1
|
Jang M, Yeom K, Han J, Fagan E, Park JH. Inhalable mRNA Nanoparticle with Enhanced Nebulization Stability and Pulmonary Microenvironment Infiltration. ACS NANO 2024; 18:24204-24218. [PMID: 39174871 DOI: 10.1021/acsnano.4c05653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The delivery of mRNA into the lungs is the key to solving infectious and intractable diseases that frequently occur in the lungs. Since inhalation using a nebulizer is the most promising method for mRNA delivery into the lungs, there have been many attempts toward adapting lipid nanoparticles for mRNA inhalation. However, conventional lipid nanoparticles, which have shown great effectiveness for systemic delivery of mRNA and intramuscular vaccination, are not effective for pulmonary delivery due to their structural instability during nebulization and their inability to adapt to the pulmonary microenvironment. To address these issues, we developed an ionizable liposome-mRNA lipocomplex (iLPX). iLPX has a highly ordered lipid bilayer structure, which increases stability during nebulization, and its poly(ethylene glycol)-free composition allows it to infiltrate the low serum environment and the pulmonary surfactant layer in the lungs. We selected an inhalation-optimized iLPX (IH-iLPX) using a multistep screening procedure that mimics the pulmonary delivery process of inhaled nanoparticles. The IH-iLPX showed a higher transfection efficiency in the lungs compared to conventional lipid nanoparticles after inhalation with no observed toxicity in vivo. Furthermore, analysis of lung distribution revealed even protein expression in the deep lungs, with effective delivery to epithelial cells. This study provides insights into the challenges and solutions related to the development of inhaled mRNA pulmonary therapeutics.
Collapse
Affiliation(s)
- Mincheol Jang
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyunghwan Yeom
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhee Han
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Erinn Fagan
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
2
|
Szachowicz PJ, Wohlford-Lenane C, Heinen CJ, Ghimire S, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJ, McCray PB. A predominately pulmonary activation of complement in a mouse model of severe COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.31.596892. [PMID: 38895461 PMCID: PMC11185570 DOI: 10.1101/2024.05.31.596892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Evidence from in vitro studies and observational human disease data suggest the complement system plays a significant role in SARS-CoV-2 pathogenesis, although how complement dysregulation develops in patients with severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501YMA30) and a mouse model of severe COVID-19, we identify significant serologic and pulmonary complement activation following infection. We observed C3 activation in airway and alveolar epithelia, and in pulmonary vascular endothelia. Our evidence suggests that while the alternative pathway is the primary route of complement activation, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia in response to cytokine exposure. This locally generated complement response appears to precede and subsequently drive lung injury and inflammation. Results from this mouse model recapitulate findings in humans, which suggest sex-specific variance in complement activation, with predilection for increased C3 activity in males, a finding that may correlate with more severe disease. Our findings indicate that complement activation is a defining feature of severe COVID-19 in mice and lay the foundation for further investigation into the role of complement in COVID-19.
Collapse
Affiliation(s)
- Peter J. Szachowicz
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | | | - Cobey J. Heinen
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Shreya Ghimire
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Biyun Xue
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Timothy J. Boly
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Abhishek Verma
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | - Leila MašinoviĆ
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Jennifer R. Bermick
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
| | - Stanley Perlman
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| | | | - Alejandro A. Pezzulo
- Department of Internal Medicine, The University of Iowa, Division of Pulmonary, Critical Care, and Occupational Medicine, Iowa City, IA, 52242
| | - Yuzhou Zhang
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Richard J.H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, USA
| | - Paul B. McCray
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, 52242
| |
Collapse
|
3
|
Rivolta AA, Bujold AR, Wilmarth PA, Phinney BS, Navelski JP, Horohov DW, Sanz MG. Comparison of the broncoalveolar lavage fluid proteomics between foals and adult horses. PLoS One 2023; 18:e0290778. [PMID: 37669266 PMCID: PMC10479908 DOI: 10.1371/journal.pone.0290778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 08/15/2023] [Indexed: 09/07/2023] Open
Abstract
Neonates have different cellular composition in their bronchoalveolar lavage fluid (BALF) when compared to foals and adult horses; however, little is known about the non-cellular components of BALF. The objective of this study was to determine the proteomic composition of BALF in neonatal horses and to compare it to that of foals and adult horses. Bronchoalveolar lavage fluid samples of seven neonates (< 1 week age), four 5 to 7-week-old foals, and six adult horses were collected. Quantitative proteomics of the fluid was performed using tandem mass tag labeling followed by high resolution liquid chromatography tandem mass spectrometry and protein relative abundances were compared between groups using exact text. A total of 704 proteins were identified with gene ontology terms and were classified. Of these, 332 proteins were related to the immune system in neonates, foals, and adult horses. The most frequent molecular functions identified were binding and catalytic activity and the most common biological processes were cellular process, metabolic process, and biological regulation. There was a significant difference in the proteome of neonates when compared to foals and to adult horses. Neonates had less relative expression (FDR < 0.01) of many immune-related proteins, including immunoglobulins, proteins involved in the complement cascade, ferritin, BPI fold-containing family B member 1, and macrophage receptor MARCO. This is the first report of equine neonate BALF proteomics and reveals differential abundance of proteins when compared to BALF from adult horses. The lower relative abundance of immune-related proteins in neonates could contribute to their susceptibility to pulmonary infections.
