proton pump that we name mitochondria-ON (mtON) to selectively increase the PMF in Caenorhabditis elegans. Here we show that mtON photoactivation increases the PMF in a dose-dependent manner, supports ATP synthesis, increases resistance to mitochondrial toxins, and modulates energy-sensing behavior. Moreover, transient mtON activation during hypoxic preconditioning prevents the well-characterized adaptive response of hypoxia resistance. Our results show that optogenetic manipulation of the PMF is a powerful tool to modulate metabolism and cell signaling.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Alexander S Milliken
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Aksana Baldzizhar
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | - Andrea M Amitrano
- Department of PathologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Yunki Lim
- Nephrology DivisionDepartment of MedicineSchool of Medicine and DentistryUniversity of Rochester Medical CenterRochesterNYUSA
| | - Minsoo Kim
- Department of PathologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Microbiology and ImmunologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Andrew P Wojtovich
- Department of Pharmacology and PhysiologyUniversity of Rochester Medical CenterRochesterNYUSA
- Department of Anesthesiology and Perioperative MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| |
Collapse
|
10
|
Gheorghiu ML, Badiu C. Selenium involvement in mitochondrial function in thyroid disorders. Hormones (Athens) 2020; 19:25-30. [PMID: 31960358 DOI: 10.1007/s42000-020-00173-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 01/16/2020] [Indexed: 12/18/2022]
Abstract
Selenium (Se), an important oligoelement, is a component of the antioxidant system. Over the last decade, it has been ever more frequently discussed in the context of thyroid disorders. Graves' disease and Hashimoto's thyroiditis, differentiated thyroid cancer, and even endemic goiter may have common triggers that are activated by excess reactive oxygen species (ROS), which are involved in various stages of the pathogenesis of thyroid disorders. Most oxidative events occur in mitochondria, organelles that contain enzymes with Se as a cofactor. Mitochondria are responsible for the production of ATP in the cell and are also a major site of ROS production. Thyroid hormone status (the thyroid being the organ with the highest concentration of Se in the body) has a profound impact on mitochondria biogenesis. In this review, we focus on the role of Se in mitochondrial function in thyroid disorders with impaired oxidative stress, since both thyroid hormone synthesis and thyroid dysfunction involve ROS. The role of Se deficiency or its excess in relation to mitochondrial dysfunction in the context of thyroid disorders is therefore of interest.
Collapse
Affiliation(s)
- Monica Livia Gheorghiu
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
- Department of Endemic Goiter and Its Complications, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Corin Badiu
- Department of Endocrinology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
- Department of Thyroid Related Disorders, "C.I. Parhon" National Institute of Endocrinology, Bucharest, Romania.
| |
Collapse
|
11
|
Protective Effects of Euthyroidism Restoration on Mitochondria Function and Quality Control in Cardiac Pathophysiology. Int J Mol Sci 2019; 20:ijms20143377. [PMID: 31295805 PMCID: PMC6678270 DOI: 10.3390/ijms20143377] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunctions are major contributors to heart disease onset and progression. Under ischemic injuries or cardiac overload, mitochondrial-derived oxidative stress, Ca2+ dis-homeostasis, and inflammation initiate cross-talking vicious cycles leading to defects of mitochondrial DNA, lipids, and proteins, concurrently resulting in fatal energy crisis and cell loss. Blunting such noxious stimuli and preserving mitochondrial homeostasis are essential to cell survival. In this context, mitochondrial quality control (MQC) represents an expanding research topic and therapeutic target in the field of cardiac physiology. MQC is a multi-tier surveillance system operating at the protein, organelle, and cell level to repair or eliminate damaged mitochondrial components and replace them by biogenesis. Novel evidence highlights the critical role of thyroid hormones (TH) in regulating multiple aspects of MQC, resulting in increased organelle turnover, improved mitochondrial bioenergetics, and the retention of cell function. In the present review, these emerging protective effects are discussed in the context of cardiac ischemia-reperfusion (IR) and heart failure, focusing on MQC as a strategy to blunt the propagation of connected dangerous signaling cascades and limit adverse remodeling. A better understanding of such TH-dependent signaling could provide insights into the development of mitochondria-targeted treatments in patients with cardiac disease.
Collapse
|
12
|
The hypoxia-tolerant vertebrate brain: Arresting synaptic activity. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:61-70. [DOI: 10.1016/j.cbpb.2017.11.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 11/30/2017] [Indexed: 01/16/2023]
|
13
|
Shrirao AB, Kung FH, Omelchenko A, Schloss RS, Boustany NN, Zahn JD, Yarmush ML, Firestein BL. Microfluidic platforms for the study of neuronal injury in vitro. Biotechnol Bioeng 2018; 115:815-830. [PMID: 29251352 DOI: 10.1002/bit.26519] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022]
Abstract
Traumatic brain injury (TBI) affects 5.3 million people in the United States, and there are 12,500 new cases of spinal cord injury (SCI) every year. There is yet a significant need for in vitro models of TBI and SCI in order to understand the biological mechanisms underlying central nervous system (CNS) injury and to identify and test therapeutics to aid in recovery from neuronal injuries. While TBI or SCI studies have been aided with traditional in vivo and in vitro models, the innate limitations in specificity of injury, isolation of neuronal regions, and reproducibility of these models can decrease their usefulness in examining the neurobiology of injury. Microfluidic devices provide several advantages over traditional methods by allowing researchers to (1) examine the effect of injury on specific neural components, (2) fluidically isolate neuronal regions to examine specific effects on subcellular components, and (3) reproducibly create a variety of injuries to model TBI and SCI. These microfluidic devices are adaptable for modeling a wide range of injuries, and in this review, we will examine different methodologies and models recently utilized to examine neuronal injury. Specifically, we will examine vacuum-assisted axotomy, physical injury, chemical injury, and laser-based axotomy. Finally, we will discuss the benefits and downsides to each type of injury model and discuss how researchers can use these parameters to pick a particular microfluidic device to model CNS injury.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Frank H Kung
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
14
|
Murray JW, Yin D, Wolkoff AW. Reduction of organelle motility by removal of potassium and other solutes. PLoS One 2017; 12:e0184898. [PMID: 28922372 PMCID: PMC5602639 DOI: 10.1371/journal.pone.0184898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 09/01/2017] [Indexed: 12/02/2022] Open
Abstract
There are surprisingly few studies that describe how the composition of cell culture medium may affect the trafficking of organelles. Here we utilize time lapse multi-channel fluorescent imaging to show that short term exposure of Huh-7 cells to medium lacking potassium, sodium, or chloride strongly reduces but does not eliminate the characteristic back and forth and cell-traversing movement of fluorescent EGF (FL-EGF) containing organelles. We focused on potassium because of its relatively low abundance in media and serum and its energy requiring accumulation into cells. Upon exposure to potassium free medium, organelle motility declined steadily through 90 min and then persisted at a low level. Reduced motility was confirmed in 5 independent cell lines and for organelles of the endocytic pathway (FL-EGF and Lysotracker), autophagosomes (LC3-GFP), and mitochondria (TMRE). As has been previously established, potassium free medium also inhibited endocytosis. We expected that diminished cellular metabolism would precede loss of organelle motility. However, extracellular flux analysis showed near normal mitochondrial oxygen consumption and only a small decrease in extracellular acidification, the latter suggesting decreased glycolysis or proton efflux. Other energy dependent activities such as the accumulation of Lysotracker, TMRE, DiBAC4(3), and the exclusion of propidium iodide remained intact, as did the microtubule cytoskeleton. We took advantage of cell free in vitro motility assays and found that removal of potassium or sodium from the reconstituted cytosolic medium decreased the movement of endosomes on purified microtubules. The results indicate that although changes in proton homeostasis and cell energetics under solute depletion are not fully understood, potassium as well as sodium appear to be directly required by the motile machinery of organelles for optimal trafficking.
