1
|
González IM, Martin PM, Burdsal C, Sloan JL, Mager S, Harris T, Sutherland AE. Leucine and arginine regulate trophoblast motility through mTOR-dependent and independent pathways in the preimplantation mouse embryo. Dev Biol 2011; 361:286-300. [PMID: 22056783 DOI: 10.1016/j.ydbio.2011.10.021] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 01/06/2023]
Abstract
Uterine implantation is a critical element of mammalian reproduction and is a tightly and highly coordinated event. An intricate and reciprocal uterine-embryo dialog exists to synchronize uterine receptivity with the concomitant activation of the blastocyst, maximizing implantation success. While a number of pathways involved in regulating uterine receptivity have been identified in the mouse, less is understood about blastocyst activation, the process by which the trophectoderm (TE) receives extrinsic cues that initiate new characteristics essential for implantation. Amino acids (AA) have been found to regulate blastocyst activation and TE motility in vitro. In particular, we find that arginine and leucine alone are necessary and sufficient to induce TE motility. Both arginine and leucine act individually and additively to propagate signals that are dependent on the activity of the mammalian target of rapamycin complex 1 (mTORC1). The activities of the well-established downstream targets of mTORC1, p70S6K and 4EBP, do not correlate with trophoblast motility, suggesting that an independent-rapamycin-sensitive pathway operates to induce trophoblast motility, or that other, parallel amino acid-dependent pathways are also involved. We find that endogenous uterine factors act to induce mTORC1 activation and trophoblast motility at a specific time during pregnancy, and that this uterine signal is later than the previously defined signal that induces the attachment reaction. In vivo matured blastocysts exhibit competence to respond to an 8-hour AA stimulus by activating mTOR and subsequently undergoing trophoblast outgrowth by the morning of day 4.5 of pregnancy, but not on day 3.5. By the late afternoon of day 4.5, the embryos no longer require any exposure to AA to undergo trophoblast outgrowth in vitro, demonstrating the existence and timing of an equivalent in vivo signal. These results suggest that there are two separate uterine signals regulating implantation, one that primes the embryo for the attachment reaction and another that activates mTOR and initiates invasive behavior.
Collapse
Affiliation(s)
- Isabel M González
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22901, USA.
| | | | | | | | | | | | | |
Collapse
|
2
|
Samuels SE, Lipitz JB, Dahl G, Muller KJ. Neuroglial ATP release through innexin channels controls microglial cell movement to a nerve injury. ACTA ACUST UNITED AC 2011; 136:425-42. [PMID: 20876360 PMCID: PMC2947054 DOI: 10.1085/jgp.201010476] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Microglia, the immune cells of the central nervous system, are attracted to sites of injury. The injury releases adenosine triphosphate (ATP) into the extracellular space, activating the microglia, but the full mechanism of release is not known. In glial cells, a family of physiologically regulated unpaired gap junction channels called innexons (invertebrates) or pannexons (vertebrates) located in the cell membrane is permeable to ATP. Innexons, but not pannexons, also pair to make gap junctions. Glial calcium waves, triggered by injury or mechanical stimulation, open pannexon/innexon channels and cause the release of ATP. It has been hypothesized that a glial calcium wave that triggers the release of ATP causes rapid microglial migration to distant lesions. In the present study in the leech, in which a single giant glial cell ensheathes each connective, hydrolysis of ATP with 10 U/ml apyrase or block of innexons with 10 µM carbenoxolone (CBX), which decreased injury-induced ATP release, reduced both movement of microglia and their accumulation at lesions. Directed movement and accumulation were restored in CBX by adding ATP, consistent with separate actions of ATP and nitric oxide, which is required for directed movement but does not activate glia. Injection of glia with innexin2 (Hminx2) RNAi inhibited release of carboxyfluorescein dye and microglial migration, whereas injection of innexin1 (Hminx1) RNAi did not when measured 2 days after injection, indicating that glial cells’ ATP release through innexons was required for microglial migration after nerve injury. Focal stimulation either mechanically or with ATP generated a calcium wave in the glial cell; injury caused a large, persistent intracellular calcium response. Neither the calcium wave nor the persistent response required ATP or its release. Thus, in the leech, innexin membrane channels releasing ATP from glia are required for migration and accumulation of microglia after nerve injury.
