1
|
Kang L, Liu X, Li Z, Li X, Han Y, Liu C, Zhao C, Li X. Sildenafil Improves Pulmonary Vascular Remodeling in a Rat Model of Persistent Pulmonary Hypertension of the Newborn. J Cardiovasc Pharmacol 2023; 81:232-239. [PMID: 36198097 PMCID: PMC9988230 DOI: 10.1097/fjc.0000000000001373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 09/09/2022] [Indexed: 11/05/2022]
Abstract
ABSTRACT Persistent pulmonary hypertension of the newborn (PPHN) is characterized by pulmonary arterial remodeling mainly because of apoptosis resistance and excessive proliferation of pulmonary artery smooth muscle cells (PASMCs). Sildenafil is a phosphodiesterase-5 inhibitor. Some reports have shown that sildenafil exerts protective effects against PPHN. However, the function of sildenafil in PPHN and the underlying molecular mechanisms is not clear. Here, we revealed that sildenafil effectively suppressed hypoxia-induced PASMC proliferation and apoptosis inhibition ( P < 0.05). Also, sildenafil obviously reduced ventricular hypertrophy, and inhibited pulmonary vascular remodeling in the PPHN model ( P < 0.05). Moreover, sildenafil treatment significantly attenuated the induction of Notch3 and Hes1 induced by hypoxia treatment ( P < 0.05). Furthermore, overexpression of Notch3 abolished the reduction of PASMC proliferation and promotion of PASMC apoptosis induced by sildenafil under hypoxia ( P < 0.05), whereas knockdown of Notch3 had an opposite effect ( P < 0.05). Together, our study demonstrates that sildenafil shows a potential benefit against the development of PPHN by inhibiting Notch3 signaling, providing a strategy for treating PPHN in the future.
Collapse
Affiliation(s)
- Lili Kang
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Xianghong Liu
- Department of Pediatrics Research Institute, Qilu Children's Hospital of ShanDong University, ShanDong, China; and
| | - Zilong Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - XiaoMei Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Yujie Han
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Chen Liu
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, ShanDong, China.
| | - Xiaoying Li
- Department of Neonatalogy, Qilu Children's Hospital of ShanDong University, ShanDong, China;
| |
Collapse
|
2
|
Allen BJ, Frye H, Ramanathan R, Caggiano LR, Tabima DM, Chesler NC, Philip JL. Biomechanical and Mechanobiological Drivers of the Transition From PostCapillary Pulmonary Hypertension to Combined Pre-/PostCapillary Pulmonary Hypertension. J Am Heart Assoc 2023; 12:e028121. [PMID: 36734341 PMCID: PMC9973648 DOI: 10.1161/jaha.122.028121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Combined pre-/postcapillary pulmonary hypertension (Cpc-PH), a complication of left heart failure, is associated with higher mortality rates than isolated postcapillary pulmonary hypertension alone. Currently, knowledge gaps persist on the mechanisms responsible for the progression of isolated postcapillary pulmonary hypertension (Ipc-PH) to Cpc-PH. Here, we review the biomechanical and mechanobiological impact of left heart failure on pulmonary circulation, including mechanotransduction of these pathological forces, which lead to altered biological signaling and detrimental remodeling, driving the progression to Cpc-PH. We focus on pathologically increased cyclic stretch and decreased wall shear stress; mechanotransduction by endothelial cells, smooth muscle cells, and pulmonary arterial fibroblasts; and signaling-stimulated remodeling of the pulmonary veins, capillaries, and arteries that propel the transition from Ipc-PH to Cpc-PH. Identifying biomechanical and mechanobiological mechanisms of Cpc-PH progression may highlight potential pharmacologic avenues to prevent right heart failure and subsequent mortality.
Collapse
Affiliation(s)
- Betty J. Allen
- Department of SurgeryUniversity of Wisconsin‐MadisonMadisonWI
| | - Hailey Frye
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Rasika Ramanathan
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Laura R. Caggiano
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA
| | - Diana M. Tabima
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
| | - Naomi C. Chesler
- Department of Biomedical EngineeringUniversity of Wisconsin‐MadisonMadisonWI
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical EngineeringUniversity of CaliforniaIrvineCA
| | | |
Collapse
|
3
|
Kumar R, Soni H, Afolabi JM, Kanthakumar P, Mankuzhy PD, Iwhiwhu SA, Adebiyi A. Induction of reactive oxygen species by mechanical stretch drives endothelin production in neonatal pig renal epithelial cells. Redox Biol 2022; 55:102394. [PMID: 35841629 PMCID: PMC9289874 DOI: 10.1016/j.redox.2022.102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 11/23/2022] Open
Abstract
Vasoactive endothelin (ET) is generated by ET converting enzyme (ECE)-induced proteolytic processing of pro-molecule big ET to biologically active peptides. H2O2 has been shown to increase the expression of ECE1 via transactivation of its promoter. The present study demonstrates that H2O2 triggered ECE1-dependent ET1-3 production in neonatal pig proximal tubule (PT) epithelial cells. A uniaxial stretch of PT cells decreased catalase, increased NADPH oxidase (NOX)2 and NOX4, and increased H2O2 levels. Stretch also increased cellular ECE1, an effect reversed by EUK-134 (a synthetic superoxide dismutase/catalase mimetic), NOX inhibitor apocynin, and siRNA-mediated knockdown of NOX2 and NOX4. Short-term unilateral ureteral obstruction (UUO), an inducer of renal tubular cell stretch and oxidative stress, increased renal ET1-3 generation and vascular resistance (RVR) in neonatal pigs. Despite removing the obstruction, UUO-induced increase in RVR persisted, resulting in early acute kidney injury (AKI). ET receptor (ETR)-operated Ca2+ entry in renal microvascular smooth muscle (SM) via transient receptor potential channel 3 (TRPC3) channels reduced renal blood flow and increased RVR. Although acute reversible UUO (rUUO) did not change protein expression levels of ETR and TRPC3 in renal microvessels, inhibition of ECE1, ETR, and TRPC3 protected against renal hypoperfusion, RVR increase, and early AKI. These data suggest that mechanical stretch-driven oxyradical generation stimulates ET production in neonatal pig renal epithelial cells. ET activates renal microvascular SM TRPC3, leading to persistent vasoconstriction and reduction in renal blood flow. These mechanisms may underlie rUUO-induced renal insufficiency in infants.
