1
|
The Role of NADPH Oxidase in Neuronal Death and Neurogenesis after Acute Neurological Disorders. Antioxidants (Basel) 2021; 10:antiox10050739. [PMID: 34067012 PMCID: PMC8151966 DOI: 10.3390/antiox10050739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 01/22/2023] Open
Abstract
Oxidative stress is a well-known common pathological process involved in mediating acute neurological injuries, such as stroke, traumatic brain injury, epilepsy, and hypoglycemia-related neuronal injury. However, effective therapeutic measures aimed at scavenging free reactive oxygen species have shown little success in clinical trials. Recent studies have revealed that NADPH oxidase, a membrane-bound enzyme complex that catalyzes the production of a superoxide free radical, is one of the major sources of cellular reactive oxygen species in acute neurological disorders. Furthermore, several studies, including our previous ones, have shown that the inhibition of NADPH oxidase can reduce subsequent neuronal injury in neurological disease. Moreover, maintaining appropriate levels of NADPH oxidase has also been shown to be associated with proper neurogenesis after neuronal injury. This review aims to present a comprehensive overview of the role of NADPH oxidase in neuronal death and neurogenesis in multiple acute neurological disorders and to explore potential pharmacological strategies targeting the NADPH-related oxidative stress pathways.
Collapse
|
2
|
Bernardini A, Wolf A, Brockmeier U, Riffkin H, Metzen E, Acker-Palmer A, Fandrey J, Acker H. Carotid body type I cells engage flavoprotein and Pin1 for oxygen sensing. Am J Physiol Cell Physiol 2020; 318:C719-C731. [PMID: 31967857 DOI: 10.1152/ajpcell.00320.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotid body (CB) type I cells sense the blood Po2 and generate a nervous signal for stimulating ventilation and circulation when blood oxygen levels decline. Three oxygen-sensing enzyme complexes may be used for this purpose: 1) mitochondrial electron transport chain metabolism, 2) heme oxygenase 2 (HO-2)-generating CO, and/or 3) an NAD(P)H oxidase (NOX). We hypothesize that intracellular redox changes are the link between the sensor and nervous signals. To test this hypothesis type I cell autofluorescence of flavoproteins (Fp) and NAD(P)H within the mouse CB ex vivo was recorded as Fp/(Fp+NAD(P)H) redox ratio. CB type I cell redox ratio transiently declined with the onset of hypoxia. Upon reoxygenation, CB type I cells showed a significantly increased redox ratio. As a control organ, the non-oxygen-sensing sympathetic superior cervical ganglion (SCG) showed a continuously reduced redox ratio upon hypoxia. CN-, diphenyleneiodonium, or reactive oxygen species influenced chemoreceptor discharge (CND) with subsequent loss of O2 sensitivity and inhibited hypoxic Fp reduction only in the CB but not in SCG Fp, indicating a specific role of Fp in the oxygen-sensing process. Hypoxia-induced changes in CB type I cell redox ratio affected peptidyl prolyl isomerase Pin1, which is believed to colocalize with the NADPH oxidase subunit p47phox in the cell membrane to trigger the opening of potassium channels. We postulate that hypoxia-induced changes in the Fp-mediated redox ratio of the CB regulate the Pin1/p47phox tandem to alter type I cell potassium channels and therewith CND.
Collapse
Affiliation(s)
- André Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Alexandra Wolf
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Ulf Brockmeier
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Helena Riffkin
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Eric Metzen
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Amparo Acker-Palmer
- Institute for Cell Biology and Neuroscience, Goethe University, Frankfurt, Germany
| | - Joachim Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - Helmut Acker
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
3
|
Yin W, Zhou QL, OuYang SX, Chen Y, Gong YT, Liang YM. Uric acid regulates NLRP3/IL-1β signaling pathway and further induces vascular endothelial cells injury in early CKD through ROS activation and K + efflux. BMC Nephrol 2019; 20:319. [PMID: 31412804 PMCID: PMC6694569 DOI: 10.1186/s12882-019-1506-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) has been considered as a major health problem in the world. Increasing uric acid (UA) could induce vascular endothelial injury, which is closely related to microinflammation, oxidative stress, and disorders of lipids metabolism. However, the specific mechanism that UA induces vascular endothelial cells injury in early CKD remains unknown. METHODS Human umbilical vein endothelial cells (HUVECs) were cultured and subjected to different concentrations of UA for different periods. Early CKD rat model with elevated serum UA was established. Western blotting and quantitative real-time PCR (qPCR) were applied for measuring protein and mRNA expression of different cytokines. The animals were sacrificed and blood samples were collected for measurement of creatinine, UA, IL-1β, TNF-α, and ICAM-1. Renal tissues were pathologically examined by periodic acid-Schiff (PAS) or hematoxylin-eosin (HE) staining. RESULTS The expression of IL-1β, ICAM-1, NLRP3 complexes, and activation of NLRP3 inflammasome could be induced by UA, but the changes induced by UA were partially reversed by siRNA NLRP3 or caspase 1 inhibitor. Furthermore, we identified that UA regulated the activation of NLRP3 inflammasome by activating ROS and K+ efflux. In vivo results showed that UA caused the vascular endothelial injury by activating NLRP3/IL-1β pathway. While allopurinol could reduce UA level and may have protective effects on cardiovascular system. CONCLUSIONS UA could regulate NLRP3/IL-1β signaling pathway through ROS activation and K+ efflux and further induce vascular endothelial cells injury in early stages of CKD.
Collapse
Affiliation(s)
- Wei Yin
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No.61, West Jiefang Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Qiao-Ling Zhou
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Sha-Xi OuYang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No.61, West Jiefang Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Ying Chen
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No.61, West Jiefang Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Yu-Ting Gong
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No.61, West Jiefang Road, Changsha, 410005, Hunan Province, People's Republic of China
| | - Yu-Mei Liang
- Department of Nephrology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, No.61, West Jiefang Road, Changsha, 410005, Hunan Province, People's Republic of China.
| |
Collapse
|
4
|
Keeley TP, Mann GE. Defining Physiological Normoxia for Improved Translation of Cell Physiology to Animal Models and Humans. Physiol Rev 2019; 99:161-234. [PMID: 30354965 DOI: 10.1152/physrev.00041.2017] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive oxygen gradient between the air we breathe (Po2 ~21 kPa) and its ultimate distribution within mitochondria (as low as ~0.5-1 kPa) is testament to the efforts expended in limiting its inherent toxicity. It has long been recognized that cell culture undertaken under room air conditions falls short of replicating this protection in vitro. Despite this, difficulty in accurately determining the appropriate O2 levels in which to culture cells, coupled with a lack of the technology to replicate and maintain a physiological O2 environment in vitro, has hindered addressing this issue thus far. In this review, we aim to address the current understanding of tissue Po2 distribution in vivo and summarize the attempts made to replicate these conditions in vitro. The state-of-the-art techniques employed to accurately determine O2 levels, as well as the issues associated with reproducing physiological O2 levels in vitro, are also critically reviewed. We aim to provide the framework for researchers to undertake cell culture under O2 levels relevant to specific tissues and organs. We envisage that this review will facilitate a paradigm shift, enabling translation of findings under physiological conditions in vitro to disease pathology and the design of novel therapeutics.
Collapse
Affiliation(s)
- Thomas P Keeley
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, Faculty of Life Sciences and Medicine, King's College London , London , United Kingdom
| |
Collapse
|
5
|
André-Lévigne D, Modarressi A, Pepper MS, Pittet-Cuénod B. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair. Int J Mol Sci 2017; 18:ijms18102149. [PMID: 29036938 PMCID: PMC5666831 DOI: 10.3390/ijms18102149] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the role of oxygen in cell physiology has evolved from its long-recognized importance as an essential factor in oxidative metabolism to its recognition as an important player in cell signaling. With regard to the latter, oxygen is needed for the generation of reactive oxygen species (ROS), which regulate a number of different cellular functions including differentiation, proliferation, apoptosis, migration, and contraction. Data specifically concerning the role of ROS-dependent signaling in cutaneous wound repair are very limited, especially regarding wound contraction. In this review we provide an overview of the current literature on the role of molecular and reactive oxygen in the physiology of wound repair as well as in the pathophysiology and therapy of chronic wounds, especially under ischemic and hyperglycemic conditions.
