1
|
Chen F, Zhao J, Mo R, Ding X, Zhang Y, Huang L, Xie T, Ding Y. Genetic Variants in the Adhesive G Protein-Coupled Receptor ADGRG6 are Associated with Increased Susceptibility to COPD in the Elderly Han Chinese Population of Southern China. Int J Chron Obstruct Pulmon Dis 2024; 19:2599-2610. [PMID: 39650745 PMCID: PMC11624663 DOI: 10.2147/copd.s478095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/14/2024] [Indexed: 12/11/2024] Open
Abstract
Background Mutations in ADGRG6 are associated with a variety of cancers and multiple types of diseases. However, the impact of genetic variations in ADGRG6 on chronic obstructive pulmonary disease (COPD) susceptibility has not yet been evaluated. Methods Considering the high prevalence of COPD among the elderly population in China, this study specifically targets the elderly Han population in Southern China as the study subject. Following the acquisition of participants' whole-genome DNA, genotyping was conducted using the Agena MassARRAY platform. The online tool 'SNPStats', which utilizes logistic regression, was employed to analyze and assess the correlation. Multi-factor dimensionality reduction was utilized to clarify the impact of "SNP-SNP" interactions on COPD risk. The False-Positive Report Probability (FPRP) was applied to determine whether significant results are noteworthy findings. Results The mutant allele "C" of rs11155242 was a protective genetic factor against COPD susceptibility (OR = 0.57, 95% CI = 0.36 to 0.91, p = 0.017). The heterozygous mutant genotype "CA" of rs11155242 was found to be significantly associated with reduced COPD risk (CA Vs AA: OR = 0.53, 95% CI = 0.32 to 0.90, p = 0.018). ADGRG6-rs11155242 was found to be strongly associated with a reduced risk of COPD in males, non-smokers, and subjects with a BMI below 24 kg/m2 (OR < 1, p < 0.05). The FPRP analysis indicated that the positive results identified in this study are noteworthy new findings. Conclusion The mutant allele "C" and mutant genotype "CA" of rs11155242 act as protective genetic factors against COPD susceptibility. This study will provide a new research direction for the personalized prevention and treatment of COPD in the elderly Han population in southern China, and lay a potential scientific basis.
Collapse
Affiliation(s)
- Fei Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
- Department of General Practice, Bai Majing Town Central Health Center, Danzhou City, Hainan Province, People’s Republic of China
| | - Jie Zhao
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Rubing Mo
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Xiuxiu Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yue Zhang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Linhui Huang
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Tian Xie
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| | - Yipeng Ding
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University, Hainan General Hospital, Haikou City, Hainan Province, People’s Republic of China
| |
Collapse
|
2
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul A, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic networks and related genetic variants associated with smoking and chronic obstructive pulmonary disease. BMC Genomics 2024; 25:825. [PMID: 39223457 PMCID: PMC11370252 DOI: 10.1186/s12864-024-10619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. METHODS Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed a genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. RESULTS We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. CONCLUSIONS In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Weixuan Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Niles Gilmore
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Farnoush Banaei-Kashani
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO, USA
| | | | - Leslie A Lange
- Department of Biomedical Informatics, School of Medicine, University of Colorado - Anschutz Medical Campus, Aurora, CO, USA
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA.
