1
|
Effects of uteroplacental insufficiency on cardiac development in growth-restricted newborn rats. J Dev Orig Health Dis 2023; 14:272-278. [PMID: 36239256 DOI: 10.1017/s2040174422000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fetal growth restriction (FGR) is associated with reduced cardiac function in neonates. Uteroplacental insufficiency (UPI) is the most common cause of FGR. The mechanisms underlying these alterations remain unknown. We hypothesized that UPI would influence cardiac development in offspring rats. Through this study, we evaluated the effects of UPI during pregnancy on heart histology and pulmonary hypertension in growth-restricted newborn rats. On gestation Day 18, either UPI was induced through bilateral uterine vessel ligation (FGR group) or sham surgery (control group) was performed. The right middle lobe of the lung and the heart were harvested for histological and immunohistochemical evaluation on postnatal days 0 and 7. The FGR group exhibited significantly lower body weight, hypertrophy and degeneration of cardiomyocytes, increased intercellular spaces between the cardiomyocytes and collagen deposition, and decreased glycogen deposition and HNK-1 expression compared with the control group on postnatal days 0 and 7. These results suggest that neonates with FGR may have inadequate myocardial reserves, which may cause subsequent cardiovascular compromise in future life. Further studies are required to evaluate the hemodynamic changes in these growth-restricted neonates.
Collapse
|
2
|
Radi R. Interplay of carbon dioxide and peroxide metabolism in mammalian cells. J Biol Chem 2022; 298:102358. [PMID: 35961463 PMCID: PMC9485056 DOI: 10.1016/j.jbc.2022.102358] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 10/25/2022] Open
Abstract
The carbon dioxide/bicarbonate (CO2/HCO3-) molecular pair is ubiquitous in mammalian cells and tissues, mainly as a result of oxidative decarboxylation reactions that occur during intermediary metabolism. CO2 is in rapid equilibrium with HCO3-via the hydration reaction catalyzed by carbonic anhydrases. Far from being an inert compound in redox biology, CO2 enhances or redirects the reactivity of peroxides, modulating the velocity, extent, and type of one- and two-electron oxidation reactions mediated by hydrogen peroxide (H2O2) and peroxynitrite (ONOO-/ONOOH). Herein, we review the biochemical mechanisms by which CO2 engages in peroxide-dependent reactions, free radical production, redox signaling, and oxidative damage. First, we cover the metabolic formation of CO2 and its connection to peroxide formation and decomposition. Next, the reaction mechanisms, kinetics, and processes by which the CO2/peroxide interplay modulates mammalian cell redox biology are scrutinized in-depth. Importantly, CO2 also regulates gene expression related to redox and nitric oxide metabolism and as such influences oxidative and inflammatory processes. Accumulated biochemical evidence in vitro, in cellula, and in vivo unambiguously show that the CO2 and peroxide metabolic pathways are intertwined and together participate in key redox events in mammalian cells.
Collapse
Affiliation(s)
- Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
3
|
Ventilation strategies in transition from neonatal respiratory distress to chronic lung disease. Semin Fetal Neonatal Med 2019; 24:101035. [PMID: 31759915 DOI: 10.1016/j.siny.2019.101035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Despite the advance in neonatal care over the past few decades, preventing preterm infants with respiratory distress syndrome progress to bronchopulmonary dysplasia remained challenging. In this review, we will discuss the respiratory support strategies in preterm infants with RDS evolving into BPD based on the changes in pulmonary mechanics and pathophysiology as well as currently available evidence.