Collapse
Affiliation(s)
- Alejandra A. Rivolta
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Adina R. Bujold
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- Department of Pathobiology, University of Guelph, Guelph, Ontario, Canada
| | - Phillip A. Wilmarth
- Proteomic Shared Resource, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Brett S. Phinney
- Genome Center Proteomics Core Facility, UC Davis, Davis, California, United States of America
| | - Joseph P. Navelski
- School of Economic Sciences, Washington State University, Pullman, Washington, United States of America
| | - David W. Horohov
- Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Macarena G. Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Vientós‐Plotts AI, Ericsson AC, Reinero CR. The respiratory microbiota and its impact on health and disease in dogs and cats: A One Health perspective. J Vet Intern Med 2023; 37:1641-1655. [PMID: 37551852 PMCID: PMC10473014 DOI: 10.1111/jvim.16824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Healthy lungs were long thought of as sterile, with presence of bacteria identified by culture representing contamination. Recent advances in metagenomics have refuted this belief by detecting rich, diverse, and complex microbial communities in the healthy lower airways of many species, albeit at low concentrations. Although research has only begun to investigate causality and potential mechanisms, alterations in these microbial communities (known as dysbiosis) have been described in association with inflammatory, infectious, and neoplastic respiratory diseases in humans. Similar studies in dogs and cats are scarce. The microbial communities in the respiratory tract are linked to distant microbial communities such as in the gut (ie, the gut-lung axis), allowing interplay of microbes and microbial products in health and disease. This review summarizes considerations for studying local microbial communities, key features of the respiratory microbiota and its role in the gut-lung axis, current understanding of the healthy respiratory microbiota, and examples of dysbiosis in selected respiratory diseases of dogs and cats.
Collapse
Affiliation(s)
- Aida I. Vientós‐Plotts
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| | - Aaron C. Ericsson
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- University of Missouri Metagenomics CenterUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Pathobiology, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
| | - Carol R. Reinero
- College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Department of Veterinary Medicine and Surgery, College of Veterinary MedicineUniversity of MissouriColumbiaMissouriUSA
- Comparative Internal Medicine LaboratoryUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
5
|
Rodriguez-Piñeiro AM, Jaudas F, Klymiuk N, Bähr A, Hansson GC, Ermund A. Proteome of airway surface liquid and mucus in newborn wildtype and cystic fibrosis piglets. Respir Res 2023; 24:83. [PMID: 36927357 PMCID: PMC10022022 DOI: 10.1186/s12931-023-02381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/04/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND The respiratory tract is protected from inhaled particles and microbes by mucociliary clearance, mediated by the mucus and the cilia creating a flow to move the mucus cephalad. Submucosal glands secrete linear MUC5B mucin polymers and because they pass through the gland duct before reaching the airway surface, bundled strands of 1000-5000 parallel molecules exit the glands. In contrast, the surface goblet cells secrete both MUC5AC and MUC5B. METHODS We used mass-spectrometry based proteomic analysis of unstimulated and carbachol stimulated newborn wild-type (WT) and cystic fibrosis transmembrane conductance regulator (CFTR) null (CF) piglet airways to study proteins in the airway surface liquid and mucus, to investigate if levels of MUC5AC and MUC5B were affected by carbachol stimulation and whether the proteins clustered according to function. RESULTS Proteins in the first four extracted fractions clustered together and the fifth fraction contained the mucus cluster, mucins and other proteins known to associate with mucins, whereas the traditional airway surface liquid proteins clustered to fraction 1-4 and were absent from the mucus fraction. Carbachol stimulation resulted in increased MUC5AC and MUC5B. CONCLUSIONS These results indicate a distinct separation between proteins in the washable surface liquid and the mucus fraction. In fractions 1-4 from newborn CF piglets an additional cluster containing acute phase proteins was observed, suggesting an early inflammatory response in CF piglets. Alternatively, increased levels of these proteins could indicate altered lung development in the CF piglets. This observation suggests that CF airway disease is present at birth and thus, treatment should commence directly after diagnosis.
Collapse
Affiliation(s)
- Ana M Rodriguez-Piñeiro
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Florian Jaudas
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Andrea Bähr
- Center for Innovative Animal Models, Ludwig-Maximilians-University, Munich, Germany
| | - Gunnar C Hansson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Ermund
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
6
|
Subramaniam S, Joyce P, Donnellan L, Young C, Wignall A, Hoffmann P, Prestidge CA. Protein adsorption determines pulmonary cell uptake of lipid-based nanoparticles. J Colloid Interface Sci 2023; 641:36-47. [PMID: 36924544 DOI: 10.1016/j.jcis.2023.03.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The inhalable administration of lipid nanoparticles is an effective strategy for localised delivery of therapeutics against various lung diseases. Of this, improved intracellular delivery of pharmaceuticals for infectious disease and cancer management is of high significance. However, the influence of lipid nanoparticle composition and structure on uptake in pulmonary cell lines, especially in the presence of biologically relevant media is poorly understood. Here, the uptake of lamellar (liposomes) versus non-lamellar (cubosomes) lipid nanoparticles in macrophages and lung epithelial cells was quantified and the influence of bronchoalveolar lavage fluid (BALF), containing native pulmonary protein and surfactant molecules is determined. Cubosome uptake in both macrophages and epithelial cells was strongly mediated by a high percentage of molecular function regulatory and binding proteins present within the protein corona. In contrast, the protein corona did not influence the uptake of liposomes in epithelial cells. In macrophages, the proteins mediated a rapid internalisation, followed by exocytosis of liposomes after 6 h incubation. These findings on the influence of biological fluid in regulating lipid nanoparticle uptake mechanisms may guide future development of optimal intracellular delivery systems for therapeutics via the pulmonary route.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Leigh Donnellan
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Clifford Young
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Anthony Wignall
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Peter Hoffmann
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia.
| |
Collapse
|
7
|
Wallace LE, Liu M, van Kuppeveld FJM, de Vries E, de Haan CAM. Respiratory mucus as a virus-host range determinant. Trends Microbiol 2021; 29:983-992. [PMID: 33875348 PMCID: PMC8503944 DOI: 10.1016/j.tim.2021.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/19/2022]
Abstract
Efficient penetration of the mucus layer is needed for respiratory viruses to avoid mucociliary clearance prior to infection. Many respiratory viruses bind to glycans on the heavily glycosylated mucins that give mucus its gel-like characteristics. Influenza viruses, some paramyxoviruses, and coronaviruses avoid becoming trapped in the mucus by releasing themselves by means of their envelope-embedded enzymes that destroy glycan receptors. For efficient infection, receptor binding and destruction need to be in balance with the host receptor repertoire. Establishment in a novel host species requires resetting of the balance to adapt to the different glycan repertoire encountered. Growing understanding of species-specific mucosal glycosylation patterns and the dynamic interaction with respiratory viruses identifies the mucus layer as a major host-range determinant and barrier for zoonotic transfer.