Collapse
Affiliation(s)
- John W. Murray
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail:
| | - David Yin
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Allan W. Wolkoff
- Marion Bessin Liver Research Center, Division of Gastroenterology and Liver Diseases, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| |
Collapse
|
15
|
Goharbari MH, Taghaddosinejad F, Arefi M, Sharifzadeh M, Mojtahedzadeh M, Nikfar S, Baeeri M, Rahimifard M, Abdollahi M. Therapeutic effects of oral liothyronine on aluminum phosphide poisoning as an adjuvant therapy. Hum Exp Toxicol 2017; 37:107-117. [DOI: 10.1177/0960327117694074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: In aluminum phosphide (AlP) poisoning, death is mainly due to cardiovascular failure and refractory acute heart failure. There is a lot of evidence showing thyroid hormones have cardioprotective effects. Objective: The purpose of this study was to evaluate the effect of oral liothyronine in the treatment of AlP poisoning. Methods: Twenty-four patients from intensive care unit of Baharloo Hospital, Tehran, Iran, were included based on the inclusion and exclusion criteria. They were randomly divided into two parallel groups of 12 cases and 12 controls. Intervention in the case group was administration of 50 µg liothyronine via nasogastric tube after gastric lavage, in the first 6 h of poisoning. In both groups, the routine treatment of AlP poisoning was performed. Blood samples were prepared at the beginning of the study and after 12 h. Patients were followed up till discharge from the hospital or death. Results: The findings demonstrated that oral liothyronine was able to significantly improve systolic blood pressure, arterial blood pH, and total thiol molecules and also could decrease lipid peroxidation, increase catalase activity, and prevent further decline in total antioxidant capacity. Conclusion: Liothyronine administration is effective in controlling AlP poisoning and can improve patients’ outcome.
Collapse
Affiliation(s)
- MH Goharbari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - F Taghaddosinejad
- Department of Forensic Medicine and Toxicology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - M Arefi
- Department of Clinical Toxicology, School of Medicine, Baharloo Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - M Sharifzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Mojtahedzadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - S Nikfar
- Department of Pharmacoeconomics and Pharmaceutical Administration, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Baeeri
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Rahimifard
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - M Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Zhang SH, Gao FJ, Sun ZM, Xu P, Chen JY, Sun XH, Wu JH. High Pressure-Induced mtDNA Alterations in Retinal Ganglion Cells and Subsequent Apoptosis. Front Cell Neurosci 2016; 10:254. [PMID: 27932951 PMCID: PMC5121242 DOI: 10.3389/fncel.2016.00254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/18/2016] [Indexed: 01/19/2023] Open
Abstract
Purpose: Our previous study indicated that mitochondrial DNA (mtDNA) damage and mutations are crucial to the progressive loss of retinal ganglion cells (RGCs) in a glaucomatous rat model. In this study, we examined whether high pressure could directly cause mtDNA alterations and whether the latter could lead to mitochondrial dysfunction and RGC death. Methods: Primary cultured rat RGCs were exposed to 30 mm Hg of hydrostatic pressure (HP) for 12, 24, 48, 72, 96 and 120 h. mtDNA alterations and mtDNA repair/replication enzymes OGG1, MYH and polymerase gamma (POLG) expressions were also analyzed. The RGCs were then infected with a lentiviral small hairpin RNA (shRNA) expression vector targeting POLG (POLG-shRNA), and mtDNA alterations as well as mitochondrial function, including complex I/III activities and ATP production were subsequently studied at appropriate times. Finally, RGC apoptosis and the mitochondrial-apoptosis pathway-related protein cleaved caspase-3 were detected using a Terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay and western blotting, respectively. Results: mtDNA damage was observed as early as 48 h after the exposure of RGCs to HP. At 120 h after HP, mtDNA damage and mutations significantly increased, reaching >40% and 4.8 ± 0.3-fold, respectively, compared with the control values. Twelve hours after HP, the expressions of OGG1, MYH and POLG mRNA in the RGCs were obviously increased 5.02 ± 0.6-fold (p < 0.01), 4.3 ± 0.2-fold (p < 0.05), and 0.8 ± 0.09-fold (p < 0.05). Western blot analysis showed that the protein levels of the three enzymes decreased at 72 and 120 h after HP (p < 0.05). After interference with POLG-shRNA, the mtDNA damage and mutations were significantly increased (p < 0.01), while complex I/III activities gradually decreased (p < 0.05). Corresponding decreases in membrane potential and ATP production appeared at 5 and 6 days after POLG-shRNA transfection respectively (p < 0.05). Increases in the apoptosis of RGCs and cleaved caspase-3 protein expression were observed after mtDNA damage and mutations. Conclusions: High pressures could directly cause mtDNA alterations, leading to mitochondrial dysfunction and RGC death.
Collapse
Affiliation(s)
- Sheng-Hai Zhang
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China
| | - Feng-Juan Gao
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Zhong-Mou Sun
- Molecular Biology and Biochemistry Department, Wesleyan UniversityMiddletown, CT, USA; Schepens Eye Research Institute, Wesleyan UniversityMiddletown, CT, USA
| | - Ping Xu
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Jun-Yi Chen
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University Shanghai, China
| | - Xing-Huai Sun
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China; Key Laboratory of Myopia, Ministry of Health, Fudan UniversityShanghai, China
| | - Ji-Hong Wu
- Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan UniversityShanghai, China; Shanghai Key Laboratory of Visual Impairment and RestorationShanghai, China; Key Laboratory of Myopia, Ministry of Health, Fudan UniversityShanghai, China
| |
Collapse
|
17
|
Dollé JP, Morrison B, Schloss RS, Yarmush ML. Brain-on-a-chip microsystem for investigating traumatic brain injury: Axon diameter and mitochondrial membrane changes play a significant role in axonal response to strain injuries. TECHNOLOGY 2014; 2:106. [PMID: 25101309 PMCID: PMC4120884 DOI: 10.1142/s2339547814500095] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Diffuse axonal injury (DAI) is a devastating consequence of traumatic brain injury, resulting in significant axon and neuronal degeneration. Currently, therapeutic options are limited. Using our brain-on-a-chip device, we evaluated axonal responses to DAI. We observed that axonal diameter plays a significant role in response to strain injury, which correlated to delayed elasticity and inversely correlated to axonal beading and axonal degeneration. When changes in mitochondrial membrane potential (MMP) were monitored an applied strain injury threshold was noted, below which delayed hyperpolarization was observed and above which immediate depolarization occurred. When the NHE-1 inhibitor EIPA was administered before injury, inhibition in both hyperpolarization and depolarization occurred along with axonal degeneration. Therefore, axonal diameter plays a significant role in strain injury and our brain-on-a-chip technology can be used both to understand the biochemical consequences of DAI and screen for potential therapeutic agents.
Collapse
|
18
|
Banerjee S, Banerjee S, Saraswat G, Bandyopadhyay SA, Kabir SN. Female reproductive aging is master-planned at the level of ovary. PLoS One 2014; 9:e96210. [PMID: 24788203 PMCID: PMC4008600 DOI: 10.1371/journal.pone.0096210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
The ovary receives a finite pool of follicles during fetal life. Atresia remains the major form of follicular expenditure at all stages since development of ovary. The follicular reserve, however, declines at an exponential rate leading to accelerated rate of decay during the years preceding menopause. We examined if diminished follicle reserve that characterizes ovarian aging impacts the attrition rate. Premature ovarian aging was induced in rats by intra-embryonic injection of galactosyltransferase-antibody on embryonic day 10. On post-natal day 35 of the female litters, either a wedge of fat (sham control) or a wild type ovary collected from 25-day old control rats, was transplanted under the ovarian bursa in both sides. Follicular growth and atresia, and ovarian microenvironment were evaluated in the follicle-deficient host ovary and transplanted ovary by real time RT-PCR analysis of growth differentiation factor-9, bone morphogenetic protein 15, and kit ligand, biochemical evaluation of ovarian lipid peroxidation, superoxide dismutase (SOD) and catalase activity, and western blot analysis of ovarian pro- and anti-apoptotic factors including p53, bax, bcl2, and caspase 3. Results demonstrated that the rate of follicular atresia, which was highly preponderant in the follicle-deficient ovary of the sham-operated group, was significantly prevented in the presence of the transplanted ovary. As against the follicle-deficient ovary of the sham-operated group, the follicle-deficient host ovary as well as the transplanted ovary in the ovary-transplanted group exhibited stimulated follicle growth with increased expression of anti-apoptotic factors and down regulation of pro-apoptotic factors. Both the host and transplanted ovaries also had significantly lower rate of lipid peroxidation with increased SOD and catalase activity. We conclude that the declining follicular reserve is perhaps the immediate thrust that increases the rate of follicle depletion during the final phase of ovarian life when the follicle reserve wanes below certain threshold size.