| |
Collapse
|
3
|
Lin WD, Liao WL, Chen WC, Liu TY, Chen YC, Tsai FJ. Genome-wide association study identifies novel susceptible loci and evaluation of polygenic risk score for chronic obstructive pulmonary disease in a Taiwanese population. BMC Genomics 2024; 25:607. [PMID: 38886662 PMCID: PMC11184693 DOI: 10.1186/s12864-024-10526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) describes a group of progressive lung diseases causing breathing difficulties. While COPD development typically involves a complex interplay between genetic and environmental factors, genetics play a role in disease susceptibility. This study used genome-wide association studies (GWAS) and polygenic risk score (PRS) to elucidate the genetic basis for COPD in Taiwanese patients. RESULTS GWAS was performed on a Taiwanese COPD case-control cohort with a sample size of 5,442 cases and 17,681 controls. Additionally, the PRS was calculated and assessed in our target groups. GWAS results indicate that although there were no single nucleotide polymorphisms (SNPs) of genome-wide significance, prominent COPD susceptibility loci on or nearby genes such as WWTR1, EXT1, INTU, MAP3K7CL, MAMDC2, BZW1/CLK1, LINC01197, LINC01894, and CFAP95 (C9orf135) were identified, which had not been reported in previous studies. Thirteen susceptibility loci, such as CHRNA4, AFAP1, and DTWD1, previously reported in other populations were replicated and confirmed to be associated with COPD in Taiwanese populations. The PRS was determined in the target groups using the summary statistics from our base group, yielding an effective association with COPD (odds ratio [OR] 1.09, 95% confidence interval [CI] 1.02-1.17, p = 0.011). Furthermore, replication a previous lung function trait PRS model in our target group, showed a significant association of COPD susceptibility with PRS of Forced Expiratory Volume in one second (FEV1)/Forced Vital Capacity (FCV) (OR 0.89, 95% CI 0.83-0.95, p = 0.001). CONCLUSIONS Novel COPD-related genes were identified in the studied Taiwanese population. The PRS model, based on COPD or lung function traits, enables disease risk estimation and enhances prediction before suffering. These results offer new perspectives on the genetics of COPD and serve as a basis for future research.
Collapse
Affiliation(s)
- Wei-De Lin
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan
- School of Post Baccalaureate Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
| | - Wen-Ling Liao
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan
- Center for Personalized Medicine, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Wei-Cheng Chen
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, China Medical University Hospital, Taichung, 404333, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404327, Taiwan
| | - Ting-Yuan Liu
- Department of Medical Research, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Yu-Chia Chen
- Department of Medical Research, Million-Person Precision Medicine Initiative, China Medical University Hospital, Taichung, 404327, Taiwan
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung, 404327, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung, 404333, Taiwan.
- Division of Genetics and Metabolism, China Medical University Children's Hospital, Taichung, 404327, Taiwan.
- Department of Medical Genetics, China Medical University Hospital, Taichung, 404327, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, 413305, Taiwan.
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, North District, Taichung, 404327, Taiwan.
| |
Collapse
|
4
|
Konigsberg IR, Vu T, Liu W, Litkowski EM, Pratte KA, Vargas LB, Gilmore N, Abdel-Hafiz M, Manichaikul AW, Cho MH, Hersh CP, DeMeo DL, Banaei-Kashani F, Bowler RP, Lange LA, Kechris KJ. Proteomic Networks and Related Genetic Variants Associated with Smoking and Chronic Obstructive Pulmonary Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303069. [PMID: 38464285 PMCID: PMC10925350 DOI: 10.1101/2024.02.26.24303069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Studies have identified individual blood biomarkers associated with chronic obstructive pulmonary disease (COPD) and related phenotypes. However, complex diseases such as COPD typically involve changes in multiple molecules with interconnections that may not be captured when considering single molecular features. Methods Leveraging proteomic data from 3,173 COPDGene Non-Hispanic White (NHW) and African American (AA) participants, we applied sparse multiple canonical correlation network analysis (SmCCNet) to 4,776 proteins assayed on the SomaScan v4.0 platform to derive sparse networks of proteins associated with current vs. former smoking status, airflow obstruction, and emphysema quantitated from high-resolution computed tomography scans. We then used NetSHy, a dimension reduction technique leveraging network topology, to produce summary scores of each proteomic network, referred to as NetSHy scores. We next performed genome-wide association study (GWAS) to identify variants associated with the NetSHy scores, or network quantitative trait loci (nQTLs). Finally, we evaluated the replicability of the networks in an independent cohort, SPIROMICS. Results We identified networks of 13 to 104 proteins for each phenotype and exposure in NHW and AA, and the derived NetSHy scores significantly associated with the variable of interests. Networks included known (sRAGE, ALPP, MIP1) and novel molecules (CA10, CPB1, HIS3, PXDN) and interactions involved in COPD pathogenesis. We observed 7 nQTL loci associated with NetSHy scores, 4 of which remained after conditional analysis. Networks for smoking status and emphysema, but not airflow obstruction, demonstrated a high degree of replicability across race groups and cohorts. Conclusions In this work, we apply state-of-the-art molecular network generation and summarization approaches to proteomic data from COPDGene participants to uncover protein networks associated with COPD phenotypes. We further identify genetic associations with networks. This work discovers protein networks containing known and novel proteins and protein interactions associated with clinically relevant COPD phenotypes across race groups and cohorts.