Collapse
Affiliation(s)
- Louisa E Wallace
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Mengying Liu
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Frank J M van Kuppeveld
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
| | - Erik de Vries
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| | - Cornelis A M de Haan
- Section Virology, Division Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Margaret P Price
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anthony J Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Akshaya Warrier
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Melissa Samuel
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Patrick D Allen
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brieanna M Hilkin
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Miguel E Ortiz Bezara
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Steven E Mather
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Nicholas D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Camilla E Hippee
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States
| | - J Adam Goeken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Thomas R Businga
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, United States
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States
| |
Collapse
|
9
|
Gellatly S, Pavelka N, Crue T, Schweitzer KS, Day BJ, Min E, Numata M, Voelker DR, Scruggs A, Petrache I, Chu HW. Nicotine-Free e-Cigarette Vapor Exposure Stimulates IL6 and Mucin Production in Human Primary Small Airway Epithelial Cells. J Inflamm Res 2020; 13:175-185. [PMID: 32368126 PMCID: PMC7170627 DOI: 10.2147/jir.s244434] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 03/19/2020] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Electronic cigarettes (e-cigs) are relatively new devices that allow the user to inhale a heated and aerosolized solution. At present, little is known about their health effects in the human lung, particularly in the small airways (<2 mm in diameter), a key site of airway obstruction and destruction in chronic obstructive pulmonary disease and other acute and chronic lung conditions. The aim of this study was to investigate the effect of e-cigarettes on human distal airway inflammation and remodeling. METHODS We isolated primary small airway epithelial cells from donor lungs without known lung disease. Small airway epithelial cells were cultured at air-liquid interface and exposed to 15 puffs vapor obtained by heating a commercially available e-cigarette solution (e-vapor) with or without nicotine. After 24 hrs of e-vapor exposure, basolateral and apical media as well as cell lysates were collected to measure the pleiotropic cytokine interleukin 6 (IL6) and MUC5AC, one of the major components in mucus. RESULTS Unlike the nicotine-containing e-vapor, nicotine-free e-vapor significantly increased the amount of IL6, which was coupled with increased levels of intracellular MUC5AC protein. Importantly, a neutralizing IL6 antibody (vs an IgG isotype control) significantly inhibited the production of MUC5AC induced by nicotine-free e-vapor. CONCLUSION Our results suggest that human small airway epithelial cells exposed to nicotine-free e-vapor increase the inflammatory response and mucin production, which may contribute to distal lung airflow limitation and airway obstruction.
Collapse
Affiliation(s)
- Shaan Gellatly
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Nicole Pavelka
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Taylor Crue
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | | | - Brian J Day
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Elysia Min
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Dennis R Voelker
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - April Scruggs
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Irina Petrache
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO80206, USA
| |
Collapse
|
10
|
Berkebile AR, Bartlett JA, Abou Alaiwa M, Varga SM, Power UF, McCray PB. Airway Surface Liquid Has Innate Antiviral Activity That Is Reduced in Cystic Fibrosis. Am J Respir Cell Mol Biol 2020; 62:104-111. [PMID: 31242392 PMCID: PMC6938132 DOI: 10.1165/rcmb.2018-0304oc] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/26/2019] [Indexed: 12/30/2022] Open
Abstract
Although chronic bacterial infections and inflammation are associated with progressive lung disease in patients with cystic fibrosis (CF), much less is known regarding the contributions of respiratory viral infections to this process. Clinical studies suggest that antiviral host defenses may be compromised in individuals with CF, and CF airway epithelia exhibit impaired antiviral responses in vitro. Here, we used the CF pig model to test the hypothesis that the antiviral activity of respiratory secretions is reduced in CF. We developed an in vitro assay to measure the innate antiviral activity present in airway surface liquid (ASL) from CF and non-CF pigs. We found that tracheal and nasal ASL from newborn non-CF pigs exhibited dose-dependent inhibitory activity against several enveloped and encapsidated viruses, including Sendai virus, respiratory syncytial virus, influenza A, and adenovirus. Importantly, we found that the anti-Sendai virus activity of nasal ASL from newborn CF pigs was significantly diminished relative to non-CF littermate controls. This diminution of extracellular antiviral defenses appears to be driven, at least in part, by the differences in pH between CF and non-CF ASL. These data highlight the novel antiviral properties of native airway secretions and suggest the possibility that defects in extracellular antiviral defenses contribute to CF pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Steven M. Varga
- Department of Microbiology and Immunology
- Department of Pathology, Pappajohn Biomedical Institute, Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Ultan F. Power
- Wellcome Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
| | - Paul B. McCray
- Department of Microbiology and Immunology
- Department of Pediatrics
| |
Collapse
|
11
|
Dasari P, Koleci N, Shopova IA, Wartenberg D, Beyersdorf N, Dietrich S, Sahagún-Ruiz A, Figge MT, Skerka C, Brakhage AA, Zipfel PF. Enolase From Aspergillus fumigatus Is a Moonlighting Protein That Binds the Human Plasma Complement Proteins Factor H, FHL-1, C4BP, and Plasminogen. Front Immunol 2019; 10:2573. [PMID: 31824478 PMCID: PMC6883375 DOI: 10.3389/fimmu.2019.02573] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/17/2019] [Indexed: 11/13/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6-7 and 19-20, and FHL-1 contacts AfEno1 via SCRs 6-7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components.