Collapse
Affiliation(s)
- Sayani Banerjee
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Sutapa Banerjee
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Ghungroo Saraswat
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Soma Aditya Bandyopadhyay
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Syed N. Kabir
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
19
|
Slocinska M, Lubawy J, Jarmuszkiewicz W, Rosinski G. Evidences for an ATP-sensitive potassium channel (KATP) in muscle and fat body mitochondria of insect. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1125-1132. [PMID: 23973818 DOI: 10.1016/j.jinsphys.2013.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 06/02/2023]
Abstract
In the present study, we describe the existence of mitochondrial ATP-dependent K(+) channel (mitoKATP) in two different insect tissues, fat body and muscle of cockroach Gromphadorhina coquereliana. We found that pharmacological substances known to modulate potassium channel activity influenced mitochondrial resting respiration. In isolated mitochondria oxygen consumption increased by about 13% in the presence of potassium channel openers (KCOs) such as diazoxide and pinacidil. The opening of mitoKATP was reversed by glibenclamide (potassium channel blocker) and 1 mM ATP. Immunological studies with antibodies raised against the Kir6.1 and SUR1 subunits of the mammalian ATP-sensitive potassium channel, indicated the existence of mitoKATP in insect mitochondria. MitoKATP activation by KCOs resulted in a decrease in superoxide anion production, suggesting that protection against mitochondrial oxidative stress may be a physiological role of mitochondrial ATP-sensitive potassium channel in insects.
Collapse
Affiliation(s)
- Malgorzata Slocinska
- Department of Animal Physiology and Development, Adam Mickiewicz University, Poznan, Poland.
| | | | | | | |
Collapse
|
20
|
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013; 140:167-75. [PMID: 23792087 DOI: 10.1016/j.pharmthera.2013.06.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 06/11/2013] [Indexed: 02/02/2023]
Abstract
Diazoxide has been identified over the past 50years to have a number of physiological effects, including lowering the blood pressure and rectifying hypoglycemia. Today it is used clinically to treat these conditions. More recently, another important mode of action emerged: diazoxide has powerful protective properties against cardiac ischemia. The heart has intrinsic protective mechanisms against ischemia injury; one of which is ischemic preconditioning. Diazoxide mimics ischemic preconditioning. The purpose of this treatise is to review the literature in an attempt to identify the many effectors of diazoxide and discuss how they may contribute to diazoxide's cardioprotective properties. Particular emphasis is placed on the concentration ranges in which diazoxide affects its different targets and how this compares with the concentrations commonly used to study cardioprotection. It is concluded that diazoxide may have several potential effectors that may potentially contribute to cardioprotection, including KATP channels in the pancreas, smooth muscle, endothelium, neurons and the mitochondrial inner membrane. Diazoxide may also affect other ion channels and ATPases and may directly regulate mitochondrial energetics. It is possible that the success of diazoxide lies in this promiscuity and that the compound acts to rebalance multiple physiological processes during cardiac ischemia.
Collapse
Affiliation(s)
- William A Coetzee
- Department of Pediatrics, NYU School of Medicine, New York, NY 10016, United States; Department of Physiology & Neuroscience, NYU School of Medicine, New York, NY 10016, United States; Department of Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
21
|
Borutaite V, Toleikis A, Brown GC. In the eye of the storm: mitochondrial damage during heart and brain ischaemia. FEBS J 2013; 280:4999-5014. [PMID: 23710974 DOI: 10.1111/febs.12353] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/02/2013] [Accepted: 05/17/2013] [Indexed: 02/06/2023]
Abstract
We review research investigating mitochondrial damage during heart and brain ischaemia, focusing on the mechanisms and consequences of ischaemia-induced and/or reperfusion-induced: (a) inhibition of mitochondrial respiratory complex I; (b) release of cytochrome c from mitochondria; (c) changes to mitochondrial phospholipids; and (d) nitric oxide inhibition of mitochondria. Heart ischaemia causes inhibition of cytochrome oxidase and complex I, release of cytochrome c, and induction of permeability transition and hydrolysis and oxidation of mitochondrial phospholipids, but some of the mechanisms are unclear. Brain ischaemia causes inhibition of complexes I and IV, but other effects are less clear.
Collapse
Affiliation(s)
- Vilmante Borutaite
- Institute of Neurosciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | | |
Collapse
|
22
|
Wang X, Song R, Chen Y, Zhao M, Zhao KS. Polydatin – a new mitochondria protector for acute severe hemorrhagic shock treatment. Expert Opin Investig Drugs 2012; 22:169-79. [DOI: 10.1517/13543784.2013.748033] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Effects of mitochondrial ATP-sensitive K(+) channel on protein kinase C pathway and airway smooth muscle cell proliferation in asthma. ACTA ACUST UNITED AC 2012; 32:480-484. [PMID: 22886957 DOI: 10.1007/s11596-012-0083-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Indexed: 10/28/2022]
Abstract
The effects of ATP-sensitive mitochondrial K(+) channel (mitoK(ATP)) on mitochondrial membrane potential (Δψm), cell proliferation and protein kinase C alpha (PKCα) expression in airway smooth muscle cells (ASMCs) were investigated. Thirty-six Sprague-Dawley (SD) rats were immunized with saline (controls) or ovalbumin (OVA) with alum (asthma models). ASMCs were cultured from the lung of control and asthma rats. ASMCs were treated with diazoxide (the potent activator of mitoK(ATP)) or 5-hydroxydencanote (5-HD, the inhibitor of mitoK(ATP)). Rhodamine-123 (R-123) was used to detect Δψm. The expression of PKCα protein was examined by using Western blotting, while PKCα mRNA expression was detected by using real-time PCR. The proliferation of ASMCs was measured by MTT assay and cell cycle analysis. In diazoxide-treated normal ASMCs, the R-123 fluorescence intensity, protein and mRNA levels of PKCα, MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls. The ratio of G(0)/G(1) cells was decreased (P<0.05) in diazoxide-treated ASMCs from normal rats. However, there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group. In untreated and diazoxide-treated ASMCs of asthmatic rats, the R-123 fluorescence intensity, protein and mRNA levels of PKCα, MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group. Furthermore, in comparison to ASMCs from asthmatic rats, these values were considerably increased in asthmatic group treated with diazoxide (P<0.05). After exposure to 5-HD for 24 h, these values were decreased as compared with asthma control group (P<0.05). In ASMCs of asthma, the signal transduction pathway of PKCα may be involved in cell proliferation, which is induced by the opening of mitoK(ATP) and the depolarization of Δψm.
Collapse
|
24
|
Abstract
Myocardial injury in adult, pediatric, and newborn patients is a leading cause of mortality and morbidity. Although the underlying etiologies are different among patient populations, the sequence of initial ischemic-hypoxic injury followed by secondary myocardial reperfusion injury is relatively consistent. Overall infarct size is important because it is believed to be a key determinant of mortality. The detrimental effects of myocardial reperfusion have been proposed to be at least partially related to the formation of mitochondrial permeability transition pore (MPTP). The MPTP is a nonspecific pore, which forms during myocardial reperfusion and allows the release of apoptotic signaling molecules and may also lead to cellular necrosis. Cyclosporine A has been shown to be a potent inhibitor of the MPTP, leading to its study as a potential treatment to limit myocardial reperfusion injury. Multiple adult animal models have demonstrated the protective effects of cyclosporine in ischemia-reperfusion. A recent human pilot clinical trial also reported reduced myocardial injury and infarct size in patients treated with cyclosporine intravenously before percutaneous coronary intervention for ST-elevation myocardial infarction. Despite the paucity of evidence of cyclosporine A demonstrating myocardial protection in pediatric and newborn patients, the existing animal experimental results are promising.
Collapse
|
25
|
Idris NM, Ashraf M, Ahmed RPH, Shujia J, Haider KH. Activation of IL-11/STAT3 pathway in preconditioned human skeletal myoblasts blocks apoptotic cascade under oxidant stress. Regen Med 2012; 7:47-57. [PMID: 22168497 DOI: 10.2217/rme.11.109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To determine whether our novel approach of diazoxide-induced stem cell preconditioning might be extrapolated to human skeletal myoblasts to support their survival under lethal oxidant stress. METHODS & RESULTS Using an in vitro model of H(2)O(2) treatment of human skeletal myoblasts, we report the ability of diazoxide-preconditioned human skeletal myoblasts to express cytokines and growth factors, which act in an autocrine and paracrine fashion to promote their own survival. Preconditioning of skeletal myoblasts was cytoprotective and significantly reduced their apoptotic index (p < 0.05). IL-11 gene and protein expression was significantly increased in preconditioned skeletal myoblasts. Transfection of skeletal myoblasts with IL-11-specific siRNA incurred their death under oxidant stress. The cytoprotective effect of diazoxide preconditioning was blocked by Erk1/2 inhibitor PD98059 (20-100 µM), which abrogated STAT-3 phosphorylation, thus confirming a possible involvement of Erk1/2/STAT3 signaling downstream of IL-11 in cell survival. We also investigated the time course of subcellular changes and signaling pathway of skeletal myoblasts apoptosis under oxidant stress before and after preconditioning. Apoptosis was induced in skeletal myoblasts with 100-500 µM H(2)O(2) for time points ranging from 1 to 24 h. Release of lactate dehydrogenase, disruption of the mitochondrial membrane potential and cytochrome-c translocation into cytoplasm were the earliest signs of apoptosis. Total Akt protein remained unchanged whereas marked reduction in pAkt was observed in the native skeletal myoblasts. Terminal dUTP nick end-labeling and annexin-V positivity were significantly increased after 4 h. Ultra-structure studies showed condensed chromatin, shriveled nuclei and swollen mitochondria. CONCLUSION These data suggest that skeletal myoblasts undergo apoptosis under oxidant stress in a time-dependent manner and preconditioning of skeletal myoblasts significantly prevented their apoptosis via IL-11/STAT3 signaling.