Collapse
|
4
|
Xia X, Peng Y, Lei D, Chen W. Hypercapnia downregulates hypoxia‐induced lysyl oxidase expression in pulmonary artery smooth muscle cells via inhibiting transforming growth factor β1signalling. Cell Biochem Funct 2019; 37:193-202. [PMID: 30917408 DOI: 10.1002/cbf.3390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐dong Xia
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Yan‐ping Peng
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Dan Lei
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| | - Wei‐qian Chen
- Department of Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University Wenzhou China
| |
Collapse
|
5
|
Omer M, Molloy EJ. QUESTION 2: Is permissive hypercapnia beneficial to preterm infants? Arch Dis Child 2017; 102:113-115. [PMID: 27881376 DOI: 10.1136/archdischild-2016-312050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/07/2016] [Indexed: 11/04/2022]
Affiliation(s)
- Murwan Omer
- Department of Paediatrics, Coombe Women and Infants University Hospital, Dublin, Ireland
| | - Eleanor J Molloy
- Department of Neonatology, Our lady's Children's Hospital, Trinity College, the University of Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Gentner S, Laube M, Uhlig U, Yang Y, Fuchs HW, Dreyhaupt J, Hummler HD, Uhlig S, Thome UH. Inflammatory Mediators in Tracheal Aspirates of Preterm Infants Participating in a Randomized Trial of Permissive Hypercapnia. Front Pediatr 2017; 5:246. [PMID: 29209598 PMCID: PMC5702441 DOI: 10.3389/fped.2017.00246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/06/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ventilator-induced lung injury is considered to be a main factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Optimizing ventilator strategies may reduce respiratory morbidities in preterm infants. Permissive hypercapnia has been suggested to attenuate lung injury. We aimed to determine if a higher PCO2 target range results in less lung injury compared to the control target range and possibly reduces pro-inflammatory cytokines and acid sphingomyelinase (ASM) in tracheal aspirates (TA), which has not been addressed before. METHODS During a multicenter trial of permissive hypercapnia in extremely low birthweight infants (PHELBI), preterm infants (birthweight 400-1,000 g, gestational age 23 0/7-28 6/7 weeks) requiring mechanical ventilation within 24 h of birth were randomly assigned to a high PCO2 target or a control group. The high target group aimed at PCO2 values of 55-65, 60-70, and 65-75 mmHg and the control group at PCO2 values of 40-50, 45-55 and 50-60 mmHg on postnatal days 1-3, 4-6, and 7-14, respectively. TA was analyzed for pro-inflammatory cytokines from postnatal day 2-21. BPD was determined at a postmenstrual age of 36 weeks ± 2 days. MAIN FINDINGS Levels of inflammatory cytokines and ASM were similar in both groups: interleukin (IL)-6 (p = 0.14), IL-8 (p = 0.43), IL-10 (p = 0.24), IL-1β (p = 0.11), macrophage inflammatory protein 1α (p = 0.44), albumin (p = 0.41), neuropeptide Y (p = 0.52), leukotriene B4 (p = 0.11), transforming growth factor-β1 (p = 0.68), nitrite (p = 0.15), and ASM (p = 0.94). Furthermore, most inflammatory mediators were strongly affected by the age of the infants and increased from postnatal day 2 to 21. BPD or death was observed in 14 out of 62 infants, who were distributed evenly between both groups. CONCLUSION The results suggest that high PCO2 target levels did not result in lower pulmonary inflammatory activity and thus reflect clinical results. This indicates that high PCO2 target ranges are not effective in reducing ventilator-induced lung injury in preterm infants, as compared to control targets. TRIAL REGISTRATION ISRCTN56143743.
Collapse
Affiliation(s)
- Sarah Gentner
- Division of Vascular Surgery, University of Ulm, Ulm, Germany
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| | - Ulrike Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Yang Yang
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Hans W Fuchs
- Center for Pediatrics, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Helmut D Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, University of Ulm, Ulm, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Aachen, Germany
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Hospital for Children and Adolescents, Division of Neonatology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
7
|
Mankouski A, Kantores C, Wong MJ, Ivanovska J, Jain A, Benner EJ, Mason SN, Tanswell AK, Auten RL, Jankov RP. Intermittent hypoxia during recovery from neonatal hyperoxic lung injury causes long-term impairment of alveolar development: A new rat model of BPD. Am J Physiol Lung Cell Mol Physiol 2016; 312:L208-L216. [PMID: 27913427 PMCID: PMC5336579 DOI: 10.1152/ajplung.00463.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 01/02/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung injury characterized by impaired alveologenesis that may persist into adulthood. Rat models of BPD using varying degrees of hyperoxia to produce injury either cause early mortality or spontaneously recover following removal of the inciting stimulus, thus limiting clinical relevance. We sought to refine an established rat model induced by exposure to 60% O2 from birth by following hyperoxia with intermittent hypoxia (IH). Rats exposed from birth to air or 60% O2 until day 14 were recovered in air with or without IH (FIO2 = 0.10 for 10 min every 6 h) until day 28 Animals exposed to 60% O2 and recovered in air had no evidence of abnormal lung morphology on day 28 or at 10-12 wk. In contrast, 60% O2-exposed animals recovered in IH had persistently increased mean chord length, more dysmorphic septal crests, and fewer peripheral arteries. Recovery in IH also increased pulmonary vascular resistance, Fulton index, and arterial wall thickness. IH-mediated abnormalities in lung structure (but not pulmonary hypertension) persisted when reexamined at 10-12 wk, accompanied by increased pulmonary vascular reactivity and decreased exercise tolerance. Increased mean chord length secondary to IH was prevented by treatment with a peroxynitrite decomposition catalyst [5,10,15,20-Tetrakis(4-sulfonatophenyl)-21H,23H-porphyrin iron (III) chloride, 30 mg/kg/day, days 14-28], an effect accompanied by fewer inflammatory cells. We conclude that IH during recovery from hyperoxia-induced injury prevents recovery of alveologenesis and leads to changes in lung and pulmonary vascular function lasting into adulthood, thus more closely mimicking contemporary BPD.
