1
|
Zeng Z, Abdelwahid E, Chen W, Ascoli C, Pham T, Jacobson JR, Dudek SM, Natarajan V, Aldaz CM, Machado RF, Singla S. Endothelial knockdown of the tumor suppressor, WWOX, increases inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2024; 326:L687-L697. [PMID: 38563965 PMCID: PMC11380939 DOI: 10.1152/ajplung.00277.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Chronic cigarette smoke exposure decreases lung expression of WWOX which is known to protect the endothelial barrier during infectious models of acute respiratory distress syndrome (ARDS). Proteomic analysis of WWOX-silenced endothelial cells (ECs) was done using tandem mass tag mass spectrometry (TMT-MS). WWOX-silenced ECs as well as those isolated from endothelial cell Wwox knockout (EC Wwox KO) mice were subjected to cyclic stretch (18% elongation, 0.5 Hz, 4 h). Cellular lysates and media supernatant were harvested for assays of cellular signaling, protein expression, and cytokine release. These were repeated with dual silencing of WWOX and zyxin. Control and EC Wwox KO mice were subjected to high tidal volume ventilation. Bronchoalveolar lavage fluid and mouse lung tissue were harvested for cellular signaling, cytokine secretion, and histological assays. TMT-MS revealed upregulation of zyxin expression during WWOX knockdown which predicted a heightened inflammatory response to mechanical stretch. WWOX-silenced ECs and ECs isolated from EC Wwox mice displayed significantly increased cyclic stretch-mediated secretion of various cytokines (IL-6, KC/IL-8, IL-1β, and MCP-1) relative to controls. This was associated with increased ERK and JNK phosphorylation but decreased p38 mitogen-activated kinases (MAPK) phosphorylation. EC Wwox KO mice subjected to VILI sustained a greater degree of injury than corresponding controls. Silencing of zyxin during WWOX knockdown abrogated stretch-induced increases in IL-8 secretion but not in IL-6. Loss of WWOX function in ECs is associated with a heightened inflammatory response during mechanical stretch that is associated with increased MAPK phosphorylation and appears, in part, to be dependent on the upregulation of zyxin.NEW & NOTEWORTHY Prior tobacco smoke exposure is associated with an increased risk of acute respiratory distress syndrome (ARDS) during critical illness. Our laboratory is investigating one of the gene expression changes that occurs in the lung following smoke exposure: WWOX downregulation. Here we describe changes in protein expression associated with WWOX knockdown and its influence on ventilator-induced ARDS in a mouse model.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, the First Affiliation Hospital, Jiangxi Medical College, Nanchang University, Nanchang, People's Republic of China
| | - Eltyeb Abdelwahid
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Trinh Pham
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jeffrey R Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Steven M Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| | - C Marcelo Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas, United States
| | - Roberto F Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University, Indianapolis, Indiana, United States
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
| |
Collapse
|
2
|
Shin MJ, Kim HS, Lee P, Yang NG, Kim JY, Eun YS, Lee W, Kim D, Lee Y, Jung KE, Hong D, Shin JM, Lee SH, Lee SY, Kim CD, Kim JE. Mechanistic Investigation of WWOX Function in NF-kB-Induced Skin Inflammation in Psoriasis. Int J Mol Sci 2023; 25:167. [PMID: 38203337 PMCID: PMC10779412 DOI: 10.3390/ijms25010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation, aberrant differentiation of keratinocytes, and dysregulated immune responses. WW domain-containing oxidoreductase (WWOX) is a non-classical tumor suppressor gene that regulates multiple cellular processes, including proliferation, apoptosis, and migration. This study aimed to explore the possible role of WWOX in the pathogenesis of psoriasis. Immunohistochemical analysis showed that the expression of WWOX was increased in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model. Immortalized human epidermal keratinocytes were transduced with a recombinant adenovirus expressing microRNA specific for WWOX to downregulate its expression. Inflammatory responses were detected using Western blotting, real-time quantitative reverse transcription polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay. In human epidermal keratinocytes, WWOX knockdown reduced nuclear factor-kappa B signaling and levels of proinflammatory cytokines induced by polyinosinic: polycytidylic acid [(poly(I:C)] in vitro. Furthermore, calcium chelator and protein kinase C (PKC) inhibitors significantly reduced poly(I:C)-induced inflammatory reactions. WWOX plays a role in the inflammatory reaction of epidermal keratinocytes by regulating calcium and PKC signaling. Targeting WWOX could be a novel therapeutic approach for psoriasis in the future.