Collapse
Affiliation(s)
- Stuart E Samuels
- Neuroscience Program, University of Miami School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
3
|
Pu Q, Zhuang D, Thakran S, Hassid A. Mechanisms related to NO-induced motility in differentiated rat aortic smooth muscle cells. Am J Physiol Heart Circ Physiol 2010; 300:H101-8. [PMID: 21037226 DOI: 10.1152/ajpheart.00342.2010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is thought to play an important role as an inhibitor of vascular cell proliferation, motility, and neointima formation. This effect is mediated, in part, via the upregulation of protein tyrosine phosphatase (PTP)1B. Conversely, studies have reported that in presumably hyperinsulinemic mice fed a high-fat diet, NO enhances vascular remodeling, whereas a deficit of NO attenuates vascular remodeling. We have reported that in differentiated cultured smooth muscle cells treated with insulin, NO induces a motogenic effect that is dependent on Src homology-2 domain PTP 2 (SHP2) upregulation. In the present study, we describe novel mechanisms relevant to the motogenic effect of NO. Treatment of cultured cells with the selective angiontensin type 1 receptor antagonist losartan, but not with the selective angiotensin type 2 receptor antagonist PD-123319, blocked the comotogenic capacity of NO and insulin. Insulin and NO increased the secretion of ANG II into the culture media by 2- and 2.5-fold (P < 0.05), respectively, whereas treatment of cells with ANG II uncovered the motogenic effect of NO (1.4-fold above control, P < 0.05) and decreased the levels of PTP1B to 45% of control (P < 0.05). Suppression of PTP1B function was sufficient to uncover the motogenic effect of NO. The capacity of insulin to suppress PTP1B activity was blocked by losartan, implicating ANG II function in mediating this effect. Both insulin and ANG II induced the upregulation of phosphatidyl inositol 3-kinase (PI3K)-δ by two- to threefold (P < 0.05), and this effect was both necessary and sufficient to uncover NO-induced motogenesis. Finally, suppression of PTP1B function potentiated, whereas overexpression of PTP1B inhibited, SHP2-induced motogenesis. These results support the hypothesis that the comotogenic effect of insulin and NO occurs via an ANG II-mediated effect involving the suppression of PTP1B and upregulation of PI3K-δ and SHP2.
Collapse
Affiliation(s)
- Qinghua Pu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
4
|
Defawe OD, Kim S, Chen L, Huang D, Kenagy RD, Renné T, Walter U, Daum G, Clowes AW. VASP phosphorylation at serine239 regulates the effects of NO on smooth muscle cell invasion and contraction of collagen. J Cell Physiol 2009; 222:230-7. [PMID: 19798690 DOI: 10.1002/jcp.21942] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nitric oxide triggers cGMP-dependent kinase-mediated phosphorylation of the actin regulator vasodilator-stimulated phosphoprotein (VASP) at residue serine239. The function of this phosphorylation for smooth muscle cell (SMC) adhesion, spreading, matrix contraction, and invasion is not well understood. We reconstituted VASP deficient SMC with wild-type VASP (wt-VASP) or VASP mutants that mimic "locked" serine239 phosphorylation (S239D-VASP) or "blocked" serine239 phosphorylation (S239A-VASP). Collagen gel contraction was reduced in S239D-VASP compared to S239A-VASP and wt-VASP expressing cells and nitric oxide (NO) stimulation decreased gel contraction of wt-VASP reconstituted SMC. Invasion of collagen was enhanced in S239D-VASP and NO-stimulated wild-type SMCs compared to S239A-VASP expressing cells. Expression of S239D-VASP impaired SMC attachment to collagen, reduced the number of membrane protrusions, and caused cell rounding compared to expression of S239A-VASP. Treatment of wt-VASP reconstituted SMCs with NO exerted similar effects as expression of S239D-VASP. As unstimulated cells were spreading on collagen S239A-VASP and wt-VASP localized to actin fibers whereas S239D-VASP was enriched in the cytosol. NO interferes with SMC invasion and contraction of collagen matrices. This requires phosphorylation of VASP on serine239, which reduces VASP binding to actin fibers. These findings support the conclusion that VASP phosphorylation at serine239 regulates cytoskeleton remodeling.