Collapse
Affiliation(s)
- Niagara Muhammad Idris
- Department of Pathology, 231 Albert Sabin Way, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
26
|
Banerjee S, Chakraborty P, Saha P, Bandyopadhyay SA, Banerjee S, Kabir SN. Ovotoxic effects of galactose involve attenuation of follicle-stimulating hormone bioactivity and up-regulation of granulosa cell p53 expression. PLoS One 2012; 7:e30709. [PMID: 22319579 PMCID: PMC3271100 DOI: 10.1371/journal.pone.0030709] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Accepted: 12/28/2011] [Indexed: 01/09/2023] Open
Abstract
Clinical evidence suggests an association between galactosaemia and premature ovarian insufficiency (POI); however, the mechanism still remains unresolved. Experimental galactose toxicity in rats produces an array of ovarian dysfunction including ovarian development with deficient follicular reserve and follicular resistance to gonadotrophins that characterize the basic tenets of human POI. The present investigation explores if galactose toxicity in rats attenuates the bioactivity of gonadotrophins or interferes with their receptor competency, and accelerates the rate of follicular atresia. Pregnant rats were fed isocaloric food-pellets supplemented with or without 35% D-galactose from day-3 of gestation and continuing through weaning of the litters. The 35-day old female litters were autopsied. Serum galactose-binding capacity, galactosyltransferase (GalTase) activity, and bioactivity of FSH and LH together with their receptor competency were assessed. Ovarian follicular atresia was evaluated in situ by TUNEL. The in vitro effects of galactose were studied in isolated whole follicles in respect of generation of reactive oxygen species (ROS) and expression of caspase 3, and in isolated granulosa cells in respect of mitochondrial membrane potential, expression of p53, and apoptosis. The rats prenatally exposed to galactose exhibited significantly decreased serum GalTase activity and greater degree of galactose-incorporation capacity of sera proteins. LH biopotency and LH-FSH receptor competency were comparable between the control and study population, but the latter group showed significantly attenuated FSH bioactivity and increased rate of follicular atresia. In culture, galactose increased follicular generation of ROS and expression of caspase 3. In isolated granulosa cells, galactose disrupted mitochondrial membrane potential, stimulated p53 expression, and induced apoptosis in vitro; however co-treatment with either FSH or estradiol significantly prevented galactose-induced granulosa cell p53 expression. We conclude that the ovotoxic effects of galactose involves attenuation of FSH bioactivity that renders the ovary resistant to gonadotrophins leading to increased granulosa cell expression of p53 and follicular atresia.
Collapse
Affiliation(s)
- Sayani Banerjee
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Pratip Chakraborty
- Department of Infertility, Institute of Reproductive Medicine, Salt Lake City, Kolkata, India
| | - Piyali Saha
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Soma Aditya Bandyopadhyay
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Sutapa Banerjee
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
| | - Syed N. Kabir
- Reproductive Biology Research, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
27
|
Higuchi S, Ii M, Zhu P, Ashraf M. Delta-Opioid Receptor Activation Promotes Mesenchymal Stem Cell Survival via PKC/STAT3 Signaling Pathway. Circ J 2012; 76:204-12. [DOI: 10.1253/circj.cj-11-0309] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Masaaki Ii
- Department of Pharmacology, Osaka Medical College
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong General Hospital, Guangdong Academy of Medical Science
| | | |
Collapse
|
28
|
Isobe Y, Hida H, Nishino H. Circadian rhythm of metabolic oscillation in suprachiasmatic nucleus depends on the mitochondrial oxidation state, reflected by cytochrome C oxidase and lactate dehydrogenase. J Neurosci Res 2011; 89:929-35. [PMID: 21416482 DOI: 10.1002/jnr.22609] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 01/07/2011] [Accepted: 01/09/2011] [Indexed: 11/11/2022]
Abstract
Metabolic activity in the suprachiasmatic nucleus (SCN), a center of biological rhythm, is higher during the daytime than at night. The rhythmic oscillation in the SCN is feedback controlled by the Clock/Bmal1 heterodimer binding to the E-box in target genes (e.g., Arg-vasopressin). Similar transcriptional regulation by Npas2/Bmal1 heterodimer formation operates in the brain, which is dependent on the redox state (i.e., NAD/NADH). To clarify the metabolic function of SCN in relation to the redox state and glycolysis levels, we measured glucose, lactate dehydrogenase (LDH), LDH mRNA, and cytochrome C oxidase, energy-producing biochemical materials from mitochondria/cytosol, in rats kept under a light-dark cycle. Mitochondrial cytochrome C oxidase activity, measured by the changes in absorption at 550 nm, was higher during the light period than during the dark period. Glucose concentration was higher during the light period. In contrast, LDH and its coding mRNA were higher during the dark period. Mitochondrial aggregation, which is reflected by mitochondrial membrane potential, indexed by JC-1 fluorescence, was higher during the light period. The results indicate that the glycolysis energy pathway in the SCN, which exhits higher metabolic activity during the day than at night, might be involved in the generation of circadian rhythm.
Collapse
Affiliation(s)
- Yoshiaki Isobe
- Department of Neuro-Physiology and Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan. yisobe@ med.nagoya-cu.ac.jp
| | | | | |
Collapse
|
29
|
Haider HK, Ashraf M. Preconditioning and stem cell survival. J Cardiovasc Transl Res 2009; 3:89-102. [PMID: 20560023 DOI: 10.1007/s12265-009-9161-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 11/24/2009] [Indexed: 01/01/2023]
Abstract
The harsh ischemic and cytokine-rich microenvironment in the infarcted myocardium, infiltrated by the inflammatory and immune cells, offers a significant challenge to the transplanted donor stem cells. Massive cell death occurs during transplantation as well as following engraftment which significantly lowers the effectiveness of the heart cell therapy. Various approaches have been adopted to overcome this problem nevertheless with multiple limitations with each of these current approaches. Cellular preconditioning and reprogramming by physical, chemical, genetic, and pharmacological manipulation of the cells has shown promise and "prime" the cells to the "state of readiness" to withstand the rigors of lethal ischemia in vitro as well as posttransplantation. This review summarizes the past and present novel approaches of ischemic preconditioning, pharmacological and genetic manipulation using preconditioning mimetics, recombinant growth factor protein treatment, and reprogramming of stem cells to overexpress survival signaling molecules, microRNAs, and trophic factors for intracrine, autocrine, and paracrine effects on cytoprotection.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, 231-Albert, Sabin Way, OH 45267-0529, USA.