Collapse
Affiliation(s)
- Anastasiya Mankouski
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina.,Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Mathew J Wong
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Amish Jain
- Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Benner
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Stanley N Mason
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - A Keith Tanswell
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada.,Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Richard L Auten
- Division of Neonatology, Department of Pediatrics, Neonatal-Perinatal Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; .,Faculty of Medicine, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and.,Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Ee MT, Kantores C, Ivanovska J, Wong MJ, Jain A, Jankov RP. Leukotriene B4 mediates macrophage influx and pulmonary hypertension in bleomycin-induced chronic neonatal lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 311:L292-302. [PMID: 27317685 DOI: 10.1152/ajplung.00120.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/13/2016] [Indexed: 11/22/2022] Open
Abstract
Systemically-administered bleomycin causes inflammation, arrested lung growth, and pulmonary hypertension (PHT) in the neonatal rat, similar to human infants with severe bronchopulmonary dysplasia (BPD). Leukotrienes (LTs) are inflammatory lipid mediators produced by multiple cell types in the lung. The major LTs, LTB4 and cysteinyl LTs, are suggested to contribute to BPD, but their specific roles remain largely unexplored in experimental models. We hypothesized that LTs are increased in bleomycin-induced BPD-like injury, and that inhibition of LT production would prevent inflammatory cell influx and thereby ameliorate lung injury. Rat pups were exposed to bleomycin (1 mg·kg(-1)·day(-1) ip) or vehicle (control) from postnatal days 1-14 and were treated with either zileuton (5-lipoxygenase inhibitor), montelukast (cysteinyl LT1 receptor antagonist), or SC57461A (LTA4 hydrolase inhibitor) 10 mg·kg(-1)·day(-1) ip. Bleomycin led to increased lung content of LTB4, but not cysteinyl LTs. Bleomycin-induced increases in tissue neutrophils and macrophages and lung contents of LTB4 and tumor necrosis factor-α were all prevented by treatment with zileuton. Treatment with zileuton or SC57461A also prevented the hemodynamic and structural markers of chronic PHT, including raised pulmonary vascular resistance, increased Fulton index, and arterial wall remodeling. However, neither treatment prevented impaired alveolarization or vascular hypoplasia secondary to bleomycin. Treatment with montelukast had no effect on macrophage influx, PHT, or on abnormal lung structure. We conclude that LTB4 plays a crucial role in lung inflammation and PHT in experimental BPD. Agents targeting LTB4 or LTB4-mediated signaling may have utility in infants at risk of developing BPD-associated PHT.