Collapse
Affiliation(s)
- Olivier D Defawe
- Department of Surgery, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Barvitenko NN, Adragna NC, Weber RE. Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance. Cell Physiol Biochem 2005; 15:1-18. [PMID: 15665511 DOI: 10.1159/000083634] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2004] [Indexed: 11/19/2022] Open
Abstract
Erythrocytes play a key role in human and vertebrate metabolism. Tissue O2 supply is regulated by both hemoglobin (Hb)-O2 affinity and erythrocyte rheology, a key determinant of tissue perfusion. Oxygenation-deoxygenation transitions of Hb may lead to re-organization of the cytoskeleton and signalling pathways activation/deactivation in an O2-dependent manner. Deoxygenated Hb binds to the cytoplasmic domain of the anion exchanger band 3, which is anchored to the cytoskeleton, and is considered a major mechanism underlying the oxygenation-dependence of several erythrocyte functions. This work discusses the multiple modes of Hb-cytoskeleton interactions. In addition, it reviews the effects of Mg2+, 2,3-diphosphoglycerate, NO, shear stress and Ca2+, all factors accompanying the oxygenation-deoxygenation cycle in circulating red cells. Due to the extensive literature on the subject, the data discussed here, pertain mainly to human erythrocytes whose O2 affinity is modulated by 2,3-diphosphoglycerate, ectothermic vertebrate erythrocytes that use ATP, and to bird erythrocytes that use inositol pentaphosphate.
Collapse
Affiliation(s)
- Nadezhda N Barvitenko
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg
| | | | | |
Collapse
|
6
|
Duan Y, Haugabook SJ, Sahley CL, Muller KJ. Methylene blue blocks cGMP production and disrupts directed migration of microglia to nerve lesions in the leech CNS. ACTA ACUST UNITED AC 2003; 57:183-92. [PMID: 14556284 DOI: 10.1002/neu.10262] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Migration and accumulation of microglial cells at sites of injury are important for nerve repair. Recent studies on the leech central nervous system (CNS), in which synapse regeneration is successful, have shown that nitric oxide (NO) generated immediately after injury by endothelial nitric oxide synthase (eNOS) stops migrating microglia at the lesion. The present study obtained results indicating that NO may act earlier, on microglia migration, and aimed to determine mechanisms underlying NO's effects. Injury induced cGMP immunoreactivity at the lesion in a pattern similar to that of eNOS activity, immunoreactivity, and microglial cell accumulation, which were all focused there. The soluble guanylate cyclase (sGC) inhibitor methylene blue (MB) at 60 microM abolished cGMP immunoreactivity at lesions and blocked microglial cell migration and accumulation without interfering with axon conduction. Time-lapse video microscopy of microglia in living nerve cords showed MB did not reduce cell movement but reduced directed movement, with significantly more cells moving away from the lesion or reversing direction and fewer cells moving toward the lesion. The results indicate a new role for NO, directing the microglial cell migration as well as stopping it, and show that NO's action may be mediated by cGMP.
Collapse
Affiliation(s)
- Yuanli Duan
- Department of Physiology and Biophysics (R-430), University of Miami School of Medicine, 1600 NW 10th Avenue, Miami, Florida 33136, USA.