Collapse
Affiliation(s)
- Dominik André-Lévigne
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Ali Modarressi
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| | - Michael S Pepper
- Department of Human Genetics and Development, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
- SAMRC Extramural Unit for Stem Cell Research and Therapy, and Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa.
| | - Brigitte Pittet-Cuénod
- Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland.
| |
Collapse
|
6
|
Chang AJ. Acute oxygen sensing by the carotid body: from mitochondria to plasma membrane. J Appl Physiol (1985) 2017; 123:1335-1343. [PMID: 28819004 DOI: 10.1152/japplphysiol.00398.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/11/2017] [Accepted: 08/12/2017] [Indexed: 12/12/2022] Open
Abstract
Maintaining oxygen homeostasis is crucial to the survival of animals. Mammals respond acutely to changes in blood oxygen levels by modulating cardiopulmonary function. The major sensor of blood oxygen that regulates breathing is the carotid body (CB), a small chemosensory organ located at the carotid bifurcation. When arterial blood oxygen levels drop in hypoxia, neuroendocrine cells in the CB called glomus cells are activated to signal to afferent nerves that project to the brain stem. The mechanism by which hypoxia stimulates CB sensory activity has been the subject of many studies over the past 90 years. Two discrete models emerged that argue for the seat of oxygen sensing to lie either in the plasma membrane or mitochondria of CB cells. Recent studies are bridging the gap between these models by identifying hypoxic signals generated by changes in mitochondrial function in the CB that can be sensed by plasma membrane proteins on glomus cells. The CB is important for physiological adaptation to hypoxia, and its dysfunction contributes to sympathetic hyperactivity in common conditions such as sleep-disordered breathing, chronic heart failure, and insulin resistance. Understanding the basic mechanism of oxygen sensing in the CB could allow us to develop strategies to target this organ for therapy. In this short review, I will describe two historical models of CB oxygen sensing and new findings that are integrating these models.
Collapse
Affiliation(s)
- Andy J Chang
- Department of Physiology and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| |
Collapse
|
7
|
López-Barneo J, González-Rodríguez P, Gao L, Fernández-Agüera MC, Pardal R, Ortega-Sáenz P. Oxygen sensing by the carotid body: mechanisms and role in adaptation to hypoxia. Am J Physiol Cell Physiol 2016; 310:C629-42. [PMID: 26764048 DOI: 10.1152/ajpcell.00265.2015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxygen (O2) is fundamental for cell and whole-body homeostasis. Our understanding of the adaptive processes that take place in response to a lack of O2(hypoxia) has progressed significantly in recent years. The carotid body (CB) is the main arterial chemoreceptor that mediates the acute cardiorespiratory reflexes (hyperventilation and sympathetic activation) triggered by hypoxia. The CB is composed of clusters of cells (glomeruli) in close contact with blood vessels and nerve fibers. Glomus cells, the O2-sensitive elements in the CB, are neuron-like cells that contain O2-sensitive K(+)channels, which are inhibited by hypoxia. This leads to cell depolarization, Ca(2+)entry, and the release of transmitters to activate sensory fibers terminating at the respiratory center. The mechanism whereby O2modulates K(+)channels has remained elusive, although several appealing hypotheses have been postulated. Recent data suggest that mitochondria complex I signaling to membrane K(+)channels plays a fundamental role in acute O2sensing. CB activation during exposure to low Po2is also necessary for acclimatization to chronic hypoxia. CB growth during sustained hypoxia depends on the activation of a resident population of stem cells, which are also activated by transmitters released from the O2-sensitive glomus cells. These advances should foster further studies on the role of CB dysfunction in the pathogenesis of highly prevalent human diseases.
Collapse
Affiliation(s)
- José López-Barneo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia González-Rodríguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Lin Gao
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - M Carmen Fernández-Agüera
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ricardo Pardal
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Patricia Ortega-Sáenz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío, CSIC, Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
8
|
Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H, Fandrey J. Measurement of ROS Levels and Membrane Potential Dynamics in the Intact Carotid Body Ex Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 860:55-9. [DOI: 10.1007/978-3-319-18440-1_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
9
|
Bernardini A, Brockmeier U, Metzen E, Berchner-Pfannschmidt U, Harde E, Acker-Palmer A, Papkovsky D, Acker H, Fandrey J. Type I cell ROS kinetics under hypoxia in the intact mouse carotid body ex vivo: a FRET-based study. Am J Physiol Cell Physiol 2014; 308:C61-7. [PMID: 25318107 DOI: 10.1152/ajpcell.00370.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) mainly originating from NADPH oxidases have been shown to be involved in the carotid body (CB) oxygen-sensing cascade. For measuring ROS kinetics, type I cells of the mouse CB in an ex vivo preparation were transfected with the ROS sensor construct FRET-HSP33. After 2 days of tissue culture, type I cells expressed FRET-HSP33 as shown by immunohistochemistry. In one population of CBs, 5 min of hypoxia induced a significant and reversible decrease of type I cell ROS levels (n = 9 CBs; P < 0.015), which could be inhibited by 4-(2-aminoethyl)benzensulfonylfluorid (AEBSF), a highly specific inhibitor of the NADPH oxidase subunits p47(phox) and p67(phox). In another population of CBs, however, 5 min of hypoxia induced a significant and reversible increase of ROS levels in type I cells (n = 8 CBs; P < 0.05), which was slightly enhanced by administration of 3 mM AEBSF. These different ROS kinetics seemed to coincide with different mice breeding conditions. Type I cells of both populations showed a typical hypoxia-induced membrane potential (MP) depolarization, which could be inhibited by 3 mM AEBSF. ROS and MP closely followed the hypoxic decrease in CB tissue oxygen as measured with an O2-sensitive dye. We conclude that attenuated p47(phox) subunit activity of the NADPH oxidase under hypoxia is the physiological trigger for type I cell MP depolarization probably due to ROS decrease, whereas the observed ROS increase has no influence on type I cell MP kinetics under hypoxia.
Collapse
Affiliation(s)
- A Bernardini
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - U Brockmeier
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | - E Metzen
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| | | | - E Harde
- Institute for Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany; and
| | - A Acker-Palmer
- Institute for Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany; and
| | - D Papkovsky
- Biochemistry Department, University College Cork, Cork, Ireland
| | - H Acker
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany;
| | - J Fandrey
- Institute of Physiology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Taabazuing CY, Hangasky JA, Knapp MJ. Oxygen sensing strategies in mammals and bacteria. J Inorg Biochem 2014; 133:63-72. [PMID: 24468676 PMCID: PMC4097052 DOI: 10.1016/j.jinorgbio.2013.12.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022]
Abstract
The ability to sense and adapt to changes in pO2 is crucial for basic metabolism in most organisms, leading to elaborate pathways for sensing hypoxia (low pO2). This review focuses on the mechanisms utilized by mammals and bacteria to sense hypoxia. While responses to acute hypoxia in mammalian tissues lead to altered vascular tension, the molecular mechanism of signal transduction is not well understood. In contrast, chronic hypoxia evokes cellular responses that lead to transcriptional changes mediated by the hypoxia inducible factor (HIF), which is directly controlled by post-translational hydroxylation of HIF by the non-heme Fe(II)/αKG-dependent enzymes FIH and PHD2. Research on PHD2 and FIH is focused on developing inhibitors and understanding the links between HIF binding and the O2 reaction in these enzymes. Sulfur speciation is a putative mechanism for acute O2-sensing, with special focus on the role of H2S. This sulfur-centered model is discussed, as are some of the directions for further refinement of this model. In contrast to mammals, bacterial O2-sensing relies on protein cofactors that either bind O2 or oxidatively decompose. The sensing modality for bacterial O2-sensors is either via altered DNA binding affinity of the sensory protein, or else due to the actions of a two-component signaling cascade. Emerging data suggests that proteins containing a hemerythrin-domain, such as FBXL5, may serve to connect iron sensing to O2-sensing in both bacteria and humans. As specific molecular machinery becomes identified, these hypoxia sensing pathways present therapeutic targets for diseases including ischemia, cancer, or bacterial infection.