Collapse
Affiliation(s)
- Prasad Dasari
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Naile Koleci
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Iordana A Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Stefanie Dietrich
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Alfredo Sahagún-Ruiz
- Laboratorio de Inmunología Molecular, Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany.,Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
White S, Moore‐Colyer M, Marti E, Coüetil L, Hannant D, Richard EA, Alcocer M. Development of a comprehensive protein microarray for immunoglobulin E profiling in horses with severe asthma. J Vet Intern Med 2019; 33:2327-2335. [PMID: 31429513 PMCID: PMC6766494 DOI: 10.1111/jvim.15564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Severe asthma in horses, known as severe equine asthma (SEA), is a prevalent, performance-limiting disease associated with increased allergen-specific immunoglobulin E (IgE) against a range of environmental aeroallergens. OBJECTIVE To develop a protein microarray platform to profile IgE against a range of proven and novel environmental proteins in SEA-affected horses. ANIMALS Six SEA-affected and 6 clinically healthy Warmblood performance horses. METHODS Developed a protein microarray (n = 384) using protein extracts and purified proteins from a large number of families including pollen, bacteria, fungi, and arthropods associated with the horses, environment. Conditions were optimized and assessed for printing, incubation, immunolabeling, biological fluid source, concentration techniques, reproducibility, and specificity. RESULTS This method identified a number of novel allergens, while also identifying an association between SEA and pollen sensitization. Immunolabeling methods confirmed the accuracy of a commercially available mouse anti-horse IgE 3H10 source (R2 = 0.91). Biological fluid source evaluation indicated that sera and bronchoalveolar lavage fluid (BALF) yielded the same specific IgE profile (average R2 = 0.75). Amicon centrifugal filters were found to be the most efficient technique for concentrating BALF for IgE analysis at 40-fold. Overnight incubation maintained the same sensitization profile while increasing sensitivity. Reproducibility was demonstrated (R2 = 0.97), as was specificity using protein inhibition assays. Arthropods, fungi, and pollens showed the greatest discrimination for SEA. CONCLUSIONS AND CLINICAL IMPORTANCE We have established that protein microarrays can be used for large-scale IgE mapping of allergens associated with the environment of horses. This technology provides a sound platform for specific diagnosis, management, and treatment of SEA.
Collapse
Affiliation(s)
- Samuel White
- School of Equine Management and Science, Royal Agricultural UniversityGloucestershireUnited Kingdom
- School of Biosciences, University of NottinghamLoughboroughUnited Kingdom
- Animal and Equine ScienceNottingham Trent UniversityNottinghamshireUnited Kingdom
| | - Meriel Moore‐Colyer
- School of Equine Management and Science, Royal Agricultural UniversityGloucestershireUnited Kingdom
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public HealthUniversity of BernBernSwitzerland
| | - Laurent Coüetil
- Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue UniversityWest LafayetteIndiana, USA
| | - Duncan Hannant
- School of Veterinary Medicine and Science, University of NottinghamLoughboroughUnited Kingdom
| | - Eric A. Richard
- LABÉO Frank DuncombeCaen CedexFrance
- Normandie University, UniCaen, BIOTARGENSaint‐ContestFrance
| | - Marcos Alcocer
- School of Biosciences, University of NottinghamLoughboroughUnited Kingdom
| |
Collapse
|
13
|
Dasari P, Shopova IA, Stroe M, Wartenberg D, Martin-Dahse H, Beyersdorf N, Hortschansky P, Dietrich S, Cseresnyés Z, Figge MT, Westermann M, Skerka C, Brakhage AA, Zipfel PF. Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage. Front Immunol 2018; 9:1635. [PMID: 30166981 PMCID: PMC6106110 DOI: 10.3389/fimmu.2018.01635] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration.
Collapse
Affiliation(s)
- Prasad Dasari
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Iordana A Shopova
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Maria Stroe
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Dirk Wartenberg
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Hans Martin-Dahse
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Niklas Beyersdorf
- University of Würzburg, Institute for Virology and Immunobiology, Würzburg, Germany
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Stefanie Dietrich
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Zoltán Cseresnyés
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center of the University Hospital, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Jena, Germany.,Faculty for Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Wisnewski AV, Kanyo J, Asher J, Goodrich JA, Barnett G, Patrylak L, Liu J, Redlich CA, Nassar AF. Reaction products of hexamethylene diisocyanate vapors with "self" molecules in the airways of rabbits exposed via tracheostomy. Xenobiotica 2018; 48:488-497. [PMID: 28489470 PMCID: PMC5863241 DOI: 10.1080/00498254.2017.1329569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
1. Hexamethylenediisocyanate (HDI) is a widely used aliphatic diisocyanate and a well-recognized cause of occupational asthma. 2. "Self" molecules (peptides/proteins) in the lower airways, susceptible to chemical reactivity with HDI, have been hypothesized to play a role in asthma pathogenesis and/or chemical metabolism, but remain poorly characterized. 3. This study employed unique approaches to identify and characterize "self" targets of HDI reactivity in the lower airways. Anesthetized rabbits free breathed through a tracheostomy tube connected to chambers containing either, O2, or O2 plus ∼200 ppb HDI vapors. Following 60 minutes of exposure, the airways were lavaged and the fluid was analyzed by LC-MS and LC-MS/MS. 4. The low-molecular weight (<3 kDa) fraction of HDI exposed, but not control rabbit bronchoalveolar lavage (BAL) fluid identified 783.26 and 476.18 m/z [M+H]+ ions with high energy collision-induced dissociation (HCD) fragmentation patterns consistent with bis glutathione (GSH)-HDI and mono(GSH)-HDI. Proteomic analyses of the high molecular weight (>3 kDa) fraction of exposed rabbit BAL fluid identified HDI modification of specific lysines in uteroglobin (aka clara cell protein) and albumin. 5. In summary, this study utilized a unique approach to chemical vapor exposure in rabbits, to identify HDI reaction products with "self" molecules in the lower airways.