Collapse
Affiliation(s)
- Mong Tieng Ee
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Crystal Kantores
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mathew J Wong
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Amish Jain
- Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Robert P Jankov
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
9
|
Porzionato A, Guidolin D, Macchi V, Sarasin G, Grisafi D, Tortorella C, Dedja A, Zaramella P, De Caro R. Fractal analysis of alveolarization in hyperoxia-induced rat models of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2016; 310:L680-8. [DOI: 10.1152/ajplung.00231.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
No papers are available about potentiality of fractal analysis in quantitative assessment of alveolarization in bronchopulmonary dysplasia (BPD). Thus, we here performed a comparative analysis between fractal [fractal dimension ( D) and lacunarity] and stereological [mean linear intercept ( Lm), total volume of alveolar air spaces, total number of alveoli, mean alveolar volume, total volume and surface area of alveolar septa, and mean alveolar septal thickness] parameters in experimental hyperoxia-induced models of BPD. At birth, rats were distributed between the following groups: 1) rats raised in ambient air for 2 wk; 2) rats exposed to 60% oxygen for 2 wk; 3) rats raised in normoxia for 6 wk; and 4) rats exposed to 60% hyperoxia for 2 wk and to room air for further 4 wk. Normoxic 6-wk rats showed increased D and decreased lacunarity with respect to normoxic 2-wk rats, together with changes in all stereological parameters except for mean alveolar volume. Hyperoxia-exposed 2-wk rats showed significant changes only in total number of alveoli, mean alveolar volume, and lacunarity with respect to equal-in-age normoxic rats. In the comparison between 6-wk rats, the hyperoxia-exposed group showed decreased D and increased lacunarity, together with changes in all stereological parameters except for septal thickness. Analysis of receiver operating characteristic curves showed a comparable discriminatory power of D, lacunarity, and total number of alveoli; Lmand mean alveolar volume were less discriminative. D and lacunarity did not show significant changes when different segmentation thresholds were applied, suggesting that the fractal approach may be fit to automatic image analysis.
Collapse
Affiliation(s)
- Andrea Porzionato
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Diego Guidolin
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Veronica Macchi
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Gloria Sarasin
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Davide Grisafi
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Cinzia Tortorella
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| | - Arben Dedja
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Patrizia Zaramella
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Molecular Medicine, University of Padova, Padova, Italy; and
| |
Collapse
|
10
|
Hummler HD, Banke K, Wolfson MR, Buonocore G, Ebsen M, Bernhard W, Tsikas D, Fuchs H. The Effects of Lung Protective Ventilation or Hypercapnic Acidosis on Gas Exchange and Lung Injury in Surfactant Deficient Rabbits. PLoS One 2016; 11:e0147807. [PMID: 26840779 PMCID: PMC4739580 DOI: 10.1371/journal.pone.0147807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/08/2016] [Indexed: 01/11/2023] Open
Abstract
Background Permissive hypercapnia has been shown to reduce lung injury in subjects with surfactant deficiency. Experimental studies suggest that hypercapnic acidosis by itself rather than decreased tidal volume may be a key protective factor. Objectives To study the differential effects of a lung protective ventilatory strategy or hypercapnic acidosis on gas exchange, hemodynamics and lung injury in an animal model of surfactant deficiency. Methods 30 anesthetized, surfactant-depleted rabbits were mechanically ventilated (FiO2 = 0.8, PEEP = 7cmH2O) and randomized into three groups: Normoventilation-Normocapnia (NN)-group: tidal volume (Vt) = 7.5 ml/kg, target PaCO2 = 40 mmHg; Normoventilation-Hypercapnia (NH)-group: Vt = 7.5 ml/kg, target PaCO2 = 80 mmHg by increasing FiCO2; and a Hypoventilation-Hypercapnia (HH)-group: Vt = 4.5 ml/kg, target PaCO2 = 80 mmHg. Plasma lactate and interleukin (IL)-8 were measured every 2 h. Animals were sacrificed after 6 h to perform bronchoalveolar lavage (BAL), to measure lung wet-to-dry weight, lung tissue IL-8, and to obtain lung histology. Results PaO2 was significantly higher in the HH-group compared to the NN-group (p<0.05), with values of the NH-group between the HH- and NN-groups. Other markers of lung injury (wet-dry-weight, BAL-Protein, histology-score, plasma-IL-8 and lung tissue IL-8) resulted in significantly lower values for the HH-group compared to the NN-group and trends for the NH-group towards lower values compared to the NN-group. Lactate was significantly lower in both hypercapnia groups compared to the NN-group. Conclusion Whereas hypercapnic acidosis may have some beneficial effects, a significant effect on lung injury and systemic inflammatory response is dependent upon a lower tidal volume rather than resultant arterial CO2 tensions and pH alone.