Collapse
Affiliation(s)
| | - John A Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States
| | - Michael J Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, United States.
| |
Collapse
|
11
|
Kleikers PWM, Wingler K, Hermans JJR, Diebold I, Altenhöfer S, Radermacher KA, Janssen B, Görlach A, Schmidt HHHW. NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med (Berl) 2012; 90:1391-406. [PMID: 23090009 DOI: 10.1007/s00109-012-0963-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 09/26/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023]
Abstract
Ischemia/reperfusion injury (IRI) is crucial in the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. Paradoxically, both the lack of oxygen during ischemia and the replenishment of oxygen during reperfusion can cause tissue injury. Clinical outcome is also determined by a third, post-reperfusion phase characterized by tissue remodeling and adaptation. Increased levels of reactive oxygen species (ROS) have been suggested to be key players in all three phases. As a second paradox, ROS seem to play a double-edged role in IRI, with both detrimental and beneficial effects. These Janus-faced effects of ROS may be linked to the different sources of ROS or to the different types of ROS that exist and may also depend on the phase of IRI. With respect to therapeutic implications, an untargeted application of antioxidants may not differentiate between detrimental and beneficial ROS, which might explain why this approach is clinically ineffective in lowering cardiovascular mortality. Under some conditions, antioxidants even appear to be harmful. In this review, we discuss recent breakthroughs regarding a more targeted and promising approach to therapeutically modulate ROS in IRI. We will focus on NADPH oxidases and their catalytic subunits, NOX, as they represent the only known enzyme family with the sole function to produce ROS. Similar to ROS, NADPH oxidases may play a dual role as different NOX isoforms may mediate detrimental or protective processes. Unraveling the precise sequence of events, i.e., determining which role the individual NOX isoforms play in the various phases of IRI, may provide the crucial molecular and mechanistic understanding to finally effectively target oxidative stress.
Collapse
Affiliation(s)
- Pamela W M Kleikers
- Vascular Drug Discovery Group, Department of Pharmacology and Cardiovascular Research Institute Maastricht, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The discovery of the sensory nature of the carotid body dates back to the beginning of the 20th century. Following these seminal discoveries, research into carotid body mechanisms moved forward progressively through the 20th century, with many descriptions of the ultrastructure of the organ and stimulus-response measurements at the level of the whole organ. The later part of 20th century witnessed the first descriptions of the cellular responses and electrophysiology of isolated and cultured type I and type II cells, and there now exist a number of testable hypotheses of chemotransduction. The goal of this article is to provide a comprehensive review of current concepts on sensory transduction and transmission of the hypoxic stimulus at the carotid body with an emphasis on integrating cellular mechanisms with the whole organ responses and highlighting the gaps or discrepancies in our knowledge. It is increasingly evident that in addition to hypoxia, the carotid body responds to a wide variety of blood-borne stimuli, including reduced glucose and immune-related cytokines and we therefore also consider the evidence for a polymodal function of the carotid body and its implications. It is clear that the sensory function of the carotid body exhibits considerable plasticity in response to the chronic perturbations in environmental O2 that is associated with many physiological and pathological conditions. The mechanisms and consequences of carotid body plasticity in health and disease are discussed in the final sections of this article.
Collapse
Affiliation(s)
- Prem Kumar
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, The University of Birmingham, Birmingham, United Kingdom.
| | | |
Collapse
|
13
|
Lam SY, Liu Y, Ng KM, Lau CF, Liong EC, Tipoe GL, Fung ML. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol 2011; 137:303-17. [PMID: 22187044 PMCID: PMC3278607 DOI: 10.1007/s00418-011-0900-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2011] [Indexed: 01/07/2023]
Abstract
Maladaptive changes in the carotid body (CB) induced by chronic intermittent hypoxia (IH) account for the pathogenesis of cardiovascular morbidity in patients with sleep-disordered breathing. We postulated that the proinflammatory cytokines, namely interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α, and cytokine receptors (IL-1r1, gp130 and TNFr1) locally expressed in the rat CB play a pathophysiological role in IH-induced CB inflammation. Results showed increased levels of oxidative stress (serum 8-isoprostane and nitrotyrosine in the CB) in rats with 7-day IH treatment resembling recurrent apneic conditions when compared with the normoxic control. Local inflammation shown by the amount of ED1-containing cells (macrophage infiltration) and the gene transcripts of NADPH oxidase subunits (gp91(phox) and p22(phox)) and chemokines (MCP-1, CCR2, MIP-1α, MIP-1β and ICAM-1) in the CB were significantly more in the hypoxic group than in the control. In addition, the cytokines and receptors were expressed in the lobules of chemosensitive glomus cells containing tyrosine hydroxylase and the levels of expressions were significantly increased in the hypoxic group. Exogenous cytokines elevated the intracellular calcium ([Ca(2+)](i)) response to acute hypoxia in the dissociated glomus cells. The effect of cytokines on the [Ca(2+)](i) response was significantly greater in the hypoxic than in the normoxic group. Moreover, daily treatment of IH rats with anti-inflammatory drugs (dexamethasone or ibuprofen) attenuated the levels of oxidative stress, gp91(phox) expression and macrophage infiltration in the CB. Collectively, these results suggest that the upregulated expression of proinflammatory cytokine pathways could mediate the local inflammation and functional alteration of the CB under chronic IH conditions.
Collapse
Affiliation(s)
- Siu-Yin Lam
- Department of Physiology, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Tetrodotoxin as a tool to elucidate sensory transduction mechanisms: the case for the arterial chemoreceptors of the carotid body. Mar Drugs 2011; 9:2683-2704. [PMID: 22363245 PMCID: PMC3280568 DOI: 10.3390/md9122683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/22/2011] [Accepted: 12/01/2011] [Indexed: 12/17/2022] Open
Abstract
Carotid bodies (CBs) are secondary sensory receptors in which the sensing elements, chemoreceptor cells, are activated by decreases in arterial PO2 (hypoxic hypoxia). Upon activation, chemoreceptor cells (also known as Type I and glomus cells) increase their rate of release of neurotransmitters that drive the sensory activity in the carotid sinus nerve (CSN) which ends in the brain stem where reflex responses are coordinated. When challenged with hypoxic hypoxia, the physiopathologically most relevant stimulus to the CBs, they are activated and initiate ventilatory and cardiocirculatory reflexes. Reflex increase in minute volume ventilation promotes CO2 removal from alveoli and a decrease in alveolar PCO2 ensues. Reduced alveolar PCO2 makes possible alveolar and arterial PO2 to increase minimizing the intensity of hypoxia. The ventilatory effect, in conjunction the cardiocirculatory components of the CB chemoreflex, tend to maintain an adequate supply of oxygen to the tissues. The CB has been the focus of attention since the discovery of its nature as a sensory organ by de Castro (1928) and the discovery of its function as the origin of ventilatory reflexes by Heymans group (1930). A great deal of effort has been focused on the study of the mechanisms involved in O2 detection. This review is devoted to this topic, mechanisms of oxygen sensing. Starting from a summary of the main theories evolving through the years, we will emphasize the nature and significance of the findings obtained with veratridine and tetrodotoxin (TTX) in the genesis of current models of O2-sensing.
Collapse
|
15
|
Shimoda LA, Polak J. Hypoxia. 4. Hypoxia and ion channel function. Am J Physiol Cell Physiol 2011; 300:C951-67. [PMID: 21178108 PMCID: PMC3093942 DOI: 10.1152/ajpcell.00512.2010] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/16/2010] [Indexed: 12/19/2022]
Abstract
The ability to sense and respond to oxygen deprivation is required for survival; thus, understanding the mechanisms by which changes in oxygen are linked to cell viability and function is of great importance. Ion channels play a critical role in regulating cell function in a wide variety of biological processes, including neuronal transmission, control of ventilation, cardiac contractility, and control of vasomotor tone. Since the 1988 discovery of oxygen-sensitive potassium channels in chemoreceptors, the effect of hypoxia on an assortment of ion channels has been studied in an array of cell types. In this review, we describe the effects of both acute and sustained hypoxia (continuous and intermittent) on mammalian ion channels in several tissues, the mode of action, and their contribution to diverse cellular processes.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Div. of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA.
| | | |
Collapse
|
16
|
Gonzalez C, Agapito MT, Rocher A, Gomez-Niño A, Rigual R, Castañeda J, Conde SV, Obeso A. A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respir Physiol Neurobiol 2010; 174:317-30. [PMID: 20833275 DOI: 10.1016/j.resp.2010.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2010] [Revised: 08/31/2010] [Accepted: 09/01/2010] [Indexed: 11/25/2022]
Abstract
Oxygen-sensing and transduction in purposeful responses in cells and organisms is of great physiological and medical interest. All animals, including humans, encounter in their lifespan many situations in which oxygen availability might be insufficient, whether acutely or chronically, physiologically or pathologically. Therefore to trace at the molecular level the sequence of events or steps connecting the oxygen deficit with the cell responses is of interest in itself as an achievement of science. In addition, it is also of great medical interest as such knowledge might facilitate the therapeutical approach to patients and to design strategies to minimize hypoxic damage. In our article we define the concepts of sensors and transducers, the steps of the hypoxic transduction cascade in the carotid body chemoreceptor cells and also discuss current models of oxygen- sensing (bioenergetic, biosynthetic and conformational) with their supportive and unsupportive data from updated literature. We envision oxygen-sensing in carotid body chemoreceptor cells as a process initiated at the level of plasma membrane and performed by a hemoprotein, which might be NOX4 or a hemoprotein not yet chemically identified. Upon oxygen-desaturation, the sensor would experience conformational changes allosterically transmitted to oxygen regulated K+ channels, the initial effectors in the transduction cascade. A decrease in their opening probability would produce cell depolarization, activation of voltage dependent calcium channels and release of neurotransmitters. Neurotransmitters would activate the nerve endings of the carotid body sensory nerve to convey the information of the hypoxic situation to the central nervous system that would command ventilation to fight hypoxia.