Collapse
Affiliation(s)
- Adam V Wisnewski
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Jean Kanyo
- b W.M. Keck Foundation Biotechnology Resource Laboratory, Yale University School of Medicine , New Haven , CT , USA , and
| | - Jennifer Asher
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - James A Goodrich
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Grace Barnett
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Lyn Patrylak
- c Section of Comparative Medicine, Yale University School of Medicine , New Haven , CT , USA
| | - Jian Liu
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Carrie A Redlich
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| | - Ala F Nassar
- a Department of Internal Medicine , Yale University School of Medicine , New Haven , CT , USA
| |
Collapse
|
15
|
Vargas Buonfiglio LG, Borcherding JA, Frommelt M, Parker GJ, Duchman B, Vanegas Calderón OG, Fernandez-Ruiz R, Noriega JE, Stone EA, Gerke AK, Zabner J, Comellas AP. Airway surface liquid from smokers promotes bacterial growth and biofilm formation via iron-lactoferrin imbalance. Respir Res 2018. [PMID: 29524964 PMCID: PMC5845328 DOI: 10.1186/s12931-018-0743-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Smoking is a leading cause of respiratory infections worldwide. Tobacco particulate matter disrupts iron homeostasis in the lungs and increases the iron content in the airways of smokers. The airway epithelia secrete lactoferrin to quench iron required for bacteria to proliferate and cause lung infections. We hypothesized that smokers would have increased bacterial growth and biofilm formation via iron lactoferrin imbalance. Methods We collected bronchoalveolar lavage (BAL) samples from non-smokers and smokers. We challenged these samples using a standard inoculum of Staphylococcus aureus and Pseudomonas aeruginosa and quantified bacterial growth and biofilm formation. We measured both iron and lactoferrin in the samples. We investigated the effect of supplementing non-smoker BAL with cigarette smoke extract (CSE) or ferric chloride and the effect of supplementing smoker BAL with lactoferrin on bacterial growth and biofilm formation. Results BAL from smokers had increased bacterial growth and biofilm formation compared to non-smokers after both S. aureus and P. aeruginosa challenge. In addition, we found that samples from smokers had a higher iron to lactoferrin ratio. Supplementing the BAL of non-smokers with cigarette smoke extract and ferric chloride increased bacterial growth. Conversely, supplementing the BAL of smokers with lactoferrin had a concentration-dependent decrease in bacterial growth and biofilm formation. Conclusion Cigarette smoking produces factors which increase bacterial growth and biofilm formation in the BAL. We propose that smoking disrupts the iron-to-lactoferrin in the airways. This finding offers a new avenue for potential therapeutic interventions to prevent respiratory infections in smokers. Electronic supplementary material The online version of this article (10.1186/s12931-018-0743-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luis G Vargas Buonfiglio
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Jennifer A Borcherding
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Mark Frommelt
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Gavin J Parker
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA, USA
| | - Bryce Duchman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Oriana G Vanegas Calderón
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ruth Fernandez-Ruiz
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Julio E Noriega
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Elizabeth A Stone
- Department of Chemistry, College of Liberal Arts & Sciences, University of Iowa, Iowa City, IA, USA
| | - Alicia K Gerke
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA
| | - Alejandro P Comellas
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 6312 Pappajohn Biomedical Discovery Building. Newton Road, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Raymond BBA, Madhkoor R, Schleicher I, Uphoff CC, Turnbull L, Whitchurch CB, Rohde M, Padula MP, Djordjevic SP. Extracellular Actin Is a Receptor for Mycoplasma hyopneumoniae. Front Cell Infect Microbiol 2018. [PMID: 29535975 PMCID: PMC5835332 DOI: 10.3389/fcimb.2018.00054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mycoplasma hyopneumoniae, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that M. hyopneumoniae targets to facilitate colonization. Here we show, for the first time, that actin exists extracellularly on porcine epithelial monolayers (PK-15) using surface biotinylation and 3D-Structured Illumination Microscopy (3D-SIM), and that M. hyopneumoniae binds to the extracellular β-actin exposed on the surface of these cells. Consistent with this hypothesis we show: (i) monoclonal antibodies that target β-actin significantly block the ability of M. hyopneumoniae to adhere and colonize PK-15 cells; (ii) microtiter plate binding assays show that M. hyopneumoniae cells bind to monomeric G-actin in a dose dependent manner; (iii) more than 100 M. hyopneumoniae proteins were recovered from affinity-chromatography experiments using immobilized actin as bait; and (iv) biotinylated monomeric actin binds directly to M. hyopneumoniae proteins in ligand blotting studies. Specifically, we show that the P97 cilium adhesin possesses at least two distinct actin-binding regions, and binds monomeric actin with nanomolar affinity. Taken together, these observations suggest that actin may be an important receptor for M. hyopneumoniae within the swine lung and will aid in the future development of intervention strategies against this devastating pathogen. Furthermore, our observations have wider implications for extracellular actin as an important bacterial receptor.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ranya Madhkoor
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ina Schleicher
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Cord C Uphoff
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Lynne Turnbull
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cynthia B Whitchurch
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthew P Padula
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.,Proteomics Core Facility, University of Technology, Sydney, NSW, Australia
| |
Collapse
|
17
|
Musharaf I, Hinton M, Yi M, Dakshinamurti S. Hypoxic challenge of hyperoxic pulmonary artery myocytes increases oxidative stress due to impaired mitochondrial superoxide dismutase activity. Pulm Pharmacol Ther 2018; 48:195-202. [DOI: 10.1016/j.pupt.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 01/14/2023]
|
18
|
Nardiello C, Mižíková I, Morty RE. Looking ahead: where to next for animal models of bronchopulmonary dysplasia? Cell Tissue Res 2016; 367:457-468. [PMID: 27917436 PMCID: PMC5320021 DOI: 10.1007/s00441-016-2534-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/01/2016] [Indexed: 11/16/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common complication of preterm birth, with appreciable morbidity and mortality in a neonatal intensive care setting. Much interest has been shown in the identification of pathogenic pathways that are amenable to pharmacological manipulation (1) to facilitate the development of novel therapeutic and medical management strategies and (2) to identify the basic mechanisms of late lung development, which remains poorly understood. A number of animal models have therefore been developed and continue to be refined with the aim of recapitulating pathological pulmonary hallmarks noted in lungs from neonates with BPD. These animal models rely on several injurious stimuli, such as mechanical ventilation or oxygen toxicity and infection and sterile inflammation, as applied in mice, rats, rabbits, pigs, lambs and nonhuman primates. This review addresses recent developments in modeling BPD in experimental animals and highlights important neglected areas that demand attention. Additionally, recent progress in the quantitative microscopic analysis of pathology tissue is described, together with new in vitro approaches of value for the study of normal and aberrant alveolarization. The need to examine long-term sequelae of damage to the developing neonatal lung is also considered, as is the need to move beyond the study of the lungs alone in experimental animal models of BPD.