Collapse
Affiliation(s)
- Helmut D. Hummler
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
- * E-mail:
| | - Katharina Banke
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
| | - Marla R. Wolfson
- Departments of Physiology, Medicine and Pediatrics, CENTRe: Collaborative for Environmental and Neonatal Therapeutics Research; Temple Lung Center; Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Giuseppe Buonocore
- Pediatric Neonatology Unit, Department of Molecular and Developmental Medicine, University Hospital of Siena, Siena, Italy
| | - Michael Ebsen
- Institute for Pathology, Medizinisches Versorgungszentrum, Staedtisches Krankenhaus Kiel, Germany
| | - Wolfgang Bernhard
- Department of Neonatology, Children’s Hospital, University of Tuebingen, Tuebingen, Germany
| | - Dimitrios Tsikas
- Centre of Pharmacology and Toxicology, Hannover Medical School, Hannover, Germany
| | - Hans Fuchs
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics, Children’s Hospital, Ulm University, 89070 Ulm, Germany
| |
Collapse
|
11
|
Masood A, Yi M, Belcastro R, Li J, Lopez L, Kantores C, Jankov RP, Tanswell AK. Neutrophil elastase-induced elastin degradation mediates macrophage influx and lung injury in 60% O2-exposed neonatal rats. Am J Physiol Lung Cell Mol Physiol 2015; 309:L53-62. [DOI: 10.1152/ajplung.00298.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/30/2015] [Indexed: 12/20/2022] Open
Abstract
Neutrophil (PMNL) influx precedes lung macrophage (LM) influx into the lung following exposure of newborn pups to 60% O2. We hypothesized that PMNL were responsible for the signals leading to LM influx. This was confirmed when inhibition of PMNL influx with a CXC chemokine receptor-2 antagonist, SB-265610, also prevented the 60% O2-dependent LM influx, LM-derived nitrotyrosine formation, and pruning of small arterioles. Exposure to 60% O2was associated with increased lung contents of neutrophil elastase and α-elastin, a marker of denatured elastin, and a decrease in elastin fiber density. This led us to speculate that neutrophil elastase-induced elastin fragments were the chemokines that led to a LM influx into the 60% O2-exposed lung. Inhibition of neutrophil elastase with sivelestat or elafin attenuated the LM influx. Sivelestat also attenuated the 60% O2-induced decrease in elastin fiber density. Daily injections of pups with an antibody to α-elastin prevented the 60% O2-dependent LM influx, impaired alveologenesis, and impaired small vessel formation. This suggests that neutrophil elastase inhibitors may protect against neonatal lung injury not only by preventing structural elastin degradation, but also by blocking elastin fragment-induced LM influx, thus preventing tissue injury from LM-derived peroxynitrite formation.
Collapse
Affiliation(s)
- Azhar Masood
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| | - Man Yi
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rosetta Belcastro
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jun Li
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Lianet Lopez
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
- Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| | - A. Keith Tanswell
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; and
| |
Collapse
|
12
|
Belcastro R, Lopez L, Li J, Masood A, Tanswell AK. Chronic lung injury in the neonatal rat: up-regulation of TGFβ1 and nitration of IGF-R1 by peroxynitrite as likely contributors to impaired alveologenesis. Free Radic Biol Med 2015; 80:1-11. [PMID: 25514442 DOI: 10.1016/j.freeradbiomed.2014.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/22/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Postnatal alveolarization is regulated by a number of growth factors, including insulin-like growth factor-I (IGF-I) acting through the insulin-like growth factor receptor-1 (IGF-R1). Exposure of the neonatal rat lung to 60% O2 for 14 days results in impairments of lung cell proliferation, secondary crest formation, and alveologenesis. This lung injury is mediated by peroxynitrite and is prevented by treatment with a peroxynitrite decomposition catalyst. We hypothesized that one of the mechanisms by which peroxynitrite induces lung injury in 60% O2 is through nitration and inactivation of critical