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hitesh Soni
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jeremiah M Afolabi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Praghalathan Kanthakumar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pratheesh D Mankuzhy
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Samson A Iwhiwhu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adebowale Adebiyi
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
4
|
Abstract
A strain gradient was created by punching a hole in the center of a stretched elastic polydimethylsiloxane membrane to determine the effect of different strains on cultured human keratocytes (HK). In this study, two stretching methods were used: continuous stretching and cyclic stretching. Continuous stretching is relatively static, while acyclic stretching is relatively dynamic. These methods, respectively, represented the effects of high intraocular pressure and rubbing of the eyes on corneal cells. Image processing codes were developed to observe the effects of stress concentration, shear stress, continuous stretching, and cyclic stretching on HKs. The results demonstrate that stretching and shear stress are not conducive to the proliferation of corneal cells and instead cause cell death. A 10% strain had greater inhibitory effects than a 3% strain on cell proliferation. Cell survival rates for continuous stretching (static) were higher than those for cyclic stretching (dynamic). The stretching experiment revealed that cyclic stretching has a greater inhibitory effect on the growth and proliferation of corneal cells than continuous stretching. Accordingly, it shows that cyclic loading is more harmful than high intraocular pressure (static loading) to corneal cells.
Collapse
|
5
|
Dai ZX, Shih PJ, Yen JY, Wang IJ. Functional assistance for stress distribution in cell culture membrane under periodically stretching. J Biomech 2021; 125:110564. [PMID: 34237658 DOI: 10.1016/j.jbiomech.2021.110564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Abstract
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
Collapse
Affiliation(s)
- Zhi-Xuan Dai
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan
| | - Po-Jen Shih
- Department of Biomedical Engineering, National Taiwan University, 10617 Taipei, Taiwan.
| | - Jia-Yush Yen
- Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan; Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Shimoda LA. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2021; 35:222-233. [PMID: 32490752 DOI: 10.1152/physiol.00039.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Zhang Y, Qi Y, Li JJ, He WJ, Gao XH, Zhang Y, Sun X, Tong J, Zhang J, Deng XL, Du XJ, Xie W. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc Res 2021; 117:1091-1102. [PMID: 32531044 DOI: 10.1093/cvr/cvaa163] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/06/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
AIMS Despite numerous reports documenting an important role of hypertension in the development of atrial fibrillation (AF), the detailed mechanism underlying the pathological process remains incompletely understood. Here, we aim to test the hypothesis that diastolic sarcoplasmic reticulum (SR) Ca2+ leak in atrial myocytes, induced by mechanical stretch due to elevated pressure in the left atrium (LA), plays an essential role in the AF development in pressure-overloaded hearts. METHODS AND RESULTS Isolated mouse atrial myocytes subjected to acute axial stretch displayed an immediate elevation of SR Ca2+ leak. Using a mouse model of transverse aortic constriction (TAC), the relation between stretch, SR Ca2+ leak, and AF susceptibility was further tested. At 36 h post-TAC, SR Ca2+ leak in cardiomyocytes from the LA (with haemodynamic stress), but not right atrium (without haemodynamic stress), significantly increased, which was further elevated at 4 weeks post-TAC. Accordingly, AF susceptibility to atrial burst pacing in the 4-week TAC mice were also significantly increased, which was unaffected by inhibition of atrial fibrosis or inflammation via deletion of galectin-3. Western blotting revealed that type 2 ryanodine receptor (RyR2) in left atrial myocytes of TAC mice was oxidized due to activation and up-regulation of Nox2 and Nox4. Direct rescue of dysfunctional RyR2 with dantrolene or rycal S107 reduced diastolic SR Ca2+ leak in left atrial myocytes and prevented atrial burst pacing stimulated AF. CONCLUSION Our study demonstrated for the first time the increased SR Ca2+ leak mediated by enhanced oxidative stress in left atrial myocytes that is causatively associated with higher AF susceptibility in pressure-overloaded hearts.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Ying Qi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Jing-Jing Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Wen-Jin He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Xiao-Hang Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Yu Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xia Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Jie Tong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Jianbao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Cardiovascular Research Centre, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, No. 28 West Xianning Road, Xi'an, Shaanxi 710049, China