Collapse
Affiliation(s)
- Claudio Nardiello
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Ivana Mižíková
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231, Bad Nauheim, Germany. .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany.
| |
Collapse
|
19
|
c- Src and its role in cystic fibrosis. Eur J Cell Biol 2016; 95:401-413. [DOI: 10.1016/j.ejcb.2016.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 12/15/2022] Open
|
20
|
Ghosh N, Dutta M, Singh B, Banerjee R, Bhattacharyya P, Chaudhury K. Transcriptomics, proteomics and metabolomics driven biomarker discovery in COPD: an update. Expert Rev Mol Diagn 2016; 16:897-913. [PMID: 27267972 DOI: 10.1080/14737159.2016.1198258] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Diagnosis of chronic obstructive pulmonary disease (COPD), characterized by progressive irreversible airflow limitation, remains a challenge. Lack of sensitive diagnostic markers and alternative treatments have limited patients' survival rate. Herein, we provide for clinicians and scientists a comprehensive review on the various omics platforms used to investigate COPD. AREAS COVERED This review consists of articles from PubMed (2009-2016) as well as views of the contributing authors. The review highlights the need for COPD biomarker identification and also provides an update on promising candidate markers identified in various biological fluids using omics technologies. Expert commentary: The multi-omics approach holds promise for the development of robust early stage COPD diagnostic markers, screening of high-risk population, and also improved prognosis which could lead to personalized medicine in future. Various factors regulating an omics study including sample size, control selection, disease phenotyping, usage of complementary techniques and result replication in omics-based research are outlined.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Mainak Dutta
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Brajesh Singh
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| | - Rintu Banerjee
- b Department of Agricultural & Food Engineering , Indian Institute of Technology Kharagpur , Kharagpur , India
| | | | - Koel Chaudhury
- a School of Medical Science and Technology , Indian Institute of Technology Kharagpur , Kharagpur , India
| |
Collapse
|
21
|
Silva DMG, Nardiello C, Pozarska A, Morty RE. Recent advances in the mechanisms of lung alveolarization and the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1239-72. [PMID: 26361876 DOI: 10.1152/ajplung.00268.2015] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/09/2015] [Indexed: 02/08/2023] Open
Abstract
Alveolarization is the process by which the alveoli, the principal gas exchange units of the lung, are formed. Along with the maturation of the pulmonary vasculature, alveolarization is the objective of late lung development. The terminal airspaces that were formed during early lung development are divided by the process of secondary septation, progressively generating an increasing number of alveoli that are of smaller size, which substantially increases the surface area over which gas exchange can take place. Disturbances to alveolarization occur in bronchopulmonary dysplasia (BPD), which can be complicated by perturbations to the pulmonary vasculature that are associated with the development of pulmonary hypertension. Disturbances to lung development may also occur in persistent pulmonary hypertension of the newborn in term newborn infants, as well as in patients with congenital diaphragmatic hernia. These disturbances can lead to the formation of lungs with fewer and larger alveoli and a dysmorphic pulmonary vasculature. Consequently, affected lungs exhibit a reduced capacity for gas exchange, with important implications for morbidity and mortality in the immediate postnatal period and respiratory health consequences that may persist into adulthood. It is the objective of this Perspectives article to update the reader about recent developments in our understanding of the molecular mechanisms of alveolarization and the pathogenesis of BPD.
Collapse
Affiliation(s)
- Diogo M G Silva
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Claudio Nardiello
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Agnieszka Pozarska
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rory E Morty
- Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
22
|
Ali N, Mattsson K, Rissler J, Karlsson HM, Svensson CR, Gudmundsson A, Lindh CH, Jönsson BAG, Cedervall T, Kåredal M. Analysis of nanoparticle-protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology 2015; 10:226-34. [PMID: 26186033 PMCID: PMC4819849 DOI: 10.3109/17435390.2015.1048324] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/21/2014] [Accepted: 04/09/2015] [Indexed: 11/13/2022]
Abstract
Welding fumes include agglomerated particles built up of primary nanoparticles. Particles inhaled through the nose will to some extent be deposited in the protein-rich nasal mucosa, and a protein corona will be formed around the particles. The aim was to identify the protein corona formed between nasal lavage proteins and four types of particles with different parameters. Two of the particles were formed and collected during welding and two were manufactured iron oxides. When nasal lavage proteins were added to the particles, differences were observed in the sizes of the aggregates that were formed. Measurements showed that the amount of protein bound to particles correlated with the relative size increase of the aggregates, suggesting that the surface area was associated with the binding capacity. However, differences in aggregate sizes were detected when nasal proteins were added to UFWF and Fe2O3 particles (having similar agglomerated size) suggesting that yet parameters other than size determine the binding. Relative quantitative mass spectrometric and gel-based analyses showed differences in the protein content of the coronas. High-affinity proteins were further assessed for network interactions. Additional experiments showed that the inhibitory function of secretory leukocyte peptidase inhibitor, a highly abundant nasal protein, was influenced by particle binding suggesting that an understanding of protein function following particle binding is necessary to properly evaluate pathophysiological events. Our results underscore the importance of including particles collected from real working environments when studying the toxic effects of particles because these effects might be mediated by the protein corona.