growth factors or their receptors. Increased nitration of both IGF-I and IGF-R1 was evident in 60% O2-exposed lungs, which was reversible by concurrent treatment with a peroxynitrite decomposition catalyst. Increased nitration of the IGF-R1 was associated with its reduced activation, as assessed by IGF-R1 phosphotyrosine content. IGF-I displacement binding plots were conducted in vitro using rat fetal lung distal epithelial cells which respond to IGF-I by an increase in DNA synthesis. When IGF-I was nitrated to a degree similar to that observed in vivo there was minimal, if any, effect on IGF-I displacement binding. In contrast, nitrating cell IGF-R1 to a similar degree to that observed in vivo completely prevented specific binding of IGF-I to the IGF-R1, and attenuated an IGF-I-mediated increase in DNA synthesis. Additionally, we hypothesized that peroxynitrite also impairs alveologenesis by being an upstream regulator of the growth inhibitor, TGFβ1. That 60% O2-induced impairment of alveologenesis was mediated in part by TGFβ1 was confirmed by demonstrating an improvement in secondary crest formation when 60% O2-exposed pups received concurrent treatment with the TGFß1 activin receptor-like kinase, SB 431542. That the increased TGFβ1 content in lungs of pups exposed to 60% O2 was regulated by peroxynitrite was confirmed by its attenuation by concurrent treatment with a peroxynitrite decomposition catalyst. We conclude that peroxynitrite contributes to the impaired alveologenesis observed following the exposure of neonatal rats to 60% O2 both by preventing binding of IGF-I to the IGF-R1, secondary to nitration of the IGF-R1, and by causing an up-regulation of the growth inhibitor, TGFβ1.
Collapse
Affiliation(s)
- Rosetta Belcastro
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Lianet Lopez
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Jun Li
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8
| | - Azhar Masood
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8
| | - A Keith Tanswell
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario M5G 1X8; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8; Department of Paediatrics, University of Toronto, Toronto, Ontario M5G 1X8.
| |
Collapse
|
13
|
|
14
|
Kroon AA, Wang J, Post M. Alterations in expression of elastogenic and angiogenic genes by different conditions of mechanical ventilation in newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2015; 308:L639-49. [PMID: 25617376 DOI: 10.1152/ajplung.00293.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is an important risk factor for development of bronchopulmonary dysplasia. Here we investigated the effects of different tidal volumes (VT) and duration of ventilation on expression of genes involved in alveolarization [tropoelastin (Eln), lysyloxidase-like 1 (Loxl1), fibulin5 (Fbln5), and tenascin-C (Tnc)] and angiogenesis [platelet derived growth factors (Pdgf) and vascular endothelial growth factors (Vegf) and their receptors] in 8-day-old rats. First, pups were ventilated for 8 h with low (LVT: 3.5 ml/kg), moderate (MVT: 8.5 ml/kg), or high (HVT: 25 ml/kg) tidal volumes. LVT and MVT decreased Tnc expression, whereas HVT increased expression of all three elastogenic genes and Tnc. PDGF α-receptor mRNA was increased in all ventilation groups, while Pdgfb expression was decreased after MVT and HVT ventilation. Only HVT ventilation upregulated Vegf expression. Independent of VT, ventilation upregulated Vegfr1 expression, while MVT and HVT downregulated Vegfr2 expression. Next, we evaluated duration (0-24 h) of MVT ventilation on gene expression. Although expression of all elastogenic genes peaked at 12 h of ventilation, only Fbln5 was negatively affected at 24 h. Tnc expression decreased with duration of ventilation. Changes in expression of Pdgfr and Vegfr were maximal at 8 h of ventilation. Disturbed elastin fiber deposition and decrease in small vessel density was only observed after 24 h. Thus, an imbalance between Fbln5 and Eln expression may trigger dysregulated elastin fiber deposition during the first 24 h of mechanical ventilation. Furthermore, ventilation-induced alterations in Pdgf and Vegf receptor expression are tidal volume dependent and may affect pulmonary vessel formation.