| |
Collapse
|
8
|
Zhu T, Chiacchia S, Kameny RJ, Garcia De Herreros A, Gong W, Raff GW, Boehme JB, Maltepe E, Lasheras JC, Black SM, Datar SA, Fineman JR. Mechanical forces alter endothelin-1 signaling: comparative ovine models of congenital heart disease. Pulm Circ 2020; 10:2045894020922118. [PMID: 32489641 PMCID: PMC7238833 DOI: 10.1177/2045894020922118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022] Open
Abstract
The risk and progression of pulmonary vascular disease in patients with congenital heart disease is dependent on the hemodynamics associated with different lesions. However, the underlying mechanisms are not understood. Endothelin-1 is a potent vasoconstrictor that plays a key role in the pathology of pulmonary vascular disease. We utilized two ovine models of congenital heart disease: (1) fetal aortopulmonary graft placement (shunt), resulting in increased flow and pressure; and (2) fetal ligation of the left pulmonary artery resulting in increased flow and normal pressure to the right lung, to investigate the hypothesis that high pressure and flow, but not flow alone, upregulates endothelin-1 signaling. Lung tissue and pulmonary arterial endothelial cells were harvested from control, shunt, and the right lung of left pulmonary artery lambs at 3–7 weeks of age. We found that lung preproendothelin-1 mRNA and protein expression were increased in shunt lambs compared to controls. Preproendothelin-1 mRNA expression was modestly increased, and protein was unchanged in left pulmonary artery lambs. These changes resulted in increased lung endothelin-1 levels in shunt lambs, while left pulmonary artery levels were similar to controls. Pulmonary arterial endothelial cells exposed to increased shear stress decreased endothelin-1 levels by five-fold, while cyclic stretch increased levels by 1.5-fold. These data suggest that pressure or an additive effect of pressure and flow, rather than increased flow alone, is the principal driver of increased endothelin signaling in congenital heart disease. Defining the molecular drivers of the pathobiology of pulmonary vascular disease due to differing mechanical forces will allow for a more targeted therapeutic approach.
Collapse
Affiliation(s)
- Terry Zhu
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Samuel Chiacchia
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Rebecca J Kameny
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | | | - Wenhui Gong
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Gary W Raff
- Department of Surgery, University of California, Davis, CA, USA
| | - Jason B Boehme
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Juan C Lasheras
- Institute of Engineering in Medicine, University of California, San Diego, CA, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sanjeev A Datar
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, CA, USA These authors contributed equally
| |
Collapse
|
9
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
10
|
Bao H, Li H, Shi Q, Huang K, Chen X, Chen Y, Han Y, Xiao Q, Yao Q, Qi Y. Lamin A/C negatively regulated by miR-124-3p modulates apoptosis of vascular smooth muscle cells during cyclic stretch application in rats. Acta Physiol (Oxf) 2020; 228:e13374. [PMID: 31495066 DOI: 10.1111/apha.13374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023]
Abstract
AIM Apoptosis of vascular smooth muscle cells (VSMCs) influenced by abnormal cyclic stretch is crucial for vascular remodelling during hypertension. Lamin A/C, a nuclear envelope protein, is mechano-responsive, but the role of lamin A/C in VSMC apoptosis is still unclear. METHODS FX-5000T Strain Unit provided cyclic stretch (CS) in vitro. AnnexinV/PI and cleaved Caspase 3 ELISA detected apoptosis. qPCR was used to investigate the expression of miR-124-3p and a luciferase reporter assay was used to evaluate the ability of miR-124-3p binding to the Lmna 3'UTR. Protein changes of lamin A/C and relevant molecules were detected using western blot. Ingenuity Pathway Analysis and Protein/DNA array detected the potential transcription factors. Renal hypertensive rats verified these changes. RESULTS High cyclic stretch (15%-CS) induced VSMC apoptosis and repressed lamin A/C expressions compared with normal (5%-CS) control. Downregulation of lamin A/C enhanced VSMC apoptosis. In addition, 15%-CS had no significant effect on mRNA expression of Lmna, and lamin A/C degradation was not induced by autophagy. 15%-CS elevated miR-124-3p bound to the 3'UTR of Lmna and negatively regulated protein expression of lamin A/C. Similar changes occurred in renal hypertensive rats compared with sham controls. Lamin A/C repression affected activity of TP53, CREB1, MYC, STAT1/5/6 and JUN, which may in turn affect apoptosis. CONCLUSION Our data suggested that the decreased expression of lamin A/C upon abnormal cyclic stretch and hypertension may induce VSMC apoptosis. These mechano-responsive factors play important roles in VSMC apoptosis and might be novel therapeutic targets for vascular remodelling in hypertension.