Collapse
Affiliation(s)
- Neserin Ali
- Division of Occupational and Environmental Medicine, Lund University,
Lund,
Sweden
| | - Karin Mattsson
- Center for Molecular Protein Science, Biochemistry and Structural Biology, Lund University,
Lund,
Sweden
| | - Jenny Rissler
- Department of Design Sciences, Ergonomic and Aerosol Technology, Lund University,
Lund,
Sweden
| | - Helen Marg Karlsson
- Occupational and Environmental Medicine, County Council of Östergötland, Linköping University,
Linköping,
Sweden
| | - Christian R. Svensson
- Department of Design Sciences, Ergonomic and Aerosol Technology, Lund University,
Lund,
Sweden
| | - Anders Gudmundsson
- Department of Design Sciences, Ergonomic and Aerosol Technology, Lund University,
Lund,
Sweden
| | - Christian H. Lindh
- Division of Occupational and Environmental Medicine, Lund University,
Lund,
Sweden
| | - Bo A. G. Jönsson
- Division of Occupational and Environmental Medicine, Lund University,
Lund,
Sweden
| | - Tommy Cedervall
- Center for Molecular Protein Science, Biochemistry and Structural Biology, Lund University,
Lund,
Sweden
| | - Monica Kåredal
- Division of Occupational and Environmental Medicine, Lund University,
Lund,
Sweden
| |
Collapse
|
23
|
Mendivil CO, Koziel H, Brain JD. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates. PLoS One 2015; 10:e0123344. [PMID: 25848795 PMCID: PMC4388476 DOI: 10.1371/journal.pone.0123344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Objectives Our current understanding of hormone regulation in lung parenchyma is quite limited. We aimed to quantify a diverse array of biologically relevant protein mediators in alveolar lining fluid (ALF), compared to serum concentrations, and explore factors associated with protein compartmentalization on either side of the air-blood barrier. Research Design and Methods Participants were 24 healthy adult non-smoker volunteers without respiratory symptoms or significant medical conditions, with normal lung exams and office spirometry. Cell-free bronchoalveolar lavage fluid and serum were analyzed for 24 proteins (including enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines) using a highly sensitive multiplex ELISA. Measurements were normalized to ALF concentrations. The ALF:serum concentration ratios were examined in relation to measures of protein size, hydrophobicity, charge, and to participant clinical and spirometric values. Results ALF measurements from 24 individuals detected 19 proteins, including adiponectin, adipsin, apoA-I, apoA-II, apoB, apoC-II, apoC-III, apoE, C-reactive protein, ghrelin, glucose-dependent insulinotropic peptide (GIP), glucagon-like peptide-1 (GLP-1), glucagon, insulin, leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, resistin, and visfatin. C-peptide and serpin E1 were not detected in ALF for any individual, and IL-6, IL-10, and TNF-alpha were not detected in either ALF or serum for any individual. In general, ALF levels were similar or lower in concentration for most proteins compared to serum. However, ghrelin, resistin, insulin, visfatin and GLP-1 had ALF concentrations significantly higher compared to serum. Importantly, elevated ALF:serum ratios of ghrelin, visfatin and resistin correlated with protein net charge and isoelectric point, but not with molecular weight or hydrophobicity. Conclusions Biologically relevant enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines can be detected in the ALF of healthy individuals. For the proteins measured, charge may influence trafficking and compartmentalization to the alveolar airspace more than molecular weight or hydrophobicity. These data may have implications for homeostasis and drug delivery to the lung.
Collapse
Affiliation(s)
- Carlos O. Mendivil
- School of Medicine, Universidad de los Andes, Bogotá, Colombia
- Section of Endocrinology, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Henry Koziel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joseph D. Brain
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
24
|
Bartlett JA, Meyerholz DK, Wohlford-Lenane CL, Naumann PW, Salzman NH, McCray PB. Increased susceptibility to otitis media in a Splunc1-deficient mouse model. Dis Model Mech 2015; 8:501-8. [PMID: 25765466 PMCID: PMC4415896 DOI: 10.1242/dmm.019646] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/07/2015] [Indexed: 12/15/2022] Open
Abstract
Otitis media (inflammation of the middle ear) is one of the most common diseases of early childhood. Susceptibility to otitis is influenced by a number of factors, including the actions of innate immune molecules secreted by the epithelia lining the nasopharynx, middle ear and Eustachian tube. The SPLUNC1 (short palate, lung, nasal epithelial clone 1) protein is a highly abundant secretory product of the mammalian nasal, oral and respiratory mucosa that is thought to play a multifunctional role in host defense. In this study we investigated Splunc1 expression in the ear of the mouse, and examined whether this protein contributes to overall host defense in the middle ear and/or Eustachian tube. We found that Splunc1 is highly expressed in both the surface epithelium and in submucosal glands in these regions in wild-type mice. In mice lacking Splunc1, we noted histologically an increased frequency of otitis media, characterized by the accumulation of leukocytes (neutrophils with scattered macrophages), proteinaceous fluid and mucus in the middle ear lumens. Furthermore, many of these mice had extensive remodeling of the middle ear wall, suggesting a chronic course of disease. From these observations, we conclude that loss of Splunc1 predisposes mice to the development of otitis media. The Splunc1−/− mouse model should help investigators to better understand both the biological role of Splunc1 as well as host defense mechanisms in the middle ear. Summary: We document expression of the innate immune factor Splunc1 in the murine middle ear and Eustachian tube, and describe spontaneous development of otitis media in mice lacking functional Splunc1.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | - Paul W Naumann
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Nita H Salzman
- Department of Pediatrics, Division of Gastroenterology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
25
|
Joo NS, Evans IAT, Cho HJ, Park IH, Engelhardt JF, Wine JJ. Proteomic analysis of pure human airway gland mucus reveals a large component of protective proteins. PLoS One 2015; 10:e0116756. [PMID: 25706550 PMCID: PMC4338240 DOI: 10.1371/journal.pone.0116756] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/12/2014] [Indexed: 01/09/2023] Open
Abstract