Collapse
Affiliation(s)
- Min-Jeong Shin
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Hyun-Sun Kim
- Department of Dermatology, Soonchunhyang University Graduate School of Medicine, Asan 31538, Republic of Korea (P.L.)
| | - Pyeongan Lee
- Department of Dermatology, Soonchunhyang University Graduate School of Medicine, Asan 31538, Republic of Korea (P.L.)
| | - Na-Gyeong Yang
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Jae-Yun Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Yun-Su Eun
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Whiin Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Doyeon Kim
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Young Lee
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Kyung-Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Dongkyun Hong
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Jung-Min Shin
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
| | - Sul-Hee Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, Republic of Korea
| | - Sung-Yul Lee
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University Hospital, Daejeon 35015, Republic of Korea (Y.L.)
- Department of Medical Science, School of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jung-Eun Kim
- Department of Dermatology, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 31151, Republic of Korea (N.-G.Y.)
| |
Collapse
|
3
|
Battaglia L, Scorrano G, Spiaggia R, Basile A, Palmucci S, Foti PV, Spatola C, Iacomino M, Marinangeli F, Francia E, Comisi F, Corsello A, Salpietro V, Vittori A, David E. Neuroimaging features of WOREE syndrome: a mini-review of the literature. Front Pediatr 2023; 11:1301166. [PMID: 38161429 PMCID: PMC10757851 DOI: 10.3389/fped.2023.1301166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
The WWOX gene encodes a 414-amino-acid protein composed of two N-terminal WW domains and a C-terminal short-chain dehydrogenase/reductase (SDR) domain. WWOX protein is highly conserved among species and mainly expressed in the cerebellum, cerebral cortex, brain stem, thyroid, hypophysis, and reproductive organs. It plays a crucial role in the biology of the central nervous system, and it is involved in neuronal development, migration, and proliferation. Biallelic pathogenic variants in WWOX have been associated with an early infantile epileptic encephalopathy known as WOREE syndrome. Both missense and null variants have been described in affected patients, leading to a reduction in protein function and stability. The most severe WOREE phenotypes have been related to biallelic null/null variants, associated with the complete loss of function of the protein. All affected patients showed brain anomalies on magnetic resonance imaging (MRI), suggesting the pivotal role of WWOX protein in brain homeostasis and developmental processes. We provided a literature review, exploring both the clinical and radiological spectrum related to WWOX pathogenic variants, described to date. We focused on neuroradiological findings to better delineate the WOREE phenotype with diagnostic and prognostic implications.
Collapse
Affiliation(s)
- Laura Battaglia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Giovanna Scorrano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rossana Spiaggia
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Corrado Spatola
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Instituto Giannina Gaslini, Genoa, Italy
| | - Franco Marinangeli
- Department of Anesthesia, Critical Care and Pain Therapy, University of L’aquila, L’aquila, Italy
| | - Elisa Francia
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | | | | | - Vincenzo Salpietro
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Department of Neuromuscular Disorders, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Alessandro Vittori
- Department of Anesthesia and Critical Care, ARCO ROMA, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Emanuele David
- Department of Medical Surgical Sciences and Advanced Technologies “GF Ingrassia”, University Hospital Policlinic “G. Rodolico-San Marco”, Catania, Italy
| |
Collapse
|
4
|
Hussain T, Sanchez K, Crayton J, Saha D, Jeter C, Lu Y, Abba M, Seo R, Noebels JL, Fonken L, Aldaz CM. WWOX P47T partial loss-of-function mutation induces epilepsy, progressive neuroinflammation, and cerebellar degeneration in mice phenocopying human SCAR12. Prog Neurobiol 2023; 223:102425. [PMID: 36828035 PMCID: PMC10835625 DOI: 10.1016/j.pneurobio.2023.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/11/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023]
Abstract
WWOX gene loss-of-function (LoF) has been associated with neuropathologies resulting in developmental, epileptic, and ataxic phenotypes of varying severity based on the level of WWOX dysfunction. WWOX gene biallelic germline variant p.Pro47Thr (P47T) has been causally associated with a new form of autosomal recessive cerebellar ataxia with epilepsy and intellectual disability (SCAR12, MIM:614322). This mutation affecting the WW1 protein binding domain of WWOX, impairs its interaction with canonical proline-proline-X-tyrosine motifs in partner proteins. We generated a mutant knock-in mouse model of Wwox P47T mutation that phenocopies human SCAR12. WwoxP47T/P47T mice displayed epilepsy, profound social behavior and cognition deficits, and poor motor coordination, and unlike KO models that survive only for 1 month, live beyond 1 year of age. These deficits progressed with age and mice became practically immobile, suggesting severe cerebellar dysfunction. WwoxP47T/P47T mice brains revealed signs of progressive neuroinflammation with elevated astro-microgliosis that increased with age. Cerebellar cortex displayed significantly reduced molecular and granular layer thickness and a strikingly reduced number of Purkinje cells with degenerated dendrites. Transcriptome profiling from various brain regions of WW domain LoF mice highlighted widespread changes in neuronal and glial pathways, enrichment of bioprocesses related to neuroinflammation, and severe cerebellar dysfunction. Our results show significant pathobiological effects and potential mechanisms through which WWOX partial LoF leads to epilepsy, cerebellar neurodegeneration, neuroinflammation, and ataxia. Additionally, the mouse model described here will be a useful tool to understand the role of WWOX in common neurodegenerative conditions in which this gene has been identified as a novel risk factor.