Collapse
Affiliation(s)
- Han Bao
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Hai‐Peng Li
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Qian Shi
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Xiao‐Hu Chen
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Yuan‐Xiu Chen
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Qian Xiao
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Qing‐Ping Yao
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
| | - Ying‐Xin Qi
- Institute of Mechanobiology & Medical Engineering School of Life Sciences & Biotechnology Shanghai Jiao Tong University Shanghai China
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education School of Biological Science and Medical Engineering Beihang University Beijing China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing China
| |
Collapse
|
11
|
Sheak JR, Yan S, Weise-Cross L, Ahmadian R, Walker BR, Jernigan NL, Resta TC. PKCβ and reactive oxygen species mediate enhanced pulmonary vasoconstrictor reactivity following chronic hypoxia in neonatal rats. Am J Physiol Heart Circ Physiol 2020; 318:H470-H483. [PMID: 31922892 DOI: 10.1152/ajpheart.00629.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reactive oxygen species (ROS), mitochondrial dysfunction, and excessive vasoconstriction are important contributors to chronic hypoxia (CH)-induced neonatal pulmonary hypertension. On the basis of evidence that PKCβ and mitochondrial oxidative stress are involved in several cardiovascular and metabolic disorders, we hypothesized that PKCβ and mitochondrial ROS (mitoROS) signaling contribute to enhanced pulmonary vasoconstriction in neonatal rats exposed to CH. To test this hypothesis, we examined effects of the PKCβ inhibitor LY-333,531, the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and the mitochondrial antioxidants mitoquinone mesylate (MitoQ) and (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) on vasoconstrictor responses in saline-perfused lungs (in situ) or pressurized pulmonary arteries from 2-wk-old control and CH (12-day exposure, 0.5 atm) rats. Lungs from CH rats exhibited greater basal tone and vasoconstrictor sensitivity to 9,11-dideoxy-9α,11α-methanoepoxy prostaglandin F2α (U-46619). LY-333,531 and TEMPOL attenuated these effects of CH, while having no effect in lungs from control animals. Basal tone was similarly elevated in isolated pulmonary arteries from neonatal CH rats compared with control rats, which was inhibited by both LY-333,531 and mitochondria-targeted antioxidants. Additional experiments assessing mitoROS generation with the mitochondria-targeted ROS indicator MitoSOX revealed that a PKCβ-mitochondrial oxidant signaling pathway can be pharmacologically stimulated by the PKC activator phorbol 12-myristate 13-acetate in primary cultures of pulmonary artery smooth muscle cells (PASMCs) from control neonates. Finally, we found that neonatal CH increased mitochondrially localized PKCβ in pulmonary arteries as assessed by Western blotting of subcellular fractions. We conclude that PKCβ activation leads to mitoROS production in PASMCs from neonatal rats. Furthermore, this signaling axis may account for enhanced pulmonary vasoconstrictor sensitivity following CH exposure.NEW & NOTEWORTHY This research demonstrates a novel contribution of PKCβ and mitochondrial reactive oxygen species signaling to increased pulmonary vasoconstrictor reactivity in chronically hypoxic neonates. The results provide a potential mechanism by which chronic hypoxia increases both basal and agonist-induced pulmonary arterial smooth muscle tone, which may contribute to neonatal pulmonary hypertension.
Collapse
Affiliation(s)
- Joshua R Sheak
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Simin Yan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Laura Weise-Cross
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Rosstin Ahmadian
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Benjimen R Walker
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Nikki L Jernigan
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Thomas C Resta
- Vascular Physiology Group, Department of Cell Biology and Physiology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
12
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
13
|
Zemskov EA, Lu Q, Ornatowski W, Klinger CN, Desai AA, Maltepe E, Yuan JXJ, Wang T, Fineman JR, Black SM. Biomechanical Forces and Oxidative Stress: Implications for Pulmonary Vascular Disease. Antioxid Redox Signal 2019; 31:819-842. [PMID: 30623676 PMCID: PMC6751394 DOI: 10.1089/ars.2018.7720] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Oxidative stress in the cell is characterized by excessive generation of reactive oxygen species (ROS). Superoxide (O2-) and hydrogen peroxide (H2O2) are the main ROS involved in the regulation of cellular metabolism. As our fundamental understanding of the underlying causes of lung disease has increased it has become evident that oxidative stress plays a critical role. Recent Advances: A number of cells in the lung both produce, and respond to, ROS. These include vascular endothelial and smooth muscle cells, fibroblasts, and epithelial cells as well as the cells involved in the inflammatory response, including macrophages, neutrophils, eosinophils. The redox system is involved in multiple aspects of cell metabolism and cell homeostasis. Critical Issues: Dysregulation of the cellular redox system has consequential effects on cell signaling pathways that are intimately involved in disease progression. The lung is exposed to biomechanical forces (fluid shear stress, cyclic stretch, and pressure) due to the passage of blood through the pulmonary vessels and the distension of the lungs during the breathing cycle. Cells within the lung respond to these forces by activating signal transduction pathways that alter their redox state with both physiologic and pathologic consequences. Future Directions: Here, we will discuss the intimate relationship between biomechanical forces and redox signaling and its role in the development of pulmonary disease. An understanding of the molecular mechanisms induced by biomechanical forces in the pulmonary vasculature is necessary for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Evgeny A Zemskov