Collapse
Affiliation(s)
- C Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología, Instituto de Biología y Genética Molecular y CIBER de Enfermedades Respiratorias, Universidad de Valladolid, Consejo Superior de Investigaciones Científicas e Instituto Carlos III, Facultad de Medicina, 47005 Valladolid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Teppema LJ, Dahan A. The Ventilatory Response to Hypoxia in Mammals: Mechanisms, Measurement, and Analysis. Physiol Rev 2010; 90:675-754. [DOI: 10.1152/physrev.00012.2009] [Citation(s) in RCA: 257] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The respiratory response to hypoxia in mammals develops from an inhibition of breathing movements in utero into a sustained increase in ventilation in the adult. This ventilatory response to hypoxia (HVR) in mammals is the subject of this review. The period immediately after birth contains a critical time window in which environmental factors can cause long-term changes in the structural and functional properties of the respiratory system, resulting in an altered HVR phenotype. Both neonatal chronic and chronic intermittent hypoxia, but also chronic hyperoxia, can induce such plastic changes, the nature of which depends on the time pattern and duration of the exposure (acute or chronic, episodic or not, etc.). At adult age, exposure to chronic hypoxic paradigms induces adjustments in the HVR that seem reversible when the respiratory system is fully matured. These changes are orchestrated by transcription factors of which hypoxia-inducible factor 1 has been identified as the master regulator. We discuss the mechanisms underlying the HVR and its adaptations to chronic changes in ambient oxygen concentration, with emphasis on the carotid bodies that contain oxygen sensors and initiate the response, and on the contribution of central neurotransmitters and brain stem regions. We also briefly summarize the techniques used in small animals and in humans to measure the HVR and discuss the specific difficulties encountered in its measurement and analysis.
Collapse
Affiliation(s)
- Luc J. Teppema
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
18
|
Induction of inducible nitric oxide synthase increases the production of reactive oxygen species in RAW264.7 macrophages. Biosci Rep 2010; 30:233-41. [PMID: 19673702 DOI: 10.1042/bsr20090048] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Macrophages produce a large volume of ROS (reactive oxygen species) through respiratory burst. However, the influence of iNOS [inducible NOS (nitric oxide synthase)] activation on ROS production remains unclear. In the present study, the kinetic generation of ROS in RAW264.7 murine macrophages was monitored by chemiluminescence. PMA induces a robust chemiluminescence in RAW264.7 cells, suggesting PKC (protein kinase C)-related assembly and activation of NOX (NADPH oxidase). The effects of iNOS induction on ROS production were examined. Induction of iNOS expression in RAW264.7 cells with LPS (lipopolysaccharide; 1 microg/ml) causes a significant increase in PMA-induced chemiluminescence, which could be enhanced by the NOS substrate, L-arginine, and could be abolished by the NOS inhibitor, L-NNA (NG-nitro-L-arginine). Further experiments reveal that induction of iNOS expression enhances the PMA-stimulated phosphorylation of the p47phox subunit of NOX, and promotes the relocalization of cytosolic p47phox and p67phox subunits to the membrane. Inhibition of PKCzeta by its myristoylated pseudosubstrate significantly decreased the PMA-stimulated phosphorylation of the p47phox in LPS-pretreated cells, suggesting that PKCzeta is involved in the iNOS-dependent assembly and activation of NOX. Taken together, the present study suggests that the induction of iNOS upregulates the PMA-induced assembly of NOX and leads to the enhanced production of ROS via a PKCzeta-dependent mechanism.
Collapse
|
19
|
He L, Liu X, Chen J, Dinger B, Stensaas L, Fidone S. Modulation of chronic hypoxia-induced chemoreceptor hypersensitivity by NADPH oxidase subunits in rat carotid body. J Appl Physiol (1985) 2010; 108:1304-10. [PMID: 20185631 DOI: 10.1152/japplphysiol.00766.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies in our laboratory established that reactive oxygen species (ROS) generated by NADPH oxidase (NOX) facilitate the open state of a subset of K+ channels in oxygen-sensitive type I cells of the carotid body. Thus pharmacological inhibition of NOX or deletion of a NOX gene resulted in enhanced chemoreceptor sensitivity to hypoxia. The present study tests the hypothesis that chronic hypoxia (CH)-induced hypersensitivity of chemoreceptors is modulated by increased NOX activity and elevated levels of ROS. Measurements of dihydroethidium fluorescence in carotid body tissue slices showed that increased ROS production following CH (14 days, 380 Torr) was blocked by the specific NOX inhibitor 4-(2-amino-ethyl)benzenesulfonyl fluoride (AEBSF, 3 microM). Consistent with these findings, in normal carotid body AEBSF elicited a small increase in the chemoreceptor nerve discharge evoked by an acute hypoxic challenge, whereas after 9 days of CH the effect of the NOX inhibitor was some threefold larger (P<0.001). Evaluation of gene expression after 7 days of CH showed increases in the isoforms NOX2 (approximately 1.5-fold) and NOX4 (approximately 3.8-fold) and also increased presence of the regulatory subunit p47phox (approximately 4.2-fold). Involvement of p47phox was further implicated in studies of isolated type I cells that demonstrated an approximately 8-fold and an approximately 11-fold increase in mRNA after 1 and 3 days, respectively, of hypoxia in vivo. These findings were confirmed in immunocytochemical studies of carotid body tissue that showed a robust increase of p47phox in type I cells after 14 days of CH. Our findings suggest that increased ROS production by NOX enzymes in type I cells dampens CH-induced hypersensitivity in carotid body chemoreceptors.
Collapse
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, 420 Chipeta Way, Suite 1700, Salt Lake City, UT 84108-6500, USA
| | | | | | | | | | | |
Collapse
|
20
|
Park SJ, Chun YS, Park KS, Kim SJ, Choi SO, Kim HL, Park JW. Identification of subdomains in NADPH oxidase-4 critical for the oxygen-dependent regulation of TASK-1 K+ channels. Am J Physiol Cell Physiol 2009; 297:C855-64. [PMID: 19657056 DOI: 10.1152/ajpcell.00463.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxic inhibition of K+ current is a critical O2-sensing mechanism. Previously, it was demonstrated that the cooperative action of TASK-1 and NADPH oxidase-4 (NOX4) mediated the O2-sensitive K+ current response. Here we addressed the O2-sensing mechanism of NOX4 in terms of TASK-1 regulation. In TASK-1 and NOX4-coexpressing human embryonic kidney 293 cells, hypoxia (5% O2) decreased the amplitude of TASK-1 current (hypoxia-DeltaI(TASK-1)). To examine whether reactive oxygen species (ROS) mediate the hypoxia-DeltaI(TASK-1), we treated the cells with carbon monoxide (CO) which is known to reduce ROS generation from the heme-containing NOX4. Unexpectedly, CO failed to mimic hypoxia in TASK-1 regulation, rather blocked the hypoxia-DeltaI(TASK-1). Moreover, the hypoxia-DeltaI(TASK-1) was neither recovered by H2O2 treatment nor prevented by antioxidant such as ascorbic acid. However, the hypoxia-DeltaI(TASK-1) was noticeably attenuated by succinyl acetone, a heme synthase inhibitor. To further evaluate the role of heme, we constructed and expressed various NOX4 mutants, such as HBD(-) lacking the heme binding domain, NBD(-) lacking the NADPH binding domain, FBD(-) lacking the FAD binding domain, and HFBD(-) lacking both heme and FAD domains. The hypoxia-DeltaI(TASK-1) was significantly reduced in HBD(-)-, FBD(-)-, or HFBD(-)-expressing cells, versus wild-type NOX4-expressing cells. However, NBD(-) did not affect the TASK-1 response to hypoxia. We also found that p22 is required for the NOX4-dependent TASK-1 regulation. These results suggest that O2 binding with NOX4 per se controls TASK-1 activity. In this process, the heme moiety and FBD seem to be responsible for the NOX4 regulation of TASK-1, and p22 might support the NOX4-TASK-1 interaction.