Collapse
Affiliation(s)
- Andreas A Kroon
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Jinxia Wang
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada
| | - Martin Post
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada; Department of Pediatrics University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; and
| |
Collapse
|
15
|
Grasemann H, Dhaliwal R, Ivanovska J, Kantores C, McNamara PJ, Scott JA, Belik J, Jankov RP. Arginase inhibition prevents bleomycin-induced pulmonary hypertension, vascular remodeling, and collagen deposition in neonatal rat lungs. Am J Physiol Lung Cell Mol Physiol 2015; 308:L503-10. [PMID: 25595650 DOI: 10.1152/ajplung.00328.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Arginase is an enzyme that limits substrate L-arginine bioavailability for the production of nitric oxide by the nitric oxide synthases and produces L-ornithine, which is a precursor for collagen formation and tissue remodeling. We studied the pulmonary vascular effects of arginase inhibition in an established model of repeated systemic bleomycin sulfate administration in neonatal rats that results in pulmonary hypertension and lung injury mimicking the characteristics typical of bronchopulmonary dysplasia. We report that arginase expression is increased in the lungs of bleomycin-exposed neonatal rats and that treatment with the arginase inhibitor amino-2-borono-6-hexanoic acid prevented the bleomycin-induced development of pulmonary hypertension and deposition of collagen. Arginase inhibition resulted in increased L-arginine and L-arginine bioavailability and increased pulmonary nitric oxide production. Arginase inhibition also normalized the expression of inducible nitric oxide synthase, and reduced bleomycin-induced nitrative stress while having no effect on bleomycin-induced inflammation. Our data suggest that arginase is a promising target for therapeutic interventions in neonates aimed at preventing lung vascular remodeling and pulmonary hypertension.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada;
| | - Rupinder Dhaliwal
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Crystal Kantores
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada
| | - Patrick J McNamara
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Jeremy A Scott
- Faculty of Health and Behavioural Sciences, Division of Biomedical Sciences, Department of Health Sciences, Northern Ontario School of Medicine, Lakehead University, Ontario, Canada; and
| | - Jaques Belik
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Robert P Jankov
- Program in Physiology and Experimental Medicine, Research Institute, Hospital for Sick Children Toronto, Ontario, Canada; Division of Neonatology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Masood A, Yi M, Lau M, Belcastro R, Li J, Kantores C, Pace-Asciak CR, Jankov RP, Tanswell AK. Cyclooxygenase-2 inhibition partially protects against 60% O2 -mediated lung injury in neonatal rats. Pediatr Pulmonol 2014; 49:991-1002. [PMID: 24273102 DOI: 10.1002/ppul.22921] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 08/30/2013] [Indexed: 11/06/2022]
Abstract
RATIONALE Use of the anti-inflammatory agent dexamethasone in premature infants with bronchopulmonary dysplasia has been curtailed, and no alternative anti-inflammatory agents are approved for this use. Our objective was to use a neonatal rat model of bronchopulmonary dysplasia to determine if an highly selective cyclooxygenase-2 inhibitor, 5,5-dimethyl-3-(3-fluorophenyl)4-(4-methylsulfonyl)phenyl-2(5H)-furanone (DFU; 10 µg/g body weight), could prevent inflammatory cell influx and protect against lung injury. METHODS Neonatal rats exposed to air or 60% O2 for 14 days from birth either received daily i.p. injections of (i) vehicle or DFU or (ii) vehicle or an EP(1) receptor antagonist, SC-19220. RESULTS DFU attenuated the lung macrophage and neutrophil influx, prevented interstitial thickening and prevented the loss of peripheral blood vessels induced by 60% O2 , but did not protect against the variance in alveolar diameter induced by 60% O2 . Exposure to 60% O2 caused both an increase in lung prostaglandin E2 content and a reduction in lung mesenchymal cell mass which was reversed by DFU. Prostaglandin E2 binding to the EP(1) receptor inhibited DNA synthesis in cultures of lung fibroblasts in a dose dependent fashion. Treatment with SC-19220 attenuated the reduction in lung mesenchymal mass observed following exposure of rat pups to 60% O2 . CONCLUSIONS An highly selective cyclooxygenase-2 inhibitor is an effective anti-inflammatory substitute for dexamethasone for preventing phagocyte influx into the neonatal lung during 60% O2 -mediated lung injury, and can modify the severity of that injury.