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Qing Lu
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Wojciech Ornatowski
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Christina N Klinger
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| | - Ting Wang
- Department of Internal Medicine, The University of Arizona Health Sciences, Phoenix, Arizona
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, The University of Arizona Health Sciences, Tucson, Arizona
| |
Collapse
|
14
|
Liang X, Wang Z, Gao M, Wu S, Zhang J, Liu Q, Yu Y, Wang J, Liu W. Cyclic stretch induced oxidative stress by mitochondrial and NADPH oxidase in retinal pigment epithelial cells. BMC Ophthalmol 2019; 19:79. [PMID: 30885167 PMCID: PMC6421648 DOI: 10.1186/s12886-019-1087-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/12/2019] [Indexed: 01/24/2023] Open
Abstract
Background Vitreomacular adhesion (VMA) has been reported to associated with age-related macular degeneration (AMD). Understanding the mechanisms underlying cyclic stretch induced in retinal pigment epithelial cells (RPE) may be important for the treatment of VMA-related AMD. Method Cyclic stretch (1HZ, 20% elongation) was applied to cultured ARPE-19 cells for 15 min, 2 h, 6 h, 12 h, 24 h by flexcell FX-5000 Tension system. Total reactive oxygen species (ROS) were detected using DCFH-DA. Mitochondrial superoxide were detected using MitoSOX Red mitochondrial superoxide indicator. NADPH oxidases (NOX) and signaling pathways, such as p38 and PKC, were detected using western blot. Apocycin (Apo) were used as NOX inhibitors. Result High levels of total ROS were detected from 15 min to 24 h, whereas mitochondrial superoxide were higher only in early time. NOX2 were significantly increased at 24 h. NOX4 were significantly increased at 2 h and reach its peak at 24 h. P-p38 was significantly increased at 12 h and 24 h. P-PKC was significantly increased at 15 min and kept a persistent high level. The upregulated expression of NOX4 by cyclic stretch can be significantly decreased under p-PKC inhibitor other than p-p38 inhibitor. Conclusion Cyclic stretch induce oxidative stress from both mitochodrial and NADPH oxidase in RPE cells, which may prompt oxidative damage in VMA-related AMD.
Collapse
Affiliation(s)
- Xida Liang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Zengyi Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Meng Gao
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Qian Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Yanping Yu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Jing Wang
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China
| | - Wu Liu
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University; Beijing Ophthalmology & Visual Sciences Key Laboratory, Beijing, 100730, China.
| |
Collapse
|
15
|
Huetsch JC, Suresh K, Shimoda LA. Regulation of Smooth Muscle Cell Proliferation by NADPH Oxidases in Pulmonary Hypertension. Antioxidants (Basel) 2019; 8:antiox8030056. [PMID: 30841544 PMCID: PMC6466559 DOI: 10.3390/antiox8030056] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 02/07/2023] Open
Abstract
Hyperproliferation of pulmonary arterial smooth muscle cells is a key component of vascular remodeling in the setting of pulmonary hypertension (PH). Numerous studies have explored factors governing the changes in smooth muscle cell phenotype that lead to the increased wall thickness, and have identified various potential candidates. A role for reactive oxygen species (ROS) has been well documented in PH. ROS can be generated from a variety of sources, including mitochondria, uncoupled nitric oxide synthase, xanthine oxidase, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. In this article, we will review recent data supporting a role for ROS generated from NADPH oxidases in promoting pulmonary arterial smooth muscle cell proliferation during PH.
Collapse
Affiliation(s)
- John C Huetsch
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| | - Karthik Suresh
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| | - Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA.
| |
Collapse
|
16
|
Application of laser scanning cytometry in vascular smooth muscle remodeling. Hypertens Res 2018; 41:869-885. [PMID: 30214031 DOI: 10.1038/s41440-018-0077-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/02/2018] [Accepted: 02/20/2018] [Indexed: 02/07/2023]
Abstract
Pulmonary artery hyperplasia is the result of proliferation of the pulmonary arterial smooth muscles (PASM). Hypoxia-induced PASM proliferation in the fetus and the newborn is the primary cause of persistent pulmonary hypertension of the newborn (PPHN). This study was performed to characterize the utility of the Laser Scanning Cytometry (LSC) method in elucidating arterial cytoskeletal remodeling in an in vitro model of PPHN. The aim was to demonstrate the following: (a) LSC is a valid method for the analysis of nuclear and cytosolic fluorescence and (b) the cumulative effects of mechanical stretch together with hypoxia promote reactive oxygen species (ROS) formation. The molecular events in response to hypoxia and the mechanical overload of the pulmonary circuit were demonstrated in vitro by subjecting hypoxic cultured primary PASM or human airway smooth muscles (hASM) to repetitive stretch-relaxation cycles at rates comparable to dynamic stretch in vivo. The altered cytoskeleton in the form of filamentous to globular actin (F:G actin) ratio was imaged and quantified at the cellular level by LSC as an endpoint. LSC can remove the nuclear G-actin fluorescence from the total G-actin fluorescence. Pulsatile stretch was found to significantly increase the total endogenous ROS and superoxide anion release in normoxic and hypoxic conditions in primary PASM fibers. The effect of stretch was predominant in increasing superoxide anion release, only under hypoxic conditions. These findings, obtained by LSC in vitro are amenable to validation in any in vivo model of interest. The in vitro model is clinically relevant to human pulmonary vascular remodeling.