Collapse
Affiliation(s)
- Su Jung Park
- Department of Physiology, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, Swanson RA. Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 2009; 64:654-63. [PMID: 19107988 DOI: 10.1002/ana.21511] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Hyperglycemia has been recognized for decades to be an exacerbating factor in ischemic stroke, but the mechanism of this effect remains unresolved. Here, we evaluated superoxide production by neuronal nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a possible link between glucose metabolism and neuronal death in ischemia-reperfusion. METHODS Superoxide production was measured by the ethidium method in cultured neurons treated with oxygen-glucose deprivation and in mice treated with forebrain ischemia-reperfusion. The role of NADPH oxidase was examined using genetic disruption of its p47(phox) subunit and with the pharmacological inhibitor apocynin. RESULTS In neuron cultures, postischemic superoxide production and cell death were completely prevented by removing glucose from the medium, by inactivating NADPH oxidase, or by inhibiting the hexose monophosphate shunt that generates NADPH from glucose. In murine stroke, neuronal superoxide production and death were decreased by the glucose antimetabolite 2-deoxyglucose and increased by high blood glucose concentrations. Inactivating NADPH oxidase with either apocynin or deletion of the p47(phox) subunit blocked neuronal superoxide production and negated the deleterious effects of hyperglycemia. INTERPRETATION These findings identify glucose as the requisite electron donor for reperfusion-induced neuronal superoxide production and establish a previously unrecognized mechanism by which hyperglycemia can exacerbate ischemic brain injury.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Agapito MT, Sanz-Alfayate G, Gomez-Niño A, Gonzalez C, Obeso A. General redox environment and carotid body chemoreceptor function. Am J Physiol Cell Physiol 2009; 296:C620-31. [PMID: 19144860 DOI: 10.1152/ajpcell.00542.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carotid body (CB) chemoreceptor cells detect physiological levels of hypoxia and generate a hyperventilation, homeostatic in nature, aimed to minimize the deleterious effects of hypoxia. Intimate mechanisms involved in oxygen sensing in chemoreceptor cells remain largely unknown, but reactive oxygen species (ROS) had been proposed as mediators of this process. We have determined glutathione levels and calculated glutathione redox potential (E(GSH); indicator of the general redox environment of cells) in rat diaphragms incubated in the presence of oxidizing agents of two types: nonpermeating and permeating through cell membranes; in the latter group, unspecific oxidants and inhibitors of ROS-disposing enzymes were used. Selected concentrations of oxidizing agents were tested for their ability to modify the normoxic and hypoxic activity of chemoreceptor cells measured in vitro as their rate of release of neurotransmitters. Results evidence variable relationships between E(GSH) and the activity of chemoreceptor cells. The independence of chemoreceptor cell activity from the E(GSH) would imply that the ability of the CB to play its homeostatic role is largely preserved in any pathological or toxicological contingency causing oxidative stress. Consistent with this suggestion, it was also found that CB-mediated hypoxic hyperventilation was not altered by treatment of intact animals with agents that markedly decreased the E(GSH) in all tissues assayed.
Collapse
Affiliation(s)
- Maria Teresa Agapito
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina, Universidad de Valladolid, E-47005 Valladolid, Spain
| | | | | | | | | |
Collapse
|
23
|
Kemp JP, Peers C. Enzyme-linked acute oxygen sensing in airway and arterial chemoreceptors--invited article. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 648:39-48. [PMID: 19536463 DOI: 10.1007/978-90-481-2259-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Researchers have speculated as to the molecular basis of O(2) sensing for decades. In more recent years, since the discovery of ion channels as identified effectors for O(2) sensing pathways, research has focussed on possible pathways coupling a reduction in hypoxia to altered ion channel activity. The most extensively studied systems are the K(+) channels which are inhibited by hypoxia in chemoreceptor tissues (carotid and neuroepithelial bodies). In this review, we consider the evidence supporting the involvement of well defined enzymes in mediating the regulation of K(+) channels by hypoxia. Specifically, we focus on the roles proposed for three enzyme systems; NADPH oxidase, heme oxygenase and AMP activated protein kinase. These systems differ in that the former two utilise O(2) directly (to form superoxide in the case of NADPH oxidase, and as a co-factor in the degradation of heme to carbon monoxide, bilirubin and ferrous iron in the case of heme oxygenase), but the third responds to shifts in the AMP:ATP ratio, so responds to changes in O(2) levels more indirectly. We consider the evidence in favour of each of these systems, and highlight their differential importance in different systems and species. Whilst the evidence for each playing an important role in different tissues is strong, there is a clear need for further study, and current awareness indicates that no one specific cell type may rely on a single mechanism for O(2) sensing.
Collapse
Affiliation(s)
- J Paul Kemp
- School of Bioesciences, Cardiff University, Museum Avenue, Cardiff CF10 3US, UK.
| | | |
Collapse
|
24
|
Gomez-Niño A, Agapito MT, Obeso A, Gonzalez C. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity. Respir Physiol Neurobiol 2008; 165:104-11. [PMID: 18996500 DOI: 10.1016/j.resp.2008.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 10/24/2008] [Accepted: 10/28/2008] [Indexed: 12/22/2022]
Abstract
Low oxygen sensing in chemoreceptor cells involves the inhibition of specific plasma membrane K(+) channels, suggesting that mitochondria-derived reactive oxygen species (ROS) link hypoxia to K(+) channel inhibition, subsequent cell depolarization and activation of neurotransmitter release. We have used several mitochondrial poisons, alone and in combination with the antioxidant N-acetylcysteine (NAC), and quantify their capacity to alter GSH/GSSG levels and glutathione redox potential (E(GSH)) in rat diaphragm. Selected concentrations of mitochondrial poisons with or without NAC were tested for their capacity to activate neurotransmitter release in chemoreceptor cells and to alter ATP levels in intact rat carotid body (CB). We found that rotenone (1 microM), antimycin A (0.2 microg/ml) and sodium azide (5mM) decreased E(GSH); NAC restored E(GSH) to control values. At those concentrations mitochondrial poisons activated neurotransmitter release from CB chemoreceptor cells and decreased CB ATP levels, NAC being ineffective to modify these responses. Additional experiments with 3-nitroprionate (5mM), lower concentrations of rotenone and dinitrophenol revealed variable relationships between E(GSH) and chemoreceptor cell neurotransmitter release responses and ATP levels. These findings indicate a lack of correlation between mitochondrial-generated modifications of E(GSH) and chemoreceptor cells activity. This lack of correlation renders unlikely that alteration of mitochondrial production of ROS is the physiological pathway chemoreceptor cells use to signal hypoxia.
Collapse
Affiliation(s)
- A Gomez-Niño
- Departamento de Bioquímica y Biología Molecular y Fisiología, Universidad de Valladolid, Facultad de Medicina, Instituto de Biología y Genética Molecular, Valladolid, Spain
| | | | | | | |
Collapse
|
25
|
Rathore R, Zheng YM, Niu CF, Liu QH, Korde A, Ho YS, Wang YX. Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through the mitochondrial ROS-PKCepsilon signaling axis in pulmonary artery smooth muscle cells. Free Radic Biol Med 2008; 45:1223-31. [PMID: 18638544 PMCID: PMC2586914 DOI: 10.1016/j.freeradbiomed.2008.06.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 06/11/2008] [Indexed: 11/23/2022]
Abstract
The importance of NADPH oxidase (Nox) in hypoxic responses in hypoxia-sensing cells, including pulmonary artery smooth muscle cells (PASMCs), remains uncertain. In this study, using Western blot analysis we found that the major Nox subunits Nox1, Nox4, p22(phox), p47(phox), and p67(phox) were equivalently expressed in mouse pulmonary and systemic (mesenteric) arteries. However, acute hypoxia significantly increased Nox activity and translocation of p47(phox) protein to the plasma membrane in pulmonary, but not mesenteric, arteries. The Nox inhibitor apocynin and p47(phox) gene deletion attenuated the hypoxic increase in intracellular concentrations of reactive oxygen species and Ca(2+) ([ROS](i) and [Ca(2+)](i)), as well as contractions in mouse PASMCs, and abolished the hypoxic activation of Nox in pulmonary arteries. The conventional/novel protein kinase C (PKC) inhibitor chelerythrine, specific PKCepsilon translocation peptide inhibitor, and PKCepsilon gene deletion, but not the conventional PKC inhibitor GO6976, prevented the hypoxic increase in Nox activity in pulmonary arteries and [ROS](i) in PASMCs. The PKC activator phorbol 12-myristate 13-acetate could increase Nox activity in pulmonary and mesenteric arteries. Inhibition of mitochondrial ROS generation with rotenone or myxothiazol prevented hypoxic activation of Nox. Glutathione peroxidase-1 (Gpx1) gene overexpression to enhance H(2)O(2) removal significantly inhibited the hypoxic activation of Nox, whereas Gpx1 gene deletion had the opposite effect. Exogenous H(2)O(2) increased Nox activity in pulmonary and mesenteric arteries. These findings suggest that acute hypoxia may distinctively activate Nox to increase [ROS](i) through the mitochondrial ROS-PKCepsilon signaling axis, providing a positive feedback mechanism to contribute to the hypoxic increase in [ROS](i) and [Ca(2+)](i) as well as contraction in PASMCs.