Collapse
Affiliation(s)
- Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer Crayton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dhurjhoti Saha
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Martin Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, School of Medicine, Universidad de La Plata, La Plata 1900, Argentina
| | - Ryan Seo
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Noebels
- Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laura Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - C Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
5
|
Wang C, Yang Y, Zhou C, Mei X, Liu J, Luo K, Zhou J, Qin C, Zeng Z. WWOX activates autophagy to alleviate lipopolysaccharide-induced acute lung injury by regulating mTOR. Int Immunopharmacol 2023; 115:109671. [PMID: 36621327 DOI: 10.1016/j.intimp.2022.109671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Acute lung injury (ALI) is characterized by acute systemic inflammatory responses that may lead to severe acute respiratory distress syndrome (ARDS). The clinical course of ALI/ARDS is variable; however, it has been reported that lipopolysaccharides (LPS) play a role in its development. The fragile chromosomal site gene WWOX is highly sensitive to genotoxic stress induced by environmental exposure and is an important candidate gene for exposure-related lung disease research. However, the expression of WWOX and its role in LPS-induced ALI still remain unidentified. This study investigated the expression of WWOX in mouse lung and epithelial cells and explored the role of WWOX in LPS-induced ALI model in vitro and in vivo. In addition, we explored one of the possible mechanisms by which WWOX alleviates ALI from the perspective of autophagy. Here, we observed that LPS stimulation reduced the expression of WWOX and the autophagy marker microtubule-associated protein 1 light chain 3β-II (MAP1LC3B/LC3B) in mouse lung epithelial and human epithelial (H292) cells. Overexpression of WWOX led to the activation of autophagy and inhibited inflammatory responses in LPS-induced ALI cells and mouse model. More importantly, we found that WWOX interacts with mechanistic target of rapamycin [serine/threonine kinase] (mTOR) and regulates mTOR and ULK-1 signaling-mediated autophagy. Thus, reduced WWOX levels were associated with LPS-induced ALI. WWOX can activate autophagy in lung epithelial cells and protect against LPS-induced ALI, which is partly related to the mTOR-ULK1 signaling pathway.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Yuting Yang
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Chaoqi Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xianghuang Mei
- Department of Gastrointestinal Surgery, Heji Hospital Affiliated to Changzhi Medical College, Changzhi 046000, China
| | - Jing Liu
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Kaihang Luo
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Jia Zhou
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, Nanchang 330052, China
| | - Cheng Qin
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhenguo Zeng
- Department of Critical Care Medicine, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
6
|
Kiser JN, Neibergs HL. Identifying Loci Associated With Bovine Corona Virus Infection and Bovine Respiratory Disease in Dairy and Feedlot Cattle. Front Vet Sci 2021; 8:679074. [PMID: 34409086 PMCID: PMC8364960 DOI: 10.3389/fvets.2021.679074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Bovine coronavirus (BCoV) is associated with respiratory and enteric infections in both dairy and beef cattle worldwide. It is also one of a complex of pathogens associated with bovine respiratory disease (BRD), which affects millions of cattle annually. The objectives of this study were to identify loci and heritability estimates associated with BCoV infection and BRD in dairy calves and feedlot cattle. Dairy calves from California (n = 1,938) and New Mexico (n = 647) and feedlot cattle from Colorado (n = 915) and Washington (n = 934) were tested for the presence of BCoV when classified as BRD cases or controls following the McGuirk scoring system. Two comparisons associated with BCoV were investigated: (1) cattle positive for BCoV (BCoV+) were compared to cattle negative for BCoV (BCoV-) and (2) cattle positive for BCoV and affected with BRD (BCoV+BRD+) were compared to cattle negative for BCoV and BRD (BCoV-BRD-). The Illumina BovineHD BeadChip was used for genotyping, and genome-wide association analyses (GWAA) were performed using EMMAX (efficient mixed-model association eXpedited). The GWAA for BCoV+ identified 51 loci (p < 1 × 10-5; 24 feedlot, 16 dairy, 11 combined) associated with infection with BCoV. Three loci were associated with BCoV+ across populations. Heritability estimates for BCoV+ were 0.01 for dairy, 0.11 for feedlot cattle, and 0.03 for the combined population. For BCoV+BRD+, 80 loci (p < 1 × 10-5; 26 feedlot, 25 dairy, 29 combined) were associated including 14 loci across populations. Heritability estimates for BCoV+BRD+ were 0.003 for dairy, 0.44 for feedlot cattle, and 0.07 for the combined population. Several positional candidate genes associated with BCoV and BRD in this study have been associated with other coronaviruses and respiratory infections in humans and mice. These results suggest that selection may reduce susceptibility to BCoV infection and BRD in cattle.