| | | | | | | |
Collapse
|
7
|
Dixit M, Zhuang D, Ceacareanu B, Hassid A. Treatment With Insulin Uncovers the Motogenic Capacity of Nitric Oxide in Aortic Smooth Muscle Cells. Circ Res 2003; 93:e113-23. [PMID: 14551245 DOI: 10.1161/01.res.0000100391.98425.bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Contrary to the antimotogenic effect of NO in dedifferentiated vascular smooth muscle cells (VSMCs), we have reported that NO stimulates the motility of differentiated cultured VSMC isolated from adult rats. This process involves upregulation of protein tyrosine phosphatase SHP2, followed by downregulation of RhoA activity. In the present study, we tested the hypothesis that insulin alters the motogenic phenotype of cultured rat aortic smooth muscle cells exposed to NO from inhibition to stimulation of cell motility. We demonstrate for the first time that NO stimulates the motility of VSMCs cultured for several days in the presence but not the absence of insulin. Moreover, we show that NO blocks PDGF-induced cell motility in insulin-naive but not in insulin-treated cells. We also demonstrate that the scaffold adapter protein Gab1, considered a physiological activator of protein tyrosine phosphatase SHP2, increases cell motility in the presence but not the absence of insulin. In cells cultured in the presence of insulin, overexpression of Gab1 mimics, whereas a dominant-negative allele of Gab1 (Gab1YF) blocks, the motility-stimulatory effect of NO. Cotransfection experiments with dominant-negative Gab1 and wild-type SHP2 or wild-type Gab1 and dominant-negative SHP2 indicate that the two proteins work together as a functional unit to induce motility. Because chronic insulin can increase the levels of phosphatidylinositol 3 (PI3) kinase in several models of hyperinsulinemia, we also tested the potential involvement of this enzyme in mechanisms leading to increased cell motility. We found that the motogenic effect of NO, Gab1, and SHP2 was blocked by the selective PI3 kinase inhibitor LY294002, suggesting a requirement of PI3 kinase in mediating motogenesis. These observations may be relevant to molecular mechanisms related to the pathogenesis of vascular disease in hyperinsulinemic diabetes. The full text of this article is available online at http://www.circresaha.org.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Cell Movement/drug effects
- Cell Movement/physiology
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Genes, Dominant
- Insulin/pharmacology
- Intracellular Signaling Peptides and Proteins
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/metabolism
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Rats, Sprague-Dawley
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Madhulika Dixit
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tenn, USA
| | | | | | | |
Collapse
|
8
|
Abstract
Mouse blastocyst outgrowth in vitro and probably implantation in vivo require amino acid signaling via the target of rapamycin (TOR) pathway. This signaling does not simply support protein synthesis and trophoblast differentiation. Rather, it regulates development of trophoblast protrusive activity and may act as a developmental checkpoint for implantation. Moreover, intracellular amino acids per se are insufficient to elicit TOR signaling. Instead, de novo transport of amino acids, and particularly of leucine, stimulate mTOR activity at the blastocyst stage. The activity of the broad-scope and yet leucine-selective amino acid transport system B0,+ could produce such increases in intracellular amino acid concentrations. For example, system B0,+ uses a Na+ gradient to drive amino acid uptake, and the Na+ concentration in uterine secretions increases by nearly two-fold about 18 h before implantation. The resultant mTOR signaling could trigger polyamine, insulin-like growth factor II, and nitric oxide production in blastocysts and the increased cell motility sometimes associated with synthesis of these bioactive molecules.
Collapse
Affiliation(s)
- Patrick M Martin
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | | | | |
Collapse
|
9
|
Lin Y, Ceacareanu AC, Hassid A. Nitric oxide-induced inhibition of aortic smooth muscle cell motility: role of PTP-PEST and adaptor proteins p130cas and Crk. Am J Physiol Heart Circ Physiol 2003; 285:H710-21. [PMID: 12714323 DOI: 10.1152/ajpheart.01127.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Vascular injury increases nitric oxide (NO) levels, and this effect may play a counterregulatory role in neointima formation, by decreasing vascular smooth muscle cell motility. However, the mechanisms underlying this effect are not well established. We tested the hypothesis that NO decreases cell motility by increasing the activity of a protein tyrosine phosphatase (PTP), PTP-PEST, in cultured rat aortic smooth muscle cells. Two NO donors increased the activity of PTP-PEST. A cGMP analog mimicked the effect of NO, whereas a guanyl cyclase inhibitor blocked it, indicating that elevated cGMP is both necessary and sufficient to induce PTP-PEST activity. Overexpression of wild-type PTP-PEST induced antimotogenesis, whereas expression of dominant negative PTP-PEST blocked the antimotogenic effect of NO, indicating that increased PTP-PEST activity is both sufficient and necessary to explain the effect of NO. Overexpression of PTP-PEST mimicked NO-induced dephosphorylation of adapter protein p130cas, whereas dominant negative PTP-PEST blocked the effect of NO, indicating that upregulation of PTP-PEST is both necessary and sufficient to explain NO-induced p130cas dephosphorylation. Expression of a substrate domain-deleted p130cas decreased motogenesis, whereas overexpression of wild-type p130cas blocked the antimotogenic effect of NO, indicating the functional importance of p130cas dephosphorylation. NO induced dissociation of the Cas-Crk complex, an effect that was mimicked by overexpression of PTP-PEST and opposed by expression of dominant negative PTP-PEST. Our results indicate that NO decreases aortic smooth muscle cell motility via a cGMP-mediated mechanism, involving upregulation of PTP-PEST, in turn inducing dephosphorylation of p130cas, and likely involving Cas-Crk dissociation as a downstream event.