Collapse
Affiliation(s)
- Iain R Konigsberg
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Thao Vu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Weixuan Liu
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Elizabeth M Litkowski
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
- Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Luciana B Vargas
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Niles Gilmore
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Mohamed Abdel-Hafiz
- Department of Computer Science and Engineering, University of Colorado - Denver, Denver, CO
| | - Ani W Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA
| | - Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Craig P Hersh
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | | | | | - Leslie A Lange
- Department of Biomedical Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| | - Katerina J Kechris
- Department of Biostatistics and Informatics, University of Colorado - Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
5
|
Xu X, Qiu L, Zhang M, Wu G. Segregation of nascent GPCRs in the ER-to-Golgi transport by CCHCR1 via direct interaction. J Cell Sci 2024; 137:jcs261685. [PMID: 38230433 PMCID: PMC10912811 DOI: 10.1242/jcs.261685] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest superfamily of cell surface signaling proteins that share a common structural topology. When compared with agonist-induced internalization, how GPCRs are sorted and delivered to functional destinations after synthesis in the endoplasmic reticulum (ER) is much less well understood. Here, we demonstrate that depletion of coiled-coil α-helical rod protein 1 (CCHCR1) by siRNA and CRISPR-Cas9 significantly inhibits surface expression and signaling of α2A-adrenergic receptor (α2A-AR; also known as ADRA2A), without affecting α2B-AR. Further studies show that CCHCR1 depletion specifically impedes α2A-AR export from the ER to the Golgi, but not from the Golgi to the surface. We also demonstrate that CCHCR1 selectively interacts with α2A-AR. The interaction is mediated through multiple domains of both proteins and is ionic in nature. Moreover, mutating CCHCR1-binding motifs significantly attenuates ER-to-Golgi export, surface expression and signaling of α2A-AR. Collectively, these data reveal a novel function for CCHCR1 in intracellular protein trafficking, indicate that closely related GPCRs can be sorted into distinct ER-to-Golgi transport routes by CCHCR1 via direct interaction, and provide important insights into segregation and anterograde delivery of nascent GPCR members.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Lifen Qiu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Maoxiang Zhang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Moll M, Silverman EK. Precision Approaches to Chronic Obstructive Pulmonary Disease Management. Annu Rev Med 2024; 75:247-262. [PMID: 37827193 DOI: 10.1146/annurev-med-060622-101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Ahles A, Engelhardt S. Genetic Variants of Adrenoceptors. Handb Exp Pharmacol 2024; 285:27-54. [PMID: 37578621 DOI: 10.1007/164_2023_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Adrenoceptors are class A G-protein-coupled receptors grouped into three families (α1-, α2-, and β-adrenoceptors), each one including three members. All nine corresponding adrenoceptor genes display genetic variation in their coding and adjacent non-coding genomic region. Coding variants, i.e., nucleotide exchanges within the transcribed and translated receptor sequence, may result in a difference in amino acid sequence thus altering receptor function and signaling. Such variants have been intensely studied in vitro in overexpression systems and addressed in candidate-gene studies for distinct clinical parameters. In recent years, large cohorts were analyzed in genome-wide association studies (GWAS), where variants are detected as significant in context with specific traits. These studies identified two of the in-depth characterized 18 coding variants in adrenoceptors as repeatedly statistically significant genetic risk factors - p.Arg389Gly in the β1- and p.Thr164Ile in the β2-adrenoceptor, along with 56 variants in the non-coding regions adjacent to the adrenoceptor gene loci, the functional role of which is largely unknown at present. This chapter summarizes current knowledge on the two coding variants in adrenoceptors that have been consistently validated in GWAS and provides a prospective overview on the numerous non-coding variants more recently attributed to adrenoceptor gene loci.