Collapse
Affiliation(s)
- Jennifer N Kiser
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| | - Holly L Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
7
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:cancers13122955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
|
8
|
Tanimura K, Nyunoya T. Loss of Endothelial WWOX: A Risk Factor for ARDS in Smokers? Am J Respir Cell Mol Biol 2021; 64:10-11. [PMID: 33105088 PMCID: PMC7780999 DOI: 10.1165/rcmb.2020-0444ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Kazuya Tanimura
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and
| | - Toru Nyunoya
- Department of Medicine University of Pittsburgh Pittsburgh, Pennsylvania and.,Medical Specialty Service Line Veterans Affairs Pittsburgh Healthcare System Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Zeng Z, Chen W, Moshensky A, Shakir Z, Khan R, Crotty Alexander LE, Ware LB, Aldaz CM, Jacobson JR, Dudek SM, Natarajan V, Machado RF, Singla S. Cigarette Smoke and Nicotine-Containing Electronic-Cigarette Vapor Downregulate Lung WWOX Expression, Which Is Associated with Increased Severity of Murine Acute Respiratory Distress Syndrome. Am J Respir Cell Mol Biol 2021; 64:89-99. [PMID: 33058734 PMCID: PMC7780991 DOI: 10.1165/rcmb.2020-0145oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
A history of chronic cigarette smoking is known to increase risk for acute respiratory distress syndrome (ARDS), but the corresponding risks associated with chronic e-cigarette use are largely unknown. The chromosomal fragile site gene, WWOX, is highly susceptible to genotoxic stress from environmental exposures and thus an interesting candidate gene for the study of exposure-related lung disease. Lungs harvested from current versus former/never-smokers exhibited a 47% decrease in WWOX mRNA levels. Exposure to nicotine-containing e-cigarette vapor resulted in an average 57% decrease in WWOX mRNA levels relative to vehicle-treated controls. In separate studies, endothelial (EC)-specific WWOX knockout (KO) versus WWOX flox control mice were examined under ARDS-producing conditions. EC WWOX KO mice exhibited significantly greater levels of vascular leak and histologic lung injury. ECs were isolated from digested lungs of untreated EC WWOX KO mice using sorting by flow cytometry for CD31+ CD45-cells. These were grown in culture, confirmed to be WWOX deficient by RT-PCR and Western blotting, and analyzed by electric cell impedance sensing as well as an FITC dextran transwell assay for their barrier properties during methicillin-resistant Staphylococcus aureus or LPS exposure. WWOX KO ECs demonstrated significantly greater declines in barrier function relative to cells from WWOX flox controls during either methicillin-resistant S. aureus or LPS treatment as measured by both electric cell impedance sensing and the transwell assay. The increased risk for ARDS observed in chronic smokers may be mechanistically linked, at least in part, to lung WWOX downregulation, and this phenomenon may also manifest in the near future in chronic users of e-cigarettes.