Collapse
Affiliation(s)
- Rakesh Rathore
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
| | - Yun-Min Zheng
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
| | - Chun-Feng Niu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
| | - Qing-Hua Liu
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
| | - Amit Korde
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48201
| | - Yong-Xiao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, NY 12208
- Corresponding author: Dr. Yong-Xiao Wang, Albany Medical College, Center for Cardiovascular Sciences, Albany, NY 12208, Tel: 518 262-6504, Fax: 518 262-8101,
| |
Collapse
|
26
|
Liu X, He L, Stensaas L, Dinger B, Fidone S. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am J Physiol Lung Cell Mol Physiol 2008; 296:L158-66. [PMID: 18978039 DOI: 10.1152/ajplung.90383.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to chronic hypoxia (CH; 3-28 days at 380 Torr) induces adaptation in mammalian carotid body such that following CH an acute hypoxic challenge elicits an abnormally large increase in carotid sinus nerve impulse activity. The current study examines the hypothesis that CH initiates an immune response in the carotid body and that chemoreceptor hyperexcitability is dependent on the expression and action of inflammatory cytokines. CH resulted in a robust invasion of ED1(+) macrophages, which peaked on day 3 of exposure. Gene expression of proinflammatory cytokines, IL-1beta, TNFalpha, and the chemokine, monocyte chemoattractant protein-1, was increased >2-fold after 1 day of hypoxia followed by a >2-fold increase in IL-6 on day 3. After 28 days of CH, IL-6 remained elevated >5-fold, whereas expression of other cytokines recovered to normal levels. Cytokine expression was not restricted to immune cells. Studies of cultured type I cells harvested following 1 day of in vivo hypoxia showed elevated transcript levels of inflammatory cytokines. In situ hybridization studies confirmed expression of IL-6 in type I cells and also showed that CH induces IL-6 expression in supporting type II cells. Concurrent treatment of CH rats with anti-inflammatory drugs (ibuprofen or dexamethasone) blocked immune cell invasion and severely reduced CH-induced cytokine expression in carotid body. Drug treatment also blocked the development of chemoreceptor hypersensitivity in CH animals. Our findings indicate that chemoreceptor adaptation involves novel neuroimmune mechanisms, which may alter the functional phenotypes of type I cells and chemoafferent neurons.
Collapse
Affiliation(s)
- X Liu
- Dept. of Physiology, Univ. of Utah School of Medicine, Salt Lake City, UT 84108-6500, USA
| | | | | | | | | |
Collapse
|
27
|
Cummings KJ, Kalf D, Moore S, Miller BJ, Jirik FR, Wilson RJA. Superoxide Dismutase-1 Influences the Timing and Post-hypoxic Stability of Neonatal Breathing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 605:133-8. [DOI: 10.1007/978-0-387-73693-8_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Ward JPT. Oxygen sensors in context. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1777:1-14. [PMID: 18036551 DOI: 10.1016/j.bbabio.2007.10.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/21/2007] [Accepted: 10/24/2007] [Indexed: 01/02/2023]
Abstract
The ability to adapt to changes in the availability of O2 provides a critical advantage to all O2-dependent lifeforms. In mammals it allows optimal matching of the O2 requirements of the cells to ventilation and O2 delivery, underpins vital changes to the circulation during the transition from fetal to independent, air-breathing life, and provides a means by which dysfunction can be limited or prevented in disease. Certain tissues such as the carotid body, pulmonary circulation, neuroepithelial bodies and fetal adrenomedullary chromaffin cells are specialised for O2 sensing, though most others show for example alterations in transcription of specific genes during hypoxia. A number of mechanisms are known to respond to variations in PO2 over the physiological range, and have been proposed to fulfil the function as O2 sensors; these include modulation of mitochondrial oxidative phosphorylation and a number of O2-dependent synthetic and degradation pathways. There is however much debate as to their relative importance within and between specific tissues, whether their O2 sensitivity is actually appropriate to account for their proposed actions, and in particular their modus operandi. This review discusses our current understanding of how these mechanisms may operate, and attempts to put them into the context of the actual PO2 to which they are likely to be exposed. An important point raised is that the overall O2 sensitivity (P50) of any O2-dependent mechanism does not necessarily correlate with that of its O2 sensor, as the coupling function between the two may be complex and non-linear. In addition, although the bulk of the evidence suggests that mitochondria act as the key O2 sensor in carotid body, pulmonary artery and chromaffin cells, the signalling mechanisms by which alterations in their function are translated into a response appear to differ fundamentally, making a global unified theory of O2 sensing unlikely.
Collapse
Affiliation(s)
- Jeremy P T Ward
- King's College London School of Medicine, Division of Asthma, Allergy and Lung Biology, London SE1 9RT, UK
| |
Collapse
|
29
|
Anantharam V, Kaul S, Song C, Kanthasamy A, Kanthasamy AG. Pharmacological inhibition of neuronal NADPH oxidase protects against 1-methyl-4-phenylpyridinium (MPP+)-induced oxidative stress and apoptosis in mesencephalic dopaminergic neuronal cells. Neurotoxicology 2007; 28:988-97. [PMID: 17904225 PMCID: PMC2140261 DOI: 10.1016/j.neuro.2007.08.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 08/13/2007] [Accepted: 08/14/2007] [Indexed: 12/20/2022]
Abstract
Oxidative stress is widely recognized as a key mediator of degenerative processes in Parkinson's disease (PD). Recently, we demonstrated that the dopaminergic toxin MPP+ initiates oxidative stress to cause caspase-3-dependent apoptotic cell death in mesencephalic dopaminergic neuronal (N27) cells. In this study, we determined the source of reactive oxygen species (ROS) produced during MPP+-induced apoptotic cell death. In addition to mitochondria, plasma membrane NADPH oxidase is considered a major producer of ROS inside the cell. Here, we show that N27 neuronal cells express key NADPH oxidase subunits gp91phox and p67phox. We used structurally diverse NADPH oxidase inhibitors, aminoethyl-benzenesulfonylfluoride (AEBSF, 100-1000microM), apocynin (100-1000microM), and diphenylene iodonium (DPI, 3-30microM), to inhibit intrinsic NADPH oxidase activity in N27 cells. Flow cytometric analysis using the ROS-sensitive dye hydroethidine revealed that AEBSF blocked 300microM MPP+-induced ROS production for over 45min in N27 cells, in a dose-dependent manner. Further treatment with DPI, apocynin, and SOD also blocked MPP+-induced ROS production. In Sytox cell death assays, co-treatment with AEBSF, apocynin, or DPI for 24h significantly suppressed MPP+-induced cytotoxic cell death. Similarly, co-treatment with these inhibitors also significantly attenuated MPP+-induced increases in caspase-3 enzymatic activity. Furthermore, quantitative DNA fragmentation ELISA assays revealed that AEBSF, DPI, and apocynin rescue N27 cells from MPP+-induced apoptotic cell death. Together, these results indicate for the first time that intracellular ROS generated by NAPDH oxidase are present within the mesencephalic neuronal cells, and are a key determinant of MPP+-mediated dopaminergic degeneration in in vitro models of dopaminergic degeneration. This study supports a critical role of NADPH oxidase in the oxidative damage in PD; targeting this enzyme may lead to novel therapies for PD.