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aorta, Thoracic/cytology
- Cell Movement/physiology
- Cells, Cultured
- Crk-Associated Substrate Protein
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/metabolism
- Cyclic GMP/pharmacology
- Cytoskeletal Proteins/metabolism
- Enzyme Activation/drug effects
- Female
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- Gene Expression Regulation, Enzymologic
- Guanylate Cyclase/antagonists & inhibitors
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Mutagenesis
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Paxillin
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Phosphoproteins/metabolism
- Phosphotyrosine/metabolism
- Platelet Aggregation Inhibitors/pharmacology
- Precipitin Tests
- Protein Structure, Tertiary
- Protein Tyrosine Phosphatase, Non-Receptor Type 12
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/metabolism
- Proteins
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-crk
- Rats
- Rats, Sprague-Dawley
- Retinoblastoma-Like Protein p130
- Thionucleotides/pharmacology
- Triazenes/pharmacology
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology and Vascular Biology Center, University of Tennesee, 894 Union Avenue, Memphis, TN 38163, USA
| | | | | |
Collapse
|
10
|
Huwiler A, Pfeilschifter J. Nitric Oxide Signalling with a Special Focus on Lipid-Derived Mediators. Biol Chem 2003; 384:1379-89. [PMID: 14669981 DOI: 10.1515/bc.2003.154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The ways in which cells communicate among each other concerns all aspects of biology, from developmental processes to diseases. Nitric oxide (NO) is one of the most remarkable and unusual regulatory molecules. It is a labile free radical gas that is not stored but generated on demand, and has been implicated in an extraordinarily diverse range of physiological and pathophysiological functions. The modulation of cell signalling by free radicals is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing microenvironment. In a multicellular organism this serves to coordinate complex physiological responses, such as inflammation. Cell signalling is also accompanied by rapid remodelling of membrane lipids by activated lipases. The discovery that NO, which does not reversibly interact with membrane receptors like conventional hormones and growth factors, targets enzymes such as phospholipase A2, sphingomyelinases or ceramidases, has stimulated growing interest in the crosstalk between redox and lipid signalling.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
11
|
Chang Y, Ceacareanu B, Dixit M, Sreejayan N, Hassid A. Nitric oxide-induced motility in aortic smooth muscle cells: role of protein tyrosine phosphatase SHP-2 and GTP-binding protein Rho. Circ Res 2002; 91:390-7. [PMID: 12215487 DOI: 10.1161/01.res.0000033524.92083.64] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have previously reported that SHP-2 upregulation is necessary for NO-stimulated motility in differentiated rat aortic smooth muscle cells. We now test the hypothesis that upregulation of SHP-2 is necessary and sufficient to stimulate cell motility. Overexpression of SHP-2 via recombinant adenoviral vector stimulated motility to the same extent as NO, whereas the expression of C463S-SHP-2, the dominant-negative SHP-2 allele, blocked the motogenic effect of NO. On the basis of previous studies, we next tested the hypothesis that NO decreases RhoA activity and that this event is necessary and sufficient to explain NO-induced motogenesis. We found that NO decreased RhoA activity in a concentration-dependent manner. Moreover, a dominant-negative SHP-2 allele, DSH2, blocked the NO-induced inhibition of RhoA activity, indicating that upregulation of SHP-2 is necessary for this event. Expression of G14V-RhoA, the constitutively active RhoA allele, decreased cell motility and blocked the motogenic effect of NO, whereas the expression of T19N-RhoA, the dominant-negative RhoA allele, increased cell motility to an extent similar to that induced by NO. Dominant-negative RhoA reversed the effect of dominant-negative SHP-2, indicating that RhoA functions downstream from SHP-2. To investigate events downstream from RhoA, we treated cells with fasudil, a selective Rho kinase inhibitor, and found that it increased cell motility. These results indicate that upregulation of SHP-2, leading to downregulation of RhoA, which is followed by decreased Rho kinase activity, is a sequence of events necessary and sufficient to explain NO-induced cell motility in differentiated aortic smooth muscle cells. The results may be of relevance to in vivo events such as neointimal formation, angiogenesis, and vasculogenesis.