Airway submucosal glands contribute to innate immunity and protect the lungs by secreting mucus, which is required for mucociliary clearance and which also contains antimicrobial, anti-inflammatory, anti-proteolytic and anti-oxidant proteins. We stimulated glands in tracheal trimmings from three lung donors and collected droplets of uncontaminated mucus as they formed at the gland orifices under an oil layer. We analyzed the mucus using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Analysis identified 5486 peptides and 441 proteins from across the 3 samples (269-319 proteins per subject). We focused on 269 proteins common to at least 2 0f 3 subjects, of which 102 (38%) had protective or innate immunity functions. While many of these have long been known to play such roles, for many others their cellular protective functions have only recently been appreciated in addition to their well-studied biologic functions (e.g. annexins, apolipoproteins, gelsolin, hemoglobin, histones, keratins, and lumican). A minority of the identified proteins are known to be secreted via conventional exocytosis, suggesting that glandular secretion occurs via multiple mechanisms. Two of the observed protective proteins, major vault protein and prohibitin, have not been observed in fluid from human epithelial cultures or in fluid from nasal or bronchoalveolar lavage. Further proteomic analysis of pure gland mucus may help clarify how healthy airways maintain a sterile environment.
Collapse
Affiliation(s)
- Nam Soo Joo
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA, 94305, United States of America
- * E-mail:
| | - Idil Apak T. Evans
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States of America
| | - Hyung-Ju Cho
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA, 94305, United States of America
| | - Il-Ho Park
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA, 94305, United States of America
| | - John F. Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, United States of America
| | - Jeffrey J. Wine
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA, 94305, United States of America
| |
Collapse
|
26
|
Terracciano R, Pelaia G, Preianò M, Savino R. Asthma and COPD proteomics: current approaches and future directions. Proteomics Clin Appl 2015; 9:203-20. [PMID: 25504544 DOI: 10.1002/prca.201400099] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/26/2014] [Accepted: 12/08/2014] [Indexed: 12/25/2022]
Abstract
Although asthma and chronic obstructive pulmonary disease COPD represent the two most common chronic respiratory diseases worldwide, the mechanisms underlying their pathobiology need to be further elucidated. Presently, differentiation of asthma and COPD are largely based on clinical and lung function parameters. However, the complexity of these multifactorial diseases may lead to misclassification and to inappropriate management strategies. Recently, tremendous progress in MS has extended the sensitivity, accuracy, and speed of analysis, enabling the identification of thousands of proteins per experiment. Beyond identification, MS has also greatly implemented quantitation issues allowing to assess qualitative-quantitative differences in protein profiles of different samples, in particular diseased versus normal. Herein, we provide a summary of recent proteomics-based investigations in the field of asthma/COPD, highlighting major issues related to sampling and processing procedures for proteomic analyses of specific airway and parenchymal specimens (induced sputum, exhaled breath condensate, epithelial lining fluid, bronchoalveolar and nasal lavage fluid), as well as blood-derived specimen (plasma and serum). Within such a context, together with current difficulties and limitations mainly due to lack of general standardization in preanalytical sampling procedure, our discussion will focus on the challenges and possible benefits of proteomic studies in phenotypic stratification of asthma and COPD.
Collapse
Affiliation(s)
- Rosa Terracciano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | | | | | | |
Collapse
|
27
|
Hoegger MJ, Fischer AJ, McMenimen JD, Ostedgaard LS, Tucker AJ, Awadalla MA, Moninger TO, Michalski AS, Hoffman EA, Zabner J, Stoltz DA, Welsh MJ. Impaired mucus detachment disrupts mucociliary transport in a piglet model of cystic fibrosis. Science 2014; 345:818-22. [PMID: 25124441 DOI: 10.1126/science.1255825] [Citation(s) in RCA: 296] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Lung disease in people with cystic fibrosis (CF) is initiated by defective host defense that predisposes airways to bacterial infection. Advanced CF is characterized by a deficit in mucociliary transport (MCT), a process that traps and propels bacteria out of the lungs, but whether this deficit occurs first or is secondary to airway remodeling has been unclear. To assess MCT, we tracked movement of radiodense microdisks in airways of newborn piglets with CF. Cholinergic stimulation, which elicits mucus secretion, substantially reduced microdisk movement. Impaired MCT was not due to periciliary liquid depletion; rather, CF submucosal glands secreted mucus strands that remained tethered to gland ducts. Inhibiting anion secretion in non-CF airways replicated CF abnormalities. Thus, impaired MCT is a primary defect in CF, suggesting that submucosal glands and tethered mucus may be targets for early CF treatment.
Collapse
Affiliation(s)
- Mark J Hoegger
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Anthony J Fischer
- Department of Pediatrics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - James D McMenimen
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Lynda S Ostedgaard
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Alex J Tucker
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Maged A Awadalla
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Thomas O Moninger
- Central Microscopy Research Facility, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew S Michalski
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - Eric A Hoffman
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Radiology, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Joseph Zabner
- Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
| | - David A Stoltz
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA.
| | - Michael J Welsh
- Department of Molecular Physiology and Biophysics, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Department of Internal Medicine, University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA. Howard Hughes Medical Institute (HHMI), University of Iowa, Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|