Collapse
Affiliation(s)
- Andrea Ahles
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich (TUM), Munich, Germany.
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
8
|
Margaritte-Jeannin P, Vernet R, Budu-Aggrey A, Ege M, Madore AM, Linhard C, Mohamdi H, von Mutius E, Granell R, Demenais F, Laprise C, Bouzigon E, Dizier MH. TNS1 and NRXN1 Genes Interacting With Early-Life Smoking Exposure in Asthma-Plus-Eczema Susceptibility. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:779-794. [PMID: 37957795 PMCID: PMC10643854 DOI: 10.4168/aair.2023.15.6.779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/15/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023]
Abstract
PURPOSE Numerous genes have been associated with allergic diseases (asthma, allergic rhinitis, and eczema), but they explain only part of their heritability. This is partly because most previous studies ignored complex mechanisms such as gene-environment (G-E) interactions and complex phenotypes such as co-morbidity. However, it was recently evidenced that the co-morbidity of asthma-plus-eczema appears as a sub-entity depending on specific genetic factors. Besides, evidence also suggest that gene-by-early life environmental tobacco smoke (ETS) exposure interactions play a role in asthma, but were never investigated for asthma-plus-eczema. To identify genetic variants interacting with ETS exposure that influence asthma-plus-eczema susceptibility. METHODS To conduct a genome-wide interaction study (GWIS) of asthma-plus-eczema according to ETS exposure, we applied a 2-stage strategy with a first selection of single nucleotide polymorphisms (SNPs) from genome-wide association meta-analysis to be tested at a second stage by interaction meta-analysis. All meta-analyses were conducted across 4 studies including a total of 5,516 European-ancestry individuals, of whom 1,164 had both asthma and eczema. RESULTS Two SNPs showed significant interactions with ETS exposure. They were located in 2 genes, NRXN1 (2p16) and TNS1 (2q35), never reported associated and/or interacting with ETS exposure for asthma, eczema or more generally for allergic diseases. TNS1 is a promising candidate gene because of its link to lung and skin diseases with possible interactive effect with tobacco smoke exposure. CONCLUSIONS This first GWIS of asthma-plus-eczema with ETS exposure underlines the importance of studying sub-phenotypes such as co-morbidities as well as G-E interactions to detect new susceptibility genes.
Collapse
Affiliation(s)
- Patricia Margaritte-Jeannin
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Raphaël Vernet
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Ashley Budu-Aggrey
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Markus Ege
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Anne-Marie Madore
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Christophe Linhard
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Hamida Mohamdi
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Erika von Mutius
- Dr von Hauner Children's Hospital, Ludwig Maximilian University; Institute of Asthma and Allergy prevention, Helmholtz Centre Munich; Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, Munich, Germany
| | - Raquell Granell
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Florence Demenais
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Cathrine Laprise
- Département des sciences fondamentales, Centre intersectoriel en santé durable (CISD), Université du Québec à Chicoutimi, Saguenay, QC, Canada
| | - Emmanuelle Bouzigon
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France
| | - Marie-Hélène Dizier
- Université Paris Cité, UMRS 1124, INSERM, Genomic Epidemiology and Multifactorial Diseases Group, Paris, France.
| |
Collapse
|
9
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
10
|
Sinkala M, Elsheikh SSM, Mbiyavanga M, Cullinan J, Mulder NJ. A genome-wide association study identifies distinct variants associated with pulmonary function among European and African ancestries from the UK Biobank. Commun Biol 2023; 6:49. [PMID: 36641522 PMCID: PMC9840173 DOI: 10.1038/s42003-023-04443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 01/09/2023] [Indexed: 01/16/2023] Open
Abstract
Pulmonary function is an indicator of well-being, and pulmonary pathologies are the third major cause of death worldwide. We analysed the UK Biobank genome-wide association summary statistics of pulmonary function for Europeans and individuals of recent African descent to identify variants associated with the trait in the two ancestries. Here, we show 627 variants in Europeans and 3 in Africans associated with three pulmonary function parameters. In addition to the 110 variants in Europeans previously reported to be associated with phenotypes related to pulmonary function, we identify 279 novel loci, including an ISX intergenic variant rs369476290 on chromosome 22 in Africans. Remarkably, we find no shared variants among Africans and Europeans. Furthermore, enrichment analyses of variants separately for each ancestry background reveal significant enrichment for terms related to pulmonary phenotypes in Europeans but not Africans. Further analysis of studies of pulmonary phenotypes reveals that individuals of European background are disproportionally overrepresented in datasets compared to Africans, with the gap widening over the past five years. Our findings extend our understanding of the different variants that modify the pulmonary function in Africans and Europeans, a promising finding for future GWASs and medical studies.