Collapse
MESH Headings
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/analogs & derivatives
- 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Dose-Response Relationship, Drug
- Enzyme Inhibitors/pharmacology
- Genetic Vectors/genetics
- Intracellular Signaling Peptides and Proteins
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Mutation
- Nitric Oxide/physiology
- Nitric Oxide Donors/pharmacology
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Peptide Fragments/pharmacology
- Phosphotyrosine/drug effects
- Phosphotyrosine/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/chemistry
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/metabolism
- Rats
- Rats, Sprague-Dawley
- rhoA GTP-Binding Protein/genetics
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Yingzi Chang
- Department of Physiology and Vascular Biology Center, University of Tennessee, Memphis 38163, USA
| | | | | | | | | |
Collapse
|
12
|
Sreejayan N, Lin Y, Hassid A. NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism. Arterioscler Thromb Vasc Biol 2002; 22:1086-92. [PMID: 12117721 DOI: 10.1161/01.atv.0000020550.65963.e9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Hyperinsulinemia is a significant risk factor for the pathogenesis of vascular disease. Protein tyrosine phosphatase 1B (PTP1B) has been recognized as a modulator of insulin signaling in nonvascular cells, and we have recently reported that NO increases the activity of PTP1B in rat vascular smooth muscle cells. In the present study, we tested the hypothesis that NO attenuates insulin-stimulated cell motility via a PTP1B-mediated mechanism involving downregulation of insulin signal transduction. METHODS AND RESULTS Treatment of primary aortic smooth muscle cells from newborn rats with the NO donor S-nitroso-N-acetylpenicillamine reduced cell motility, tyrosine phosphorylation levels of insulin receptor beta subunit and insulin receptor substrate-1, and extracellular signal-regulated kinase activity. Overexpression of wild-type PTP1B via an adenoviral vector blocked the capacity of insulin to stimulate cell motility and insulin receptor phosphorylation, whereas expression of a dominant-negative mutant of PTP1B attenuated the capacity of NO to decrease cell motility. CONCLUSIONS Our findings indicate that activation of PTP1B is necessary and sufficient to account for the capacity of NO to decrease insulin-stimulated signal transduction and cell motility in cultured aortic smooth muscle cells. The results could explain the capacity of NO to oppose neointima formation in states of hyperinsulinemia.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Aorta, Thoracic/cytology
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/enzymology
- Butadienes/pharmacology
- Cell Communication/drug effects
- Cell Communication/physiology
- Cell Movement/drug effects
- Cell Movement/genetics
- Cell Movement/physiology
- Cells, Cultured
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Female
- Insulin/metabolism
- Insulin/physiology
- Mitogen-Activated Protein Kinase 1/antagonists & inhibitors
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 1/physiology
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Mutation
- Nitric Oxide/antagonists & inhibitors
- Nitric Oxide/pharmacology
- Nitric Oxide Donors/pharmacology
- Nitriles/pharmacology
- Penicillamine/analogs & derivatives
- Penicillamine/pharmacology
- Phosphotyrosine/metabolism
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/physiology
- Protein Tyrosine Phosphatase, Non-Receptor Type 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 12
- Protein Tyrosine Phosphatases/antagonists & inhibitors
- Protein Tyrosine Phosphatases/deficiency
- Protein Tyrosine Phosphatases/genetics
- Protein Tyrosine Phosphatases/physiology
- Rats
- Rats, Sprague-Dawley
- Receptor, Insulin/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- src Homology Domains/drug effects
- src Homology Domains/physiology
Collapse
Affiliation(s)
- Nair Sreejayan
- Department of Physiology and Vascular Biology Center, University of Tennessee Health Science Center, Memphis 38163, USA
| | | | | |
Collapse
|