| | | |
Collapse
|
30
|
Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 2009; 12:1559-70. [PMID: 19012619 PMCID: PMC3918072 DOI: 10.1111/j.1582-4934.2007.00144.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
As activated microglia (MG) is an early sign that often precedes and triggers neuronal death, inhibition of microglial activation and reduction of subsequent neurotoxicity may offer therapeutic benefit. The present study demonstrates that rat primary cultured MG expressed Kir6.1 and SUR2 subunits of KATP channel, which was identical to that expressed in BV-2 microglial cell line. The classic KATP channel opener pinacidil and selective mitochondrial KATP (mito-KATP) channel opener diazoxide prevented rotenone-induc microglial activation and production of pro-inflammatory factors (tumour necrosis factor[TNF]-α and prostaglandin E2[PGE2]). And the effects of pinacidil and diazoxide were reversed by mito-KATP blocker 5-hydroxydecanoate (5-HD), indicating that mito-KATP channels participate in the regulation of microglial activation. Moreover, the underlying mechanisms involved the stabilization of mitocho drial membrane potential and inhibition of p38/c-Jun-N-terminal kinase (JNK) activation in microglia. Furthermore, the in vivo study confirmed that diazoxide exhibited neuroprotective effects against rotenone along with the inhibition of microglial activation and neuroinflammation. Thus, microglial mito-KATP channel might be a novel prospective target for the treatment of neuroinflammation-related degenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Fang Zhou
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| | | | | | | | | | - Gang Hu
- *Correspondence to: Gang HU, MD, PhD, Jiangsu Key Laboratory of Neurodegeneration, Department of Anatomy, Histology & Pharmacology Nanjing Medical University, 140 Hanzhong Road Nanjing, Jiangsu 210029, P. R. China. Tel.: +86-25-86 86 31 69 Fax: +86-25-86 86 31 08 E-mail:
| |
Collapse
|
31
|
Haider HK, Ashraf M. Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation. J Mol Cell Cardiol 2008; 45:554-66. [PMID: 18561945 DOI: 10.1016/j.yjmcc.2008.05.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 04/18/2008] [Accepted: 05/02/2008] [Indexed: 12/22/2022]
Abstract
Stem cell transplantation has emerged as a potential modality in cardiovascular therapeutics due to their inherent characteristics of self-renewal, unlimited capacity for proliferation and ability to cross lineage restrictions and adopt different phenotypes. Constrained by extensive death in the unfriendly milieu of ischemic myocardium, the results of heart cell therapy in experimental animal models as well as clinical studies have been less than optimal. Several factors which play a role in early cell death after engraftment in the ischemic myocardium include: absence of survival factors in the transplanted heart, disruption of cell-cell interaction coupled with loss of survival signals from matrix attachments, insufficient vascular supply and elaboration of inflammatory cytokines resulting from ischemia and/or cell death. This article reviews various signaling pathways involved in triggering highly complex forms of cell death and provides critical appreciation of different novel anti-death strategies developed from the knowledge gained from using an ischemic preconditioning approach. The use of pharmacological preconditioning for up-regulation of pro-survival proteins and cardiogenic markers in the transplanted stem cells will be discussed.
Collapse
Affiliation(s)
- Husnain Kh Haider
- Department of Pathology and Laboratory Medicine, 231-Albert Sabin Way, University of Cincinnati, OH-45267-0529, USA
| | | |
Collapse
|
32
|
Soares SS, Henao F, Aureliano M, Gutiérrez-Merino C. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization. Chem Res Toxicol 2008; 21:607-18. [PMID: 18251508 DOI: 10.1021/tx700204r] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.
Collapse
Affiliation(s)
- Sandra Sofia Soares
- Comparative Cardiovascular Physiopathology Group (GFCC), Faculty of Environmental and Marine Sciences, Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | | | | | | |
Collapse
|
33
|
Dai Y, Ashraf M, Zuo S, Uemura R, Dai YS, Wang Y, Haider HK, Li T, Xu M. Mobilized bone marrow progenitor cells serve as donors of cytoprotective genes for cardiac repair. J Mol Cell Cardiol 2007; 44:607-17. [PMID: 18221754 DOI: 10.1016/j.yjmcc.2007.11.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 11/13/2007] [Accepted: 11/28/2007] [Indexed: 01/05/2023]
Abstract
We proposed here that mobilized progenitor cells (MPCs) from the bone marrow are special cell types which carry cytoprotective proteins for cardiac repair following ischemia. Myocardial ischemia was induced by ligation of the left anterior descending coronary artery (LAD) in mice. Progenitor cells in peripheral blood were analyzed by fluorescence-activated cell sorting (FACS). The expression of cytoprotective genes was assayed by ELISA, RT-PCR, and/or real-time PCR. G-CSF was markedly up-regulated in the ischemic myocardium. A good correlation was observed between serum G-CSF and progenitor cells in circulation following LAD ligation. MPCs overexpressed cardiac transcription factor, GATA-4, and anti-apoptotic factor, Bcl-2, besides expression of the surface markers of bone marrow stem cells (BMSCs). Transplantation of cultured MPCs into the ischemic border area significantly improved cardiac function by reducing infarction size. More importantly, MPCs significantly protected cardiomyocytes against apoptosis when co-cultured with cardiomyocytes. The cardiac protection by MPCs was blocked by Bcl-2 neutralizing antibody and GATA-4 siRNA. In contrast, transfection of BMSCs with GATA-4 provided increased protection of myocytes against apoptosis. It is concluded that MPCs are highly cytoprotective and carry protective genes responsible for cardiac repair.
Collapse
Affiliation(s)
- Ying Dai
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kim YS, Shin MJ, Yang DJ, Yamaguchi M, Park SY, Yoo MA. Transcriptional regulation of the Drosophila ANT gene by the DRE/DREF system. Genes Cells 2007; 12:569-79. [PMID: 17535248 DOI: 10.1111/j.1365-2443.2007.01075.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenine nucleotide translocase (ANT) is a crucial component in the maintenance of cellular energy homeostasis, as well as in the formation of the mitochondrial permeability transition pores. However, the molecular mechanisms regulating the expression of the ANT gene are poorly understood. In this study, we have identified three DNA replication-related elements (DRE; 5'-TATCGATA) in the 5'-flanking region of the Drosophila ANT (dANT) gene. Gel-mobility shift analyses revealed that all three of the DREs were recognized by the DRE-binding factor (DREF). The site-directed mutagenesis of these DRE sites induces a considerable reduction in the activity of the dANT gene promoter in vitro. Analyses with transgenic flies harboring a dANT-lacZ fusion gene bearing the wild-type or mutant DRE sites showed that the DRE sites were required for the expression of dANT in vivo. We determined that the over-expression or knockdown of DREF exerts a regulatory effect on the activity of the dANT promoter. In addition, we observed the collapse of mitochondrial membrane potential in the eye imaginal discs in which DREF was over-expressed. These results show that DRE/DREF is a crucial regulator of dANT gene expression, and also suggest the possibility that cross-talk may occur between the DRE/DREF system and mitochondrial functioning.
Collapse
Affiliation(s)
- Young Shin Kim
- Research Institute of Genetic Engineering, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | |
Collapse
|
35
|
O'Duffy AE, Bordelon YM, McLaughlin B. Killer proteases and little strokes--how the things that do not kill you make you stronger. J Cereb Blood Flow Metab 2007; 27:655-68. [PMID: 16896349 PMCID: PMC2881558 DOI: 10.1038/sj.jcbfm.9600380] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The phenomenon of ischemic preconditioning was initially observed over 20 years ago. The basic tenant is that if stimuli are applied at a subtoxic level, cells upregulate endogenous protective mechanisms to block injury induced by subsequent stress. Since this discovery, many conserved signaling mechanisms that contribute to activation of this potent protective program have been identified in the brain. A clinical correlate of this basic research finding can be found in patients with a history of transient ischemic attack (TIA), who have a decreased morbidity after stroke. In spite of multidisciplinary efforts to design safer, more effective stroke therapies, we have thus far failed to translate our understanding of endogenous protective pathways to treatments for neurodegeneration. This review is designed to provide clinicians and basic scientists with an overview of stress biology after TIA and preconditioning, discuss new therapeutic strategies to target the protein dysfunction that follows ischemic injury, and propose enhanced biochemical profiling to identify individuals at risk of stroke after TIA. We pay particular attention to the unanticipated consequences of overly aggressive intervention after TIA in which we have found that traditional cytotoxic agents such as free radicals and apoptosis associated proteases is essential for neuroprotection and communication in the stressed brain. These data emphasize the importance of understanding the complex interplay between chaperones, apoptotic proteases including caspases, and the proteolytic degradation machinery in adaptation to neurological injury.