Collapse
Affiliation(s)
- Musalula Sinkala
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa.
| | - Samar S M Elsheikh
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Mamana Mbiyavanga
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Joshua Cullinan
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| | - Nicola J Mulder
- Computational Biology Division, Faculty of Health Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Rd, Observatory, 7925, Cape Town, South Africa
| |
Collapse
|
11
|
Mornex JF. [Alpha 1-antitrypsin deficiency]. Rev Mal Respir 2022; 39:698-707. [PMID: 35715315 DOI: 10.1016/j.rmr.2022.02.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Pulmonary emphysema and liver disease are the clinical expressions of alpha 1-antitrypsin deficiency, an autosomal recessive genetic disease. STATE OF THE ART Alpha 1-antitrypsin deficiency is usually associated with the homozygous Z variant of the SERPINA1 gene. Its clinical expression always consists in a substantial reduction of alpha 1-antitrypsin serum concentration and its variants are analyzed by isoelectric focalization or molecular techniques. Assessed by CO transfer alteration and CT scan, risk of pulmonary emphysema is increased by tobacco consumption. Assessed by transient elastography and liver ultrasound, risk of liver disease is increased by alcohol consumption or obesity. Treatment of COPD-associated alpha 1-antitrypsin deficiency does not differ from that of other forms of COPD. In patients presenting with severe deficiency, augmentation therapy with plasma-derived alpha 1-antitrypsin reduces the progression of emphysema, as shown in terms of CT-based lung density metrics. Patients with alpha 1-antitrypsin deficiency with a ZZ genotype should refrain from alcohol or tobacco consumption, and watch their weight; so should their close relatives. PERSPECTIVES Modulation of alpha 1-antitrypsin liver production offers an interesting new therapeutic perspective. CONCLUSION Homozygous (Z) variants of the SERPINA1 gene confer an increased risk of pulmonary emphysema and liver disease, particularly among smokers, drinkers and obese persons.
Collapse
Affiliation(s)
- J-F Mornex
- Université de Lyon, université Lyon 1, INRAE, EPHE, UMR754, IVPC, Lyon, France; Centre de référence des maladies respiratoires rares, Orphalung, RESPIFIL, 69500 Bron, Bron, France; Service de pneumologie, hôpital Louis-Pradel, hospices civils de Lyon, 69500 Bron, France.
| |
Collapse
|
12
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Fraschilla I, Amatullah H, Jeffrey KL. One genome, many cell states: epigenetic control of innate immunity. Curr Opin Immunol 2022; 75:102173. [PMID: 35405493 PMCID: PMC9081230 DOI: 10.1016/j.coi.2022.102173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
A hallmark of the innate immune system is its ability to rapidly initiate short-lived or sustained transcriptional programs in a cell-specific and pathogen-specific manner that is dependent on dynamic chromatin states. Much of the epigenetic landscape is set during cellular differentiation; however, pathogens and other environmental cues also induce changes in chromatin that can either promote tolerance or 'train' innate immune cells for amplified secondary responses. We review chromatin processes that enable innate immune cell differentiation and functional transcriptional responses in naive or experienced cells, in concert with signal transduction and cellular metabolic shifts. We discuss how immune chromatin mechanisms are maladapted in disease and novel therapeutic approaches for cellular reprogramming.
Collapse
Affiliation(s)
- Isabella Fraschilla
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hajera Amatullah
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kate L Jeffrey
- Division of Gastroenterology and Center for the Study of Inflammatory Bowel Disease, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Medical School, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|