Collapse
|
17
|
Pulmonary Vascular Platform Models the Effects of Flow and Pressure on Endothelial Dysfunction in BMPR2 Associated Pulmonary Arterial Hypertension. Int J Mol Sci 2018; 19:ijms19092561. [PMID: 30158434 PMCID: PMC6164056 DOI: 10.3390/ijms19092561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/15/2022] Open
Abstract
Endothelial dysfunction is a known consequence of bone morphogenetic protein type II receptor (BMPR2) mutations seen in pulmonary arterial hypertension (PAH). However, standard 2D cell culture models fail to mimic the mechanical environment seen in the pulmonary vasculature. Hydrogels have emerged as promising platforms for 3D disease modeling due to their tunable physical and biochemical properties. In order to recreate the mechanical stimuli seen in the pulmonary vasculature, we have created a novel 3D hydrogel-based pulmonary vasculature model (“artificial arteriole”) that reproduces the pulsatile flow rates and pressures seen in the human lung. Using this platform, we studied both Bmpr2R899X and WT endothelial cells to better understand how the addition of oscillatory flow and physiological pressure influenced gene expression, cell morphology, and cell permeability. The addition of oscillatory flow and pressure resulted in several gene expression changes in both WT and Bmpr2R899X cells. However, for many pathways with relevance to PAH etiology, Bmpr2R899X cells responded differently when compared to the WT cells. Bmpr2R899X cells were also found not to elongate in the direction of flow, and instead remained stagnant in morphology despite mechanical stimuli. The increased permeability of the Bmpr2R899X layer was successfully reproduced in our artificial arteriole, with the addition of flow and pressure not leading to significant changes in permeability. Our artificial arteriole is the first to model many mechanical properties seen in the lung. Its tunability enables several new opportunities to study the endothelium in pulmonary vascular disease with increased control over environmental parameters.
Collapse
|
18
|
Guo X, Fan Y, Cui J, Hao B, Zhu L, Sun X, He J, Yang J, Dong J, Wang Y, Liu X, Chen J. NOX4 expression and distal arteriolar remodeling correlate with pulmonary hypertension in COPD. BMC Pulm Med 2018; 18:111. [PMID: 29986678 PMCID: PMC6038356 DOI: 10.1186/s12890-018-0680-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 12/26/2022] Open
Abstract
Background Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is suggested as the consequence of emphysematous destruction of vascular bed and hypoxia of pulmonary microenvironment, mechanisms underpinning its pathogenesis however remain elusive. The dysregulated expression of nicotinamide adenine dinucleotide phosphate (NADPH)-oxidases and superoxide generation by pulmonary vasculatures have significant implications in the hypoxia-induced PH. Methods In this study, the involvement of NADPH oxidase subunit 4 (NOX4) in pulmonary arteriolar remodeling of PH in COPD was investigated by ascertaining the morphological alteration of pulmonary arteries and pulmonary blood flow using cardiac magnetic resonance imaging (cMRI), and the expression and correlation of NOX4 with pulmonary vascular remodeling and pulmonary functions in COPD lungs. Results Results demonstrated that an augmented expression of NOX4 was correlated with the increased volume of pulmonary vascular wall in COPD lung. While the volume of distal pulmonary arteries was inversely correlated with pulmonary functions, despite it was positively associated with the main pulmonary artery distensibility, right ventricular myocardial mass end-systolic and right ventricular myocardial mass end-diastolic in COPD. In addition, an increased malondialdehyde and a decreased superoxide dismutase were observed in sera of COPD patients. Mechanistically, the abundance of NOX4 and production of reactive oxygen species (ROS) in pulmonary artery smooth muscle cells could be dynamically induced by transforming growth factor-beta (TGF-β), which in turn led pulmonary arteriolar remodeling in COPD lungs. Conclusion These results suggest that the NOX4-derived ROS production may play a key role in the development of PH in COPD by promoting distal pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Xiaotong Guo
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Yuchun Fan
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Jieda Cui
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.,Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Binwei Hao
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China
| | - Li Zhu
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiao Sun
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jinxi He
- Department of Thoracic Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jiali Yang
- Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Jianda Dong
- Department of Pathology, Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Yanyang Wang
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China
| | - Xiaoming Liu
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China. .,Institute of Human Stem Cell Research, General Hospital of Ningxia Medical University, Yinchuan, 750004, Ningxia, China.
| | - Juan Chen
- Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, 804 Shengli South Street, Xingqing District, Yinchuan, Ningxia, 750004, People's Republic of China.