Collapse
Affiliation(s)
- Anne E O'Duffy
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37232-8548, USA
| | | | | |
Collapse
|
36
|
Niagara MI, Haider HK, Jiang S, Ashraf M. Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circ Res 2007; 100:545-55. [PMID: 17234963 DOI: 10.1161/01.res.0000258460.41160.ef] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Strategies to enhance skeletal myoblast (SkM) survival after transplantation in the ischemic heart have achieved little success. We posit that preconditioned (PC) SkMs show improved survival and promote repair of the infarcted myocardium via paracrine signaling after transplantation. SkMs from male Fischer-344 rats (rSkMs) were PC for 30 minutes with 200 micromol/L diazoxide. Treatment of PC rSkMs with 100 micromol/L H(2)O(2) for 2 hours resulted in significantly reduced cell injury, as shown by lactate dehydrogenase-release assay, and prevented apoptosis, as demonstrated by cytochrome c translocation, TUNEL, annexin V staining, and preservation of mitochondrial membrane potential. PC rSkMs expressed elevated phospho-Akt (1.85-fold), basic fibroblast growth factor (1.44-fold), hepatocyte growth factor (2.26-fold), and cyclooxygenase-2 (1.33-fold) as compared with non-PC rSkMs. For in vivo studies, female Fischer-344 rats after permanent coronary artery ligation were grouped (n=12/group) to receive 80 microL of basal medium without rSkMs (group 1) or containing 1.5 x 10(6) non-PC (group 2) or PC (group 3) rSkMs. Real-time PCR for sry gene 4 days after transplantation (n=4/group) showed 1.93-fold higher survival of rSkMs in group 3 as compared with group 2. Four weeks later, echocardiography revealed improved indices of left ventricular function, including ejection fraction and fractional shortening in group 3 (P<0.02) as compared with groups 1 and 2. Blood vessel count per surface area (at x400 magnification) was highest in scar and periscar areas in group 3 as compared with the other groups (P<0.05). We conclude that activation of signaling pathways of preconditioning in SkMs promoted their survival by release of paracrine factors to promote angiomyogenesis in the infarcted heart. Transplantation of PC SkMs for heart cell therapy is an innovative approach in the clinical perspective.
Collapse
Affiliation(s)
- Muhammad Idris Niagara
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
37
|
Wang TN, Ge YK, Li JY, Zeng XH, Zheng XX. B-Type Natriuretic Peptide Enhances Mild Hypoxia-Induced Apoptotic Cell Death in Cardiomyocytes. Biol Pharm Bull 2007; 30:1084-90. [PMID: 17541158 DOI: 10.1248/bpb.30.1084] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the case of left ventricle remodeling after myocardial infarction, cardiomyocyte apoptosis is attributed to increased cardiac workload by the stimulus such as chronic hypoxia. B-Type natriuretic peptide, being known as a reliable prognostic of cardiovascular pathology, plays an important role in the myocardial infarction. However, the action of B-type natriuretic peptide on cardiomyocytes undergoing apoptosis is unclear. In the present study, B-type natriuretic peptide have exhibited the enhancive effects on the mild hypoxia-induced cardiomyocyte apoptosis with the manifestation of facilitating phosphatidylserine evagination and increasing typical fragmented nuclei. In addition, B-type natriuretic peptide aggravated the dissipation of delta psi(m), the depletion of intracellular ATP and the increase of caspase-3 activity. 8-Bromo-cGMP, which increased cGMP independent of B-type natriuretic peptide, could mimic B-type natriuretic peptide's effects; whereas cGMP-dependent protein kinase inhibitor, Rp-8-br-cGMP inhibited that. Further study revealed the enhancive effect of BNP on down-regulation of Bcl-2 mRNA expression in the presence of mild hypoxia. In conclusion, the present study demonstrated that B-type natriuretic peptide aggravated the cardiomyocyte apoptosis by influencing hypoxia-induced mitochondrial death pathway, which is true at least in this oxygen deprivation model; and this effect was partially realized through intracellular cGMP.
Collapse
Affiliation(s)
- Tian-Nan Wang
- Department of Biomedical Engineering, Zhejiang University (Yuquan Campus), Hangzhou, PR China
| | | | | | | | | |
Collapse
|
38
|
Sharov VG, Todor AV, Imai M, Sabbah HN. Inhibition of mitochondrial permeability transition pores by cyclosporine A improves cytochrome C oxidase function and increases rate of ATP synthesis in failing cardiomyocytes. Heart Fail Rev 2006; 10:305-10. [PMID: 16583179 DOI: 10.1007/s10741-005-7545-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND We previously showed that mitochondrial respiratory function is abnormal in dogs with chronic heart failure (HF). Mitochondrial permeability transition pores (MPTP) can affect mitochondrial inner membrane potential (DeltaPsim) and mitochondrial function in normal cardiomyocytes. The potential impact of MPTP on DeltaPsim and mitochondrial respiratory function in HF has not yet been determined. We tested the hypothesis that cyclosporine A, a potent blocker of the MPTP, can improve mitochondrial function in HF. METHODS Cardiomyocytes were isolated from the left ventricular myocardium of 7 dogs with HF produced by intracoronary microembolizations and from 7 normal dogs. Cardiomyocytes were treated for 24 hours with cyclosporine A. DeltaPsim, cytochrome c oxidase protein expression, mitochondrial cytochrome c oxidase-dependent respiration (CDOR) and ATP synthesis were measured. RESULTS DeltaPsim, protein expression of cytochrome c oxidase, CDOR and the rate of ATP synthesis were decreased in HF compared to normal controls. Inhibition of MPTP in failing cardiomyocytes with low dose of cyclosporine A (0.2 microM) increased DeltaPsim, preserved expression of cytochrome c oxidase, improved CDOR and the rate of ATP synthesis. CONCLUSION MPTP opening contributes to the loss of mitochondrial function observed in the failing heart. Inhibition of MPTP opening represents a potential therapeutic target for the treatment of HF.
Collapse
Affiliation(s)
- Victor G Sharov
- Department of Medicine, Division of Cardiovascular Medicine, Henry Ford Heart and Vascular Institute, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
39
|
Zhang WH, Fu SB, Lu FH, Wu B, Gong DM, Pan ZW, Lv YJ, Zhao YJ, Li QF, Wang R, Yang BF, Xu CQ. Involvement of calcium-sensing receptor in ischemia/reperfusion-induced apoptosis in rat cardiomyocytes. Biochem Biophys Res Commun 2006; 347:872-81. [PMID: 16859639 DOI: 10.1016/j.bbrc.2006.06.176] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
The calcium-sensing receptor (CaR) is a seven-transmembrane G-protein coupled receptor, which activates intracellular effectors, for example, it causes inositol phosphate (IP) accumulation to increase the release of intracellular calcium. Although intracellular calcium overload has been implicated in the cardiac ischemia/reperfusion (I/R)-induced apoptosis, the role of CaR in the induction of apoptosis has not been fully understood. This study tested the hypothesis that CaR is involved in I/R cardiomyocyte apoptosis by increasing [Ca2+]i. The isolated rat hearts were subjected to 40-min ischemia followed by 2 h of reperfusion, meanwhile GdCl3 was added to reperfusion solution. The expression of CaR increased at the exposure to GdCl3 during I/R. By laser confocal microscopy, it was observed that the intracellular calcium was significantly increased and exhibited a Deltapsim, as monitored by 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide (JC-1) during reperfusion with GdCl3. Furthermore, the number of apoptotic cells was significantly increased as shown by TUNEL assay. Typical apoptotic cells were observed with transmission electron microscopy in I/R with GdCl3 but not in the control group. The expression of cytosolic cytochrome c and activated caspase-9 and caspase-3 was significantly increased whereas the expression of mitochondrial cytochrome c significantly decreased in I/R with GdCl3 in comparison to the control. In conclusion, these results suggest that CaR is involved in the induction of cardiomyocyte apoptosis during ischemia/reperfusion through activation of cytochrome c-caspase-3 signaling pathway.
Collapse
Affiliation(s)
- Wei-hua Zhang
- Department of Pathophysiology, Harbin Medical University, Harbin 150086, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Iijima T. Mitochondrial membrane potential and ischemic neuronal death. Neurosci Res 2006; 55:234-43. [PMID: 16716421 DOI: 10.1016/j.neures.2006.04.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/01/2006] [Accepted: 04/04/2006] [Indexed: 11/23/2022]
Abstract
Mitochondria are intracellular organelles in which high energy phosphate is produced. Ischemia causes depletion of the materials necessary to produce this phosphate and strongly affects the electron transport chain. Apoptosis commences during and after ischemia. As such, it is likely that a significant relationship exists between inactivation of electron transport and apoptosis. Mitochondrial membrane potential (MMP) reflects performance of the electron transport chain and can indicate a pathological disorder of this system. In an experimental setting, oxygen-glucose depletion (OGD) in neuronal cell culture has been employed to simulate an ischemic condition. The relationship between MMP and subsequent neuronal death during and after OGD has been examined. MMP dissipation and concomitant neuronal death have been reported, but recent studies have demonstrated mitochondrial hyperpolarization preceding neuronal death. The direction of MMP polarization depends on the extent of OGD. Long OGD results in depolarization, while shorter OGD induces hyperpolarization. Neurons are still viable during hyperpolarization, but the process may switch on the apoptotic cascade. Meanwhile, dissipation of MMP seems to be a consequence of severe energy deficit, leading to necrosis. MMP may be a marker of subsequent apoptosis, although a causal relationship remains to be determined.