Collapse
Affiliation(s)
- Vellareddy Anantharam
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
The carotid body is a peripheral sensory organ that can transduce modest falls in the arterial PO2 (partial pressure of oxygen) into a neural signal that provides the afferent limb of a set of stereotypic cardiorespiratory reflexes that are graded according to the intensity of the stimulus. The stimulus sensed is tissue PO2 and this can be estimated to be around 50 mmHg during arterial normoxia, falling to between 10–40 mmHg during hypoxia. The chemoafferent hypoxia stimulus-response curve is exponential, rising in discharge frequency with falling PO2, and with no absolute threshold apparent in hyperoxia. Although the oxygen sensor has not been definitely identified, it is believed to reside within type I cells of the carotid body, and presently two major hypotheses have been put forward to account for the sensing mechanism. The first relies upon alterations in the cell energy status that is sensed by the cytosolic enzyme AMPK (AMP-activated protein kinase) subsequent to hypoxia-induced increases in the cellular AMP/ATP ratio during hypoxia. AMPK is localized close to the plasma membrane and its activation can inhibit both large conductance, calcium-activated potassium (BK) and background, TASK-like potassium channels, inducing membrane depolarization, voltage-gated calcium entry and neurosecretion of a range of transmitter and modulator substances, including catecholamines, ATP and acetylcholine. The alternative hypothesis considers a role for haemoxygenase-2, which uses oxygen as a substrate and may act to gate an associated BK channel through the action of its products, carbon monoxide and possibly haem. It is likely however, that these and other hypotheses of oxygen transduction are not mutually exclusive and that each plays a role, via its own particular sensitivity, in shaping the full response of this organ between hyperoxia and anoxia.
Collapse
Affiliation(s)
- Prem Kumar
- Department of Physiology, The Medical School, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
31
|
Gonzalez C, Agapito MT, Rocher A, Gonzalez-Martin MC, Vega-Agapito V, Gomez-Niño A, Rigual R, Castañeda J, Obeso A. Chemoreception in the context of the general biology of ROS. Respir Physiol Neurobiol 2007; 157:30-44. [PMID: 17331812 DOI: 10.1016/j.resp.2007.01.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Superoxide anion is the most important reactive oxygen species (ROS) primarily generated in cells. The main cellular constituents with capabilities to generate superoxide anion are NADPH oxidases and mitochondrial respiratory chain. The emphasis of our article is centered in critically examining hypotheses proposing that ROS generated by NADPH oxidase and mitochondria are key elements in O(2)-sensing and hypoxic responses generation in carotid body chemoreceptor cells. Available data indicate that chemoreceptor cells express a specific isoform of NADPH oxidase that is activated by hypoxia; generated ROS acting as negative modulators of the carotid body (CB) hypoxic responses. Literature is also consistent in supporting that poisoned respiratory chain can produce high amounts of ROS, making mitochondrial ROS potential triggers-modulators of the CB activation elicited by mitochondrial venoms. However, most data favour the notion that levels of hypoxia, capable of strongly activating chemoreceptor cells, would not increase the rate of ROS production in mitochondria, making mitochondrial ROS unlikely triggers of hypoxic responses in the CB. Finally, we review recent literature on heme oxygenases from two perspectives, as potential O(2)-sensors in chemoreceptor cells and as generators of bilirubin which is considered to be a ROS scavenger of major quantitative importance in mammalian cells.
Collapse
Affiliation(s)
- C Gonzalez
- Departamento de Bioquímica y Biología Molecular y Fisiología e, Instituto de Biología y Genética Molecular, Facultad de Medicina, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Suh SW, Gum ET, Hamby AM, Chan PH, Swanson RA. Hypoglycemic neuronal death is triggered by glucose reperfusion and activation of neuronal NADPH oxidase. J Clin Invest 2007; 117:910-8. [PMID: 17404617 PMCID: PMC1838937 DOI: 10.1172/jci30077] [Citation(s) in RCA: 303] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Accepted: 01/30/2007] [Indexed: 12/19/2022] Open
Abstract
Hypoglycemic coma and brain injury are potential complications of insulin therapy. Certain neurons in the hippocampus and cerebral cortex are uniquely vulnerable to hypoglycemic cell death, and oxidative stress is a key event in this cell death process. Here we show that hypoglycemia-induced oxidative stress and neuronal death are attributable primarily to the activation of neuronal NADPH oxidase during glucose reperfusion. Superoxide production and neuronal death were blocked by the NADPH oxidase inhibitor apocynin in both cell culture and in vivo models of insulin-induced hypoglycemia. Superoxide production and neuronal death were also blocked in studies using mice or cultured neurons deficient in the p47(phox) subunit of NADPH oxidase. Chelation of zinc with calcium disodium EDTA blocked both the assembly of the neuronal NADPH oxidase complex and superoxide production. Inhibition of the hexose monophosphate shunt, which utilizes glucose to regenerate NADPH, also prevented superoxide formation and neuronal death, suggesting a mechanism linking glucose reperfusion to superoxide formation. Moreover, the degree of superoxide production and neuronal death increased with increasing glucose concentrations during the reperfusion period. These results suggest that high blood glucose concentrations following hypoglycemic coma can initiate neuronal death by a mechanism involving extracellular zinc release and activation of neuronal NADPH oxidase.
Collapse
Affiliation(s)
- Sang Won Suh
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Elizabeth T. Gum
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Aaron M. Hamby
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Pak H. Chan
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| | - Raymond A. Swanson
- Department of Neurology, UCSF, and Veterans Affairs Medical Center, San Francisco, California, USA.
Department of Neurosurgery, Department of Neurology and Neurological Sciences, and Program in Neurosciences, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Balbir A, Lee H, Okumura M, Biswal S, Fitzgerald RS, Shirahata M. A search for genes that may confer divergent morphology and function in the carotid body between two strains of mice. Am J Physiol Lung Cell Mol Physiol 2007; 292:L704-15. [PMID: 17098806 DOI: 10.1152/ajplung.00383.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The carotid body (CB) is the primary hypoxic chemosensory organ. Its hypoxic response appears to be genetically controlled. We have hypothesized that: 1) genes related to CB function are expressed less in the A/J mice (low responder to hypoxia) compared with DBA/2J mice (high responder to hypoxia); and 2) gene expression levels of morphogenic and trophic factors of the CB are significantly lower in the A/J mice than DBA/2J mice. This study utilizes microarray analysis to test these hypotheses. Three sets of CBs were harvested from both strains. RNA was isolated and used for global gene expression profiling (Affymetrix Mouse 430 v2.0 array). Statistically significant gene expression was determined as a minimum six counts of nine pairwise comparisons, a minimum 1.5-fold change, and P ≤ 0.05. Our results demonstrated that 793 genes were expressed less and that 568 genes were expressed more in the A/J strain vs. the DBA/2J strain. Analysis of individual genes indicates that genes encoding ion channels are differentially expressed between the two strains. Genes related to neurotransmitter metabolism, synaptic vesicles, and the development of neural crest-derived cells are expressed less in the A/J CB vs. the DBA/2J CB. Through pathway analysis, we have constructed a model that shows gene interactions and offers a roadmap to investigate CB development and hypoxic chemosensing/chemotransduction processes. Particularly, Gdnf, Bmp2, Kcnmb2, Tph1, Hif1a, and Arnt2 may contribute to the functional differences in the CB between the two strains. Bmp2, Phox2b, Dlx2, and Msx2 may be important for the morphological differences.
Collapse
Affiliation(s)
- Alexander Balbir
- Division of Physiology, Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, E7610, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
34
|
Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 2007; 87:245-313. [PMID: 17237347 DOI: 10.1152/physrev.00044.2005] [Citation(s) in RCA: 4938] [Impact Index Per Article: 290.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
For a long time, superoxide generation by an NADPH oxidase was considered as an oddity only found in professional phagocytes. Over the last years, six homologs of the cytochrome subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the phagocyte NADPH oxidase itself (NOX2/gp91(phox)), the homologs are now referred to as the NOX family of NADPH oxidases. These enzymes share the capacity to transport electrons across the plasma membrane and to generate superoxide and other downstream reactive oxygen species (ROS). Activation mechanisms and tissue distribution of the different members of the family are markedly different. The physiological functions of NOX family enzymes include host defense, posttranlational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. NOX enzymes also contribute to a wide range of pathological processes. NOX deficiency may lead to immunosuppresion, lack of otoconogenesis, or hypothyroidism. Increased NOX activity also contributes to a large number or pathologies, in particular cardiovascular diseases and neurodegeneration. This review summarizes the current state of knowledge of the functions of NOX enzymes in physiology and pathology.