| |
Collapse
|
19
|
Marshall JD, Bazan I, Zhang Y, Fares WH, Lee PJ. Mitochondrial dysfunction and pulmonary hypertension: cause, effect, or both. Am J Physiol Lung Cell Mol Physiol 2018; 314:L782-L796. [PMID: 29345195 DOI: 10.1152/ajplung.00331.2017] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Pulmonary hypertension describes a heterogeneous disease defined by increased pulmonary artery pressures, and progressive increase in pulmonary vascular resistance due to pathologic remodeling of the pulmonary vasculature involving pulmonary endothelial cells, pericytes, and smooth muscle cells. This process occurs under various conditions, and although these populations vary, the clinical manifestations are the same: progressive dyspnea, increases in right ventricular (RV) afterload and dysfunction, RV-pulmonary artery uncoupling, and right-sided heart failure with systemic circulatory collapse. The overall estimated 5-yr survival rate is 72% in highly functioning patients, and as low as 28% for those presenting with advanced symptoms. Metabolic theories have been suggested as underlying the pathogenesis of pulmonary hypertension with growing evidence of the role of mitochondrial dysfunction involving the major proteins of the electron transport chain, redox-related enzymes, regulators of the proton gradient and calcium homeostasis, regulators of apoptosis, and mitophagy. There remain more studies needed to characterize mitochondrial dysfunction leading to impaired vascular relaxation, increase proliferation, and failure of regulatory mechanisms. The effects on endothelial cells and resulting interactions with their microenvironment remain uncharted territory for future discovery. Additionally, on the basis of observations that the "plexigenic lesions" of pulmonary hypertension resemble the unregulated proliferation of tumor cells, similarities between cancer pathobiology and pulmonary hypertension have been drawn, suggesting interactions between mitochondria and angiogenesis. Recently, mitochondria targeting has become feasible, which may yield new therapeutic strategies. We present a state-of-the-art review of the role of mitochondria in both the pathobiology of pulmonary hypertension and potential therapeutic targets in pulmonary vascular processes.
Collapse
Affiliation(s)
- Jeffrey D Marshall
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Isabel Bazan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Yi Zhang
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Wassim H Fares
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| | - Patty J Lee
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine , New Haven, Connecticut
| |
Collapse
|
20
|
Goitre L, DiStefano PV, Moglia A, Nobiletti N, Baldini E, Trabalzini L, Keubel J, Trapani E, Shuvaev VV, Muzykantov VR, Sarelius IH, Retta SF, Glading AJ. Up-regulation of NADPH oxidase-mediated redox signaling contributes to the loss of barrier function in KRIT1 deficient endothelium. Sci Rep 2017; 7:8296. [PMID: 28811547 PMCID: PMC5558000 DOI: 10.1038/s41598-017-08373-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
The intracellular scaffold KRIT1/CCM1 is an established regulator of vascular barrier function. Loss of KRIT1 leads to decreased microvessel barrier function and to the development of the vascular disorder Cerebral Cavernous Malformation (CCM). However, how loss of KRIT1 causes the subsequent deficit in barrier function remains undefined. Previous studies have shown that loss of KRIT1 increases the production of reactive oxygen species (ROS) and exacerbates vascular permeability triggered by several inflammatory stimuli, but not TNF−α. We now show that endothelial ROS production directly contributes to the loss of barrier function in KRIT1 deficient animals and cells, as targeted antioxidant enzymes reversed the increase in permeability in KRIT1 heterozygous mice as shown by intravital microscopy. Rescue of the redox state restored responsiveness to TNF-α in KRIT1 deficient arterioles, but not venules. In vitro, KRIT1 depletion increased endothelial ROS production via NADPH oxidase signaling, up-regulated Nox4 expression, and promoted NF-κB dependent promoter activity. Recombinant yeast avenanthramide I, an antioxidant and inhibitor of NF-κB signaling, rescued barrier function in KRIT1 deficient cells. However, KRIT1 depletion blunted ROS production in response to TNF-α. Together, our data indicate that ROS signaling is critical for the loss of barrier function following genetic deletion of KRIT1.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Peter V DiStefano
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Torino, Italy
| | - Nicholas Nobiletti
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eva Baldini
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.,Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Julie Keubel
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Vladimir V Shuvaev
- Department of Pharmacology, University of Pennsylvania, Pennsylvania, USA
| | | | - Ingrid H Sarelius
- Department of Pharmacology and Physiology, University of Rochester, New York, USA
| | | | - Angela J Glading
- Department of Pharmacology and Physiology, University of Rochester, New York, USA.