Collapse
Affiliation(s)
- Takehiko Iijima
- Department of Anesthesiology, Kyorin University, School of Medicine, 6-20-2 Shinkawa Mitaka City, Tokyo 181-8611, Japan.
| |
Collapse
|
41
|
Li H, Yu B, Zhang Y, Pan Z, Xu W, Li H. Jagged1 protein enhances the differentiation of mesenchymal stem cells into cardiomyocytes. Biochem Biophys Res Commun 2006; 341:320-5. [PMID: 16413496 DOI: 10.1016/j.bbrc.2005.12.182] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Accepted: 12/24/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) can differentiate into cardiomyocytes if an appropriate cellular environment is provided. Notch signals exchanged between neighboring cells through the Notch receptor can eventually dictate cell differentiation. In our study, we show that MSC differentiation into cardiomyocytes is dependent on the Notch signal. METHODS We created a myocardial infarction model in rat by coronary ligation, administered direct intramyocardial injection of DAPI-labeled MSC immediately, and observed the differentiation of MSCs after 14 days by immunofluorescence staining against troponin T. We cultured MSCs and cardiomyocytes in four ways, respectively, in vitro. (1) MSCs cocultured with cardiomyocytes obtained from neonatal rat ventricles in a ratio of 1:10. (2) The two types of cells were cultured in two chambers separated by a semipermeable membrane as indirect coculture group. (3) Notch receptor-soluble jagged1 protein was added to indirect coculture group. (4) Both jagged1 protein and gamma-secretase inhibitor-DAPT were added to indirect coculture group. Two weeks later, we observed the differentiation percentage, respectively, by immunofluorescence staining. RESULTS We found the differentiation of MSCs which were close to cardiomyocytes in vivo. The differentiation percentage of the four cell culture group was 30.13+/-2.16%, 12.52+/-1.18%, 26.33+/-2.20%, and 13.08+/-1.15%. CONCLUSIONS MSCs can differentiate into cardiomyocytes in vitro and in vivo if a cardiomyocyte microenvironment is provided. 2. Cell-to-cell interaction is very important for the differentiation of MSCs into cardiomyocytes. 3. Jagged1 protein can activate Notch signal and enhance the differentiation of MSC into cardiomyocyte, while the effect can be inhibited by DAPT.
Collapse
Affiliation(s)
- Houwei Li
- Department of Cardiology, The Second Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
| | | | | | | | | | | |
Collapse
|
42
|
Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M. Underlying mechanism of hypoxic preconditioning decreasing apoptosis induced by anoxia in cultured hippocampal neurons. Neurosignals 2005; 14:109-16. [PMID: 16088225 DOI: 10.1159/000086293] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 01/06/2005] [Indexed: 11/19/2022] Open
Abstract
It is known that hypoxic preconditioning (HP, a brief period of sublethal hypoxia) provides neuroprotection against subsequent severe anoxia, but the mechanisms of this increased tolerance have not been fully elucidated. A hypoxic preconditioning model was established by exposing a 4-day hippocampal culture to 1% O(2) for 20 min/day for 8 days. The preconditioning significantly decreased the number of apoptotic neurons at reoxygenation 24 h after 4 h of severe anoxia (0% O(2)). Further study demonstrated that the degradation of mitochondrial membrane potential (MMP) was greatly inhibited and the expression of B-cell lymphoma protein-2 (Bcl-2) was increased considerably after severe anoxia in the HP groups. These results indicate that the increased anoxic tolerance, which is induced by HP in cultured hippocampal cells, may be correlated with Bcl-2 overexpression and enhanced stability of MMP, which ultimately reduces apoptosis 24 h after reoxygenation.
Collapse
Affiliation(s)
- Li-ying Wu
- Department of Neurobiology, Institute of Basic Medical Sciences, Beijing, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Zhuo ML, Huang Y, Liu DP, Liang CC. KATP channel: relation with cell metabolism and role in the cardiovascular system. Int J Biochem Cell Biol 2005; 37:751-64. [PMID: 15694835 DOI: 10.1016/j.biocel.2004.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Indexed: 12/21/2022]
Abstract
ATP-sensitive potassium channel (K(ATP)) is one kind of inwardly rectifying channel composed of two kinds of subunits: the pore forming subunits and the regulatory subunits. K(ATP) channels exist in the sarcolemmal, mitochondrial and nuclear membranes of various tissues. Cell metabolism regulates K(ATP) gene expression and metabolism products regulate the channel by direct interactions, while K(ATP) controls membrane potentials and regulate cell activities including energy metabolism, apoptosis and gene expression. K(ATP) channels from different cell organelles are linked by some signal molecules and they can respond to common stimulation in a coordinate way. In the cardiovascular system K(ATP) has important functions. The most prominent is that opening of this channel can protect cardiac myocytes against ischemic injuries. The sarcolemmal K(ATP) may provide a basic protection against ischemia by energy sparing, while both the sarcolemmal K(ATP) and mitochondrial K(ATP) channels are necessary for the ischemia preconditioning. K(ATP) channels also have important functions including homeostasis maintenance and vascular tone regulation under physiological conditions. Further elucidation of the role of K(ATP) in the cardiovascular system will help us to regulate cell metabolism or prevent damage caused by abnormal channel functions.
Collapse
Affiliation(s)
- Ming-Lei Zhuo
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Dong Dan San Tiao 5, Beijing 100005, PR China
| | | | | | | |
Collapse
|
44
|
Jiang KW, Yu ZS, Shui QX, Xia ZZ. Activation of ATP-sensitive potassium channels prevents the cleavage of cytosolic mu-calpain and abrogates the elevation of nuclear c-Fos and c-Jun expressions after hypoxic-ischemia in neonatal rat brain. ACTA ACUST UNITED AC 2005; 133:87-94. [PMID: 15661368 DOI: 10.1016/j.molbrainres.2004.09.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2004] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to determine whether activation of ATP-sensitive K+ (KATP) channels with diazoxide (DIZ) is able to prevent the cleavage of cytosolic mu-calpain and abrogate the elevation of nuclear c-Fos and c-Jun protein (c-Fos, c-Jun) expressions after hypoxic-ischemia (HI) in brain. The model of hypoxic-ischemic brain injury (HIBI) was made in the 7-day-old Sprague-Dawley (SD) rats by left carotid arterial ligation and hypoxia (8% oxygen). DIZ was injected into the left lateral ventricle (5 microl, 1 mg/ml) before or post-hypoxic-ischemia (HI) insults. Western blot and computer image processing were used to detect the integrated density of nuclear c-Fos and c-Jun at 4 h and cleavage of cytosolic mu-calpain at 24 h after HI insults from cerebral cortical and hippocampal samples. Compared with HI controls (c-Fos=30.37+/-7.39 from cortical samples, 58.61+/-3.64 from hippocampal samples; c-Jun=52.48+/-14.23 from cortical samples, 35.55+/-4.73 from hippocampal samples), there was a significant down-regulation of c-Fos and c-Jun expressions from cortical and hippocampal samples in rats treated with DIZ before (c-Fos=11.10+/-4.64 from cortical samples, 4.82+/-3.38 from hippocampal samples; c-Jun=19.01+/-5.29 from cortical samples, 35.55+/-4.73 from hippocampal samples) or post- (c-Fos=18.81+/-7.93 from cortical samples, 11.33+/-7.05 from hippocampal samples; c-Jun=24.64+/-10.01 from cortical samples, 19.75+/-3.47 from hippocampal samples) HI insults. Furthermore, the ratio of 76 kD/80 kD of mu-calpain was down-regulated from cortical and hippocampal samples in rats treated with DIZ before or post-HI insults, demonstrating a significant difference compared with that observed in HI controls. Finally, the increase in DNA fragments caused by the HI injury was decreased or eliminated by the treatment with DIZ. These data suggests that activation of KATP channels by DIZ reduces the degree of mu-calpain proteolysis, and c-Fos and c-Jun expressions in immature brain may contribute to the neuroprotection of K(ATP) channel openers against HIBI.