Collapse
Affiliation(s)
- Karen Bedard
- Biology of Ageing Laboratories, University of Geneva, Geneva, Switzerland
| | | |
Collapse
|
35
|
Dinger B, He L, Chen J, Liu X, Gonzalez C, Obeso A, Sanders K, Hoidal J, Stensaas L, Fidone S. The role of NADPH oxidase in carotid body arterial chemoreceptors. Respir Physiol Neurobiol 2006; 157:45-54. [PMID: 17223613 PMCID: PMC2570203 DOI: 10.1016/j.resp.2006.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 12/06/2006] [Accepted: 12/10/2006] [Indexed: 01/22/2023]
Abstract
O(2)-sensing in the carotid body occurs in neuroectoderm-derived type I glomus cells where hypoxia elicits a complex chemotransduction cascade involving membrane depolarization, Ca(2+) entry and the release of excitatory neurotransmitters. Efforts to understand the exquisite O(2)-sensitivity of these cells currently focus on the coupling between local P(O2) and the open-closed state of K(+)-channels. Amongst multiple competing hypotheses is the notion that K(+)-channel activity is mediated by a phagocytic-like multisubunit enzyme, NADPH oxidase, which produces reactive oxygen species (ROS) in proportion to the prevailing P(O2). In O(2)-sensitive cells of lung neuroepithelial bodies (NEB), multiple studies confirm that ROS levels decrease in hypoxia, and that E(M) and K(+)-channel activity are indeed controlled by ROS produced by NADPH oxidase. However, recent studies in our laboratories suggest that ROS generated by a non-phagocyte isoform of the oxidase are important contributors to chemotransduction, but that their role in type I cells differs fundamentally from the mechanism utilized by NEB chemoreceptors. Data indicate that in response to hypoxia, NADPH oxidase activity is increased in type I cells, and further, that increased ROS levels generated in response to low-O(2) facilitate cell repolarization via specific subsets of K(+)-channels.
Collapse
Affiliation(s)
- B Dinger
- Department of Physiology, University of Utah, School of Medicine, Salt Lake City, UT, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C. Function of the rat carotid body chemoreceptors in ageing. J Neurochem 2006; 99:711-23. [PMID: 16899065 DOI: 10.1111/j.1471-4159.2006.04094.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Some age-related deficits in the ventilatory responses have been attributed to a decline in the functionality of the carotid body (CB) arterial chemoreceptors, but a systematic study of the CB function in ageing is lacking. In rats aged 3-24 months, we have performed quantitative morphometry on specific chemoreceptor tissue, assessed the function of chemoreceptor cells by measuring the content, synthesis and release of catecholamines (a chemoreceptor cell neurotransmitter) in normoxia and hypoxia, and determined the functional activity of the intact organ by measuring chemosensory activity in the carotid sinus nerve (CSN) in normoxia, hypoxia and hypercapnic acidosis. We found that with age CBs enlarge, but at the same time there is a concomitant decrease in the percentage of chemoreceptor tissue. CB content and turnover time for their catecholamines increase with age. Hypoxic stimulation of chemoreceptor cells elicits a smaller release of catecholamines in rats after 12 months of age, but a non-specific depolarizing stimulus elicits a comparable release at all ages. In parallel, there was a marked decrease in the responsiveness to hypoxia, but not to an acidic-hypercapnic stimulus, assessed as chemosensory activity in the CSN. We conclude that in aged mammals chemoreceptor cells become hypofunctional, leading to a decreased peripheral drive of ventilation.
Collapse
Affiliation(s)
- Silvia V Conde
- Departamento de Bioquímica y Biología Molecular y Fisiología, Facultad de Medicina. Universidad de Valladolid, Valladolid, Spain
| | | | | | | | | |
Collapse
|
37
|
Abstract
The majority of physiological processes proceed most favourably when O(2) is in plentiful supply. However, there are a number of physiological and pathological circumstances in which this supply is reduced either acutely or chronically. A crucial homeostatic response to such arterial hypoxaemia is carotid body excitation and a resultant increase in ventilation. Central to this response in carotid body, and many other chemosensory tissues, is the rapid inhibition of ion channels by hypoxia. Since the first direct demonstration of hypoxia-evoked depression in K(+) channel activity, the numbers of mechanisms which have been proposed to serve as the primary O(2) sensor have been almost as numerous as the experimental strategies with which to probe their nature. Three of the current favourite candidate mechanisms are mitochondria, AMP-activated kinase and haemoxygenase-2; a fourth proposal has been NADPH oxidase, but recent evidence suggests that this enzyme plays a secondary role in the O(2)-sensing process. All of these proposals have attractive points, but none can fully reconcile all of the data which have accumulated over the last two decades or so, suggesting that there may, in fact, not be a unique sensing system even within a single cell type. This latter point is key, because it implies that the ability of a cell to respond appropriately to decreased O(2) availability is biologically so important that several mechanisms have evolved to ensure that cellular function is never compromised during moderate to severe hypoxic insult.
Collapse
Affiliation(s)
- Paul J Kemp
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff CF11 9BX, UK.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Tumor hypoxia induces cancer cell treatment resistance, angiogenesis, invasiveness, and overall poor clinical outcome. Cellular adaptations to hypoxia are largely driven by hypoxia-induced alterations in gene transcription, mRNA translation, and protein stability. This review will summarize recent advances in the understanding of mammalian oxygen-sensing mechanisms in normal and cancerous cells. RECENT FINDINGS Specific molecular candidates have been identified that are involved in the primary sensing of hypoxia or its secondary consequences. Chief amongst these are the iron and 2-oxoglutarate-dependent dioxygenases that hydroxylate the alpha subunits of hypoxia-inducible transcription factors. This oxygen-dependent reaction, which prevents the transcription of many genes, is relieved under hypoxia. Evidence for the regulated expression and decay of the hypoxia-inducible transcription factor hydroxylating enzymes suggests that the sensitivity of transcriptional responses to hypoxia can be dynamically adjusted. Recent results also argue that these hydroxylating enzymes may be able to sense not only oxygen availability, but also the accumulation of bioenergetic intermediates and reactive oxygen species. In cancer cells, changes in these metabolites may accompany hypoxia or may occur independently. Several organellar compartments including plasma membrane, mitochondria and endoplasmic reticulum also appear to contribute to oxygen sensing through the generation of metabolites or through regulation of protein translation. SUMMARY Oxygen-sensing mechanisms induce prominent clinically relevant changes in cancer cells and tumor biology through the control of gene expression. Significant overlap exists between oxygen-sensing mechanisms and other metabolic and cell stress sensing pathways, which allows nonhypoxic cell stresses to activate hypoxia-inducible responses.
Collapse
Affiliation(s)
- Ajay Verma
- Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| |
Collapse
|
39
|
Abstract
All cells respond to metabolic stress. However, a variety of specialized cells, commonly referred to as O2-sensing cells, are acutely sensitive to relatively small changes in PO2. Within a variety of organisms such O2-sensing cells have evolved as vital homeostatic mechanisms that monitor O2 supply and alter respiratory and circulatory function, as well as the capacity of the blood to transport O2. Thereby, arterial PO2 may be maintained within physiological limits. In mammals, for example, two key tissues that contribute to this process are the pulmonary arteries and the carotid bodies. Constriction of pulmonary arteries by hypoxia optimizes ventilation-perfusion matching in the lung, whilst carotid body excitation by hypoxia initiates corrective changes in breathing patterns via increased sensory afferent discharge to the brain stem. Despite extensive investigation, the precise mechanism(s) by which hypoxia mediates these responses has remained elusive. It is clear, however, that hypoxia inhibits mitochondrial function in O2-sensing cells over a range of PO2 that has no such effect on other cell types. This raised the possibility that AMP-activated protein kinase might function to couple mitochondrial oxidative phosphorylation to Ca2+ signalling mechanisms in O2-sensing cells and thereby underpin pulmonary artery constriction and carotid body excitation by hypoxia. Our recent investigations have provided significant evidence in support of this view.
Collapse
Affiliation(s)
- A Mark Evans
- Division of Biomedical Sciences, School of Biology, Bute Building, University of St Andrews, St Andrews, Fife KY16 9TS, UK.
| |
Collapse
|
40
|
He L, Dinger B, Gonzalez C, Obeso A, Fidone S. Function of NADPH oxidase and signaling by reactive oxygen species in rat carotid body type I cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 580:155-60; discussion 351-9. [PMID: 16683712 DOI: 10.1007/0-387-31311-7_23] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- L He
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, Utah 84108, USA
| | | | | | | | | |
Collapse
|