| |
Collapse
|
21
|
Huetsch JC, Suresh K, Bernier M, Shimoda LA. Update on novel targets and potential treatment avenues in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 311:L811-L831. [PMID: 27591245 PMCID: PMC5130539 DOI: 10.1152/ajplung.00302.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition marked by a combination of constriction and remodeling within the pulmonary vasculature. It remains a disease without a cure, as current treatments were developed with a focus on vasodilatory properties but do not reverse the remodeling component. Numerous recent advances have been made in the understanding of cellular processes that drive pathologic remodeling in each layer of the vessel wall as well as the accompanying maladaptive changes in the right ventricle. In particular, the past few years have yielded much improved insight into the pathways that contribute to altered metabolism, mitochondrial function, and reactive oxygen species signaling and how these pathways promote the proproliferative, promigratory, and antiapoptotic phenotype of the vasculature during PH. Additionally, there have been significant advances in numerous other pathways linked to PH pathogenesis, such as sex hormones and perivascular inflammation. Novel insights into cellular pathology have suggested new avenues for the development of both biomarkers and therapies that will hopefully bring us closer to the elusive goal: a therapy leading to reversal of disease.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| | - Meghan Bernier
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
22
|
Boehme J, Sun X, Tormos KV, Gong W, Kellner M, Datar SA, Kameny RJ, Yuan JXJ, Raff GW, Fineman JR, Black SM, Maltepe E. Pulmonary artery smooth muscle cell hyperproliferation and metabolic shift triggered by pulmonary overcirculation. Am J Physiol Heart Circ Physiol 2016; 311:H944-H957. [PMID: 27591215 PMCID: PMC5114466 DOI: 10.1152/ajpheart.00040.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
Vascular cell hyperproliferation and metabolic reprogramming contribute to the pathophysiology of pulmonary arterial hypertension (PAH). An important cause of PAH in children with congenital heart disease (CHD) is increased pulmonary blood flow (PBF). To better characterize this disease course we studied early changes in pulmonary artery smooth muscle cell (PASMC) proliferation and metabolism using a unique ovine model of pulmonary overcirculation. Consistent with PAH in adults, PASMCs derived from 4-wk-old lambs exposed to increased PBF (shunt) exhibited increased rates of proliferation. While shunt PASMCs also exhibited significant decreases in mitochondrial oxygen consumption, membrane potential, and tricarboxylic acid (TCA) cycle function, suggesting a switch to Warburg metabolism as observed in advanced PAH in adults, they unexpectedly demonstrated decreased glycolytic lactate production, likely due to enhanced flux through the pentose phosphate pathway (PPP). This may be a response to the marked increase in NADPH oxidase (Nox) activity and decreased NADPH/NADP+ ratios observed in shunt PASMCs. Consistent with these findings, pharmacological inhibition of Nox activity preferentially slowed the growth of shunt PASMCs in vitro. Our results therefore indicate that PASMC hyperproliferation is observed early in the setting of pulmonary overcirculation and is accompanied by a unique metabolic profile that is independent of HIF-1α, PDHK1, or increased glycolytic flux. Our results also suggest that Nox inhibition may help prevent pulmonary overcirculation-induced PAH in children born with CHD.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Electron Spin Resonance Spectroscopy
- Flow Cytometry
- Fluorescent Antibody Technique
- Glycolysis
- Hypertension, Pulmonary/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Membrane Potential, Mitochondrial
- Metabolomics
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- NADPH Oxidases/metabolism
- Oxygen Consumption
- Pentose Phosphate Pathway
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- Pulmonary Circulation
- Reactive Oxygen Species/metabolism
- Sheep
- Sheep, Domestic
- Superoxides/metabolism
Collapse
Affiliation(s)
- Jason Boehme
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Xutong Sun
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Kathryn V Tormos
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Wenhui Gong
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Manuela Kellner
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Sanjeev A Datar
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Rebecca Johnson Kameny
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Jason X-J Yuan
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Gary W Raff
- Department of Surgery, University of California Davis, Davis, California
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tucson, Arizona; and
| | - Emin Maltepe
- Department of Pediatrics, University of California San Francisco, San Francisco, California;
| |
Collapse
|
23
|
Karadottir H, Kulkarni NN, Gudjonsson T, Karason S, Gudmundsson GH. Cyclic mechanical stretch down-regulates cathelicidin antimicrobial peptide expression and activates a pro-inflammatory response in human bronchial epithelial cells. PeerJ 2015; 3:e1483. [PMID: 26664810 PMCID: PMC4675098 DOI: 10.7717/peerj.1483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Mechanical ventilation (MV) of patients can cause damage to bronchoalveolar epithelium, leading to a sterile inflammatory response, infection and in severe cases sepsis. Limited knowledge is available on the effects of MV on the innate immune defense system in the human lung. In this study, we demonstrate that cyclic stretch of the human bronchial epithelial cell lines VA10 and BCi NS 1.1 leads to down-regulation of cathelicidin antimicrobial peptide (CAMP) gene expression. We show that treatment of VA10 cells with vitamin D3 and/or 4-phenyl butyric acid counteracted cyclic stretch mediated down-regulation of CAMP mRNA and protein expression (LL-37). Further, we observed an increase in pro-inflammatory responses in the VA10 cell line subjected to cyclic stretch. The mRNA expression of the genes encoding pro-inflammatory cytokines IL-8 and IL-1β was increased after cyclic stretching, where as a decrease in gene expression of chemokines IP-10 and RANTES was observed. Cyclic stretch enhanced oxidative stress in the VA10 cells. The mRNA expression of toll-like receptor (TLR) 3, TLR5 and TLR8 was reduced, while the gene expression of TLR2 was increased in VA10 cells after cyclic stretch. In conclusion, our in vitro results indicate that cyclic stretch may differentially modulate innate immunity by down-regulation of antimicrobial peptide expression and increase in pro-inflammatory responses.
Collapse
Affiliation(s)
- Harpa Karadottir
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Nikhil Nitin Kulkarni
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Laboratory Hematology, Landspitali University Hospital, University of Iceland, Reykjavik, Iceland
| | - Sigurbergur Karason
- Department of Anaesthesia and Intensive Care and Faculty of Medicine, Landspitali University Hospital and University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Biomedical Center and Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
24
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|