Collapse
Affiliation(s)
- Ke-Wen Jiang
- Department of Neurology, Children's Hospital School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | |
Collapse
|
45
|
Suzuki T, Moraes TJ, Vachon E, Ginzberg HH, Huang TT, Matthay MA, Hollenberg MD, Marshall J, McCulloch CAG, Abreu MTH, Chow CW, Downey GP. Proteinase-activated receptor-1 mediates elastase-induced apoptosis of human lung epithelial cells. Am J Respir Cell Mol Biol 2005; 33:231-47. [PMID: 15891109 PMCID: PMC2715314 DOI: 10.1165/rcmb.2005-0109oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Apoptosis of distal lung epithelial cells plays a pivotal role in the pathogenesis of acute lung injury. In this context, proteinases, either circulating or leukocyte-derived, may contribute to epithelial apoptosis and lung injury. We hypothesized that apoptosis of lung epithelial cells induced by leukocyte elastase is mediated via the proteinase activated receptor (PAR)-1. Leukocyte elastase, thrombin, and PAR-1-activating peptide, but not the control peptide, induced apoptosis in human airway and alveolar epithelial cells as assessed by increases in cytoplasmic histone-associated DNA fragments and TUNEL staining. These effects were largely prevented by a specific PAR-1 antagonist and by short interfering RNA directed against PAR-1. To ascertain the mechanism of epithelial apoptosis, we determined that PAR-1AP, thrombin, and leukocyte elastase dissipated mitochondrial membrane potential, induced translocation of cytochrome c to the cytosol, enhanced cleavage of caspase-9 and caspase-3, and led to JNK activation and Akt inhibition. In concert, these observations provide strong evidence that leukocyte elastase mediates apoptosis of human lung epithelial cells through PAR-1-dependent modulation of the intrinsic apoptotic pathway via alterations in mitochondrial permeability and by modulation of JNK and Akt.
Collapse
Affiliation(s)
- Tomoko Suzuki
- Division of Respirology, Department of Medicine, University of Toronto and Toronto General Hospital Research Institute, 1 King's College Circle, Toronto, Ontario, M5S 1A8 Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Haider HK, Ahmad N, Ashraf M. Mechanisms by which KATP channel openers produce acute and delayed cardioprotection. Vascul Pharmacol 2005; 42:253-64. [PMID: 15922258 DOI: 10.1016/j.vph.2005.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Mitochondria are being increasingly studied for their critical role in cell survival. Multiple diverse signaling pathways have been shown to converge on the K+-sensitive ATP channels as the effectors of cytoprotection against necrosis and apoptosis. The role of potassium channel openers in regulation and transformation of cell membrane excitability, action potential and electrolyte transfer has been extensively studied. Cardiac mitoK(ATP) channels are the key effectors in cardioprotection during ischemic preconditioning, as yet with an undefined mechanism. They have been hypothesized to couple myocardial metabolism with membrane electrical activity and provide an excellent target for drug therapy. A number of K(ATP) channel openers have been characterized for their beneficial effects on the myocardium against ischemic injury. This review updates recent progress in understanding the physiological role of K(ATP) channels in cardiac protection induced by preconditioning and highlights relevant questions and controversies in the light of published data.
Collapse
Affiliation(s)
- Yigang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267-0529, USA
| | | | | | | |
Collapse
|
47
|
Park JW, Qi WN, Cai Y, Zelko I, Liu JQ, Chen LE, Urbaniak JR, Folz RJ. Skeletal muscle reperfusion injury is enhanced in extracellular superoxide dismutase knockout mouse. Am J Physiol Heart Circ Physiol 2005; 289:H181-7. [PMID: 15778274 DOI: 10.1152/ajpheart.00458.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigates the role of extracellular SOD (EC-SOD), the major extracellular antioxidant enzyme, in skeletal muscle ischemia and reperfusion (I/R) injury. Pedicled cremaster muscle flaps from homozygous EC-SOD knockout (EC-SOD-/-) and wild-type (WT) mice were subjected to 4.5-h ischemia and 90-min reperfusion followed by functional and molecular analyses. Our results revealed that EC-SOD-/- mice showed significantly profound I/R injury compared with WT littermates. In particular, there was a delayed and incomplete recovery of arterial spasm and blood flow during reperfusion, and more severe acute inflammatory reaction and muscle damage were noted in EC-SOD-/- mice. After 90-min reperfusion, intracellular SOD [copper- and zinc-containing SOD (CuZn-SOD) and manganese-containing (Mn-SOD)] mRNA levels decreased similarly in both groups. EC-SOD mRNA levels increased in WT mice, whereas EC-SOD mRNA was undetectable, as expected, in EC-SOD-/- mice. In both groups of animals, CuZn-SOD protein levels decreased and Mn-SOD protein levels remained unchanged. EC-SOD protein levels decreased in WT mice. Histological analysis showed diffuse edema and inflammation around muscle fibers, which was more pronounced in EC-SOD-/- mice. In conclusion, our data suggest that EC-SOD plays an important role in the protection from skeletal muscle I/R injury caused by excessive generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jong Woong Park
- Department of Orthopaedic Surgery, College of Medicine, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Marín-García J. Cellular and molecular events in ischemic preconditioning: potential therapeutic applications in cardioprotection. Future Cardiol 2005; 1:111-22. [DOI: 10.1517/14796678.1.1.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Cardioprotection is a mechanism of guarding the heart from damage secondary to different insults including ischaemia, ischaemia/reperfusion, chemical, metabolic and physical stressors. Ischemic preconditioning, by single or multiple brief periods of ischaemia, protects the heart against a more prolonged ischemic insult (index ischaemia). Understanding the cellular, molecular and biochemical events occurring in cardioprotection will allow the development of new interventions to improve the outcome of patients with myocardial diseases. Most of the present experience with cardioprotection has been obtained from studies in young and middle-aged animals, and cells. In the future, cardioprotection research should be carried out mainly in the aging or senescent heart since this will be most relevant to humans. With aging, the heart has a decreased capacity to tolerate and respond to various forms of stress, and the likelihood of myocardial ischaemia and cardiac dysfunction increases.
Collapse
Affiliation(s)
- José Marín-García
- RWJ. Medical School, Department of Physiology & Biophysics, The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Ave., Highland Park, NJ 08904, USATel.: Fax:
| |
Collapse
|
49
|
Xu M, Wani M, Dai YS, Wang J, Yan M, Ayub A, Ashraf M. Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes. Circulation 2004; 110:2658-65. [PMID: 15492307 DOI: 10.1161/01.cir.0000145609.20435.36] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) have the potential to differentiate into various cells and can transdifferentiate into myocytes if an appropriate cellular environment is provided. However, the molecular signals that underlie this process are not fully understood. In this study, we show that BMSC differentiation is dependent on communication with cells in their microenvironment. METHODS AND RESULTS BMSCs were isolated from green fluorescent protein (GFP)-transgenic mice and cocultured with myocytes in a ratio of 1:40. Myocytes were obtained from neonatal rat ventricles. The differentiation of BMSCs in coculture was confirmed by immunohistochemistry, electron microscopy, and reverse transcription-polymerase chain reaction. Before coculturing, the BMSCs were negative for alpha-actinin and exhibited a nucleus with many nucleoli. After 7-day coculture with myocytes, some BMSCs became alpha-actinin-positive and formed gap junctions with native myocytes. However, BMSCs separated from myocytes by a semipermeable membrane were still negative for alpha-actinin. Transdifferentiated myocytes from BMSCs were microdissected from cocultures by laser captured microdissection to determine the changes in gene expression. BMSCs cocultured with myocytes expressed mouse cardiac transcription factor GATA-4. CONCLUSIONS When cocultured with myocytes, BMSCs can transdifferentiate into cells with a cardiac phenotype. Differentiated myocytes express cardiac transcription factors GATA-4 and myocyte enhancer factor-2. The transdifferentiation processes rely on intercellular communication of BMSCs with myocytes.
Collapse
Affiliation(s)
- Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
BACKGROUND There is increasing evidence documenting the capacity of myocardial cells exposed to a variety of insults to mount a cardioprotective response. Although this cardioprotection has been most well characterized with respect to ischemic preconditioning, other chemical and metabolic stressors have been shown to share features of the ischemic preconditioning model, including the involvement of mitochondria in the triggering, signaling, and mediation of the cardioprotective response. METHODS In this article, we review the evidence showing that mitochondria play a critical role in cardioprotection from multiple (often interrelated) standpoints: its primary function in producing the cellular bioenergetic supply, its control over events in apoptosis, its contribution to myocardial signal transducing processes, and its role in producing reactive oxidative species and in providing an appropriate antioxidant response to a variety of cellular insults. CONCLUSIONS Although our understanding of cytoprotection has increased substantially within the last few years, the mechanisms mediating mitochondrial resistance to insults leading to cardiac protection remain to be fully delineated, and represents a significant approach in the clinical treatment of heart disease.
Collapse
Affiliation(s)
- José Marín-García
- Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ 08904, USA
| | | |
Collapse
|