Collapse
Affiliation(s)
- Zhenguo Zeng
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China
| | - Weiguo Chen
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | - Zaid Shakir
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Raheel Khan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | | | | | - C. M. Aldaz
- MD Anderson Cancer Center, University of Texas, Houston, Texas; and
| | - Jeffrey R. Jacobson
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Steven M. Dudek
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Viswanathan Natarajan
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sunit Singla
- Division of Pulmonary, Critical Care, Sleep and Allergy Medicine, University of Illinois, Chicago, Illinois
| |
Collapse
|
10
|
Aldaz CM, Hussain T. WWOX Loss of Function in Neurodevelopmental and Neurodegenerative Disorders. Int J Mol Sci 2020; 21:E8922. [PMID: 33255508 PMCID: PMC7727818 DOI: 10.3390/ijms21238922] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023] Open
Abstract
The WWOX gene was initially discovered as a putative tumor suppressor. More recently, its association with multiple central nervous system (CNS) pathologies has been recognized. WWOX biallelic germline pathogenic variants have been implicated in spinocerebellar ataxia type 12 (SCAR12; MIM:614322) and in early infantile epileptic encephalopathy (EIEE28; MIM:616211). WWOX germline copy number variants have also been associated with autism spectrum disorder (ASD). All identified germline genomic variants lead to partial or complete loss of WWOX function. Importantly, large-scale genome-wide association studies have also identified WWOX as a risk gene for common neurodegenerative conditions such as Alzheimer's disease (AD) and multiple sclerosis (MS). Thus, the spectrum of CNS disorders associated with WWOX is broad and heterogeneous, and there is little understanding of potential mechanisms at play. Exploration of gene expression databases indicates that WWOX expression is comparatively higher in the human cerebellar cortex than in other CNS structures. However, RNA in-situ hybridization data from the Allen Mouse Brain Atlas show that specific regions of the basolateral amygdala (BLA), the medial entorhinal cortex (EC), and deep layers of the isocortex can be singled out as brain regions with specific higher levels of Wwox expression. These observations are in close agreement with single-cell RNA-seq data which indicate that neurons from the medial entorhinal cortex, Layer 5 from the frontal cortex as well as GABAergic basket cells and granule cells from cerebellar cortex are the specific neuronal subtypes that display the highest Wwox expression levels. Importantly, the brain regions and cell types in which WWOX is most abundantly expressed, such as the EC and BLA, are intimately linked to pathologies and syndromic conditions in turn associated with this gene, such as epilepsy, intellectual disability, ASD, and AD. Higher Wwox expression in interneurons and granule cells from cerebellum points to a direct link to the described cerebellar ataxia in cases of WWOX loss of function. We now know that total or partial impairment of WWOX function results in a wide and heterogeneous variety of neurodegenerative conditions for which the specific molecular mechanisms remain to be deciphered. Nevertheless, these observations indicate an important functional role for WWOX in normal development and function of the CNS. Evidence also indicates that disruption of WWOX expression at the gene or protein level in CNS has significant deleterious consequences.
Collapse
Affiliation(s)
- C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, Science Park, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA;
| | | |
Collapse
|
11
|
The phenotypic spectrum of WWOX-related disorders: 20 additional cases of WOREE syndrome and review of the literature. Genet Med 2018; 21:1308-1318. [PMID: 30356099 PMCID: PMC6752669 DOI: 10.1038/s41436-018-0339-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/03/2018] [Indexed: 11/18/2022] Open
Abstract
Purpose Germline WWOX pathogenic variants
have been associated with disorder of sex differentiation (DSD), spinocerebellar
ataxia (SCA), and WWOX-related epileptic
encephalopathy (WOREE syndrome). We review clinical and molecular data on
WWOX-related disorders, further
describing WOREE syndrome and phenotype/genotype correlations. Methods We report clinical and molecular findings in 20 additional patients
from 18 unrelated families with WOREE syndrome and biallelic pathogenic variants
in the WWOX gene. Different molecular
screening approaches were used (quantitative polymerase chain reaction/multiplex
ligation-dependent probe amplification [qPCR/MLPA], array comparative genomic
hybridization [array-CGH], Sanger sequencing, epilepsy gene panel, exome
sequencing), genome sequencing. Results Two copy-number variations (CNVs) or two single-nucleotide
variations (SNVs) were found respectively in four and nine families, with
compound heterozygosity for one SNV and one CNV in five families. Eight novel
missense pathogenic variants have been described. By aggregating our patients
with all cases reported in the literature, 37 patients from 27 families with
WOREE syndrome are known. This review suggests WOREE syndrome is a very severe
epileptic encephalopathy characterized by absence of language development and
acquisition of walking, early-onset drug-resistant seizures, ophthalmological
involvement, and a high likelihood of premature death. The most severe clinical
presentation seems to be associated with null genotypes. Conclusion Germline pathogenic variants in WWOX are clearly associated with a severe early-onset epileptic
encephalopathy. We report here the largest cohort of individuals with WOREE
syndrome.
Collapse
|
12
|
Wan B, Xu WJ, Zhan P, Jin JJ, Xi GM, Chen MZ, Hu YB, Zhu SH, Liu HB, Wang XX, Zhang XW, Lv TF, Song Y. Topotecan alleviates ventilator-induced lung injury via NF-κB pathway inhibition. Cytokine 2018; 110:381-388. [DOI: 10.1016/j.cyto.2018.04.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/26/2018] [Accepted: 04/15/2018] [Indexed: 11/25/2022]
|
13
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|