Collapse
Affiliation(s)
- Azhar Masood
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Dunlop K, Gosal K, Kantores C, Ivanovska J, Dhaliwal R, Desjardins JF, Connelly KA, Jain A, McNamara PJ, Jankov RP. Therapeutic hypercapnia prevents inhaled nitric oxide-induced right-ventricular systolic dysfunction in juvenile rats. Free Radic Biol Med 2014; 69:35-49. [PMID: 24423485 DOI: 10.1016/j.freeradbiomed.2014.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/31/2013] [Accepted: 01/04/2014] [Indexed: 10/25/2022]
Abstract
Chronic pulmonary hypertension in the neonate and infant frequently presents with right-ventricular (RV) failure. Current clinical management may include protracted treatment with inhaled nitric oxide (iNO), with the goal of reducing RV afterload. We have previously reported that prolonged exposure to iNO causes RV systolic dysfunction in the chronic hypoxia-exposed juvenile rat, which was prevented by a peroxynitrite decomposition catalyst. Given that inhalation of CO2 (therapeutic hypercapnia) may limit oxidative stress and upregulated cytokine expression in the lung and other organs, we hypothesized that therapeutic hypercapnia would attenuate cytokine-mediated nitric oxide synthase (NOS) upregulation, thus limiting peroxynitrite generation. Sprague-Dawley rat pups were exposed to chronic hypoxia (13% O2) from postnatal day 1 to 21, while receiving iNO (20 ppm) from day 14 to 21, with or without therapeutic hypercapnia (10% CO2). Therapeutic hypercapnia completely normalized RV systolic function, RV hypertrophy, and remodeling of pulmonary resistance arteries in animals exposed to iNO. Inhaled nitric oxide-mediated increases in RV peroxynitrite, apoptosis, and contents of tumor necrosis factor (TNF)-α, interleukin (IL)-1α, and NOS-2 were all attenuated by therapeutic hypercapnia. Inhibition of NOS-2 activity with 1400 W (1 mg/kg/day) prevented iNO-mediated upregulation of peroxynitrite and led to improved RV systolic function. Blockade of IL-1 receptor signaling with anakinra (500 mg/kg/day) decreased NOS-2 content and had similar effects compared to NOS-2 inhibition on iNO-mediated effects, whereas blockade of TNF-α signaling with etanercept (0.4 mg/kg on alternate days) had no effects on these parameters. We conclude that therapeutic hypercapnia prevents the adverse effects of sustained exposure to iNO on RV systolic function by limiting IL-1-mediated NOS-2 upregulation and consequent nitration. Therapeutic hypercapnia also acts synergistically with iNO in normalizing RV hypertrophy, vascular remodeling, and raised pulmonary vascular resistance secondary to chronic hypoxia.
Collapse
Affiliation(s)
- Kristyn Dunlop
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Kiranjot Gosal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Rupinder Dhaliwal
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8
| | - Jean-François Desjardins
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada
| | - Kim A Connelly
- Keenan Research Center, Li Ka Shing Knowledge Institute, St Michael's Hospital, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Amish Jain
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Patrick J McNamara
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert P Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada M5G 1X8; Department of Physiology, Faculty of Medicine, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, and Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8; Division of Neonatology, Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 1A8.
| |
Collapse
|
18
|
Neumann RP, von Ungern-Sternberg BS. The neonatal lung--physiology and ventilation. Paediatr Anaesth 2014; 24:10-21. [PMID: 24152199 DOI: 10.1111/pan.12280] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2013] [Indexed: 12/22/2022]
Abstract
This review article focuses on neonatal respiratory physiology, mechanical ventilation of the neonate and changes induced by anesthesia and surgery. Optimal ventilation techniques for preterm and term neonates are discussed. In summary, neonates are at high risk for respiratory complications during anesthesia, which can be explained by their characteristic respiratory physiology. Especially the delicate balance between closing volume and functional residual capacity can be easily disturbed by anesthetic and surgical interventions resulting in respiratory deterioration. Ventilatory strategies should ideally include application of an 'open lung strategy' as well avoidance of inappropriately high VT and excessive oxygen administration. In critically ill and unstable neonates, for example, extremely low-birthweight infants surgery in the neonatal intensive care unit might be an appropriate alternative to the operating theater. Best respiratory management of neonates during anesthesia is a team effort that should involve a joint multidisciplinary approach of anesthetists, pediatric surgeons, cardiologists, and neonatologists to reduce complications and optimize outcomes in this vulnerable population.
Collapse
Affiliation(s)
- Roland P Neumann
- Department of Neonatal Intensive Care, Basel University Children's Hospital (UKBB), Basel, Switzerland
| | | |
Collapse
|
19
|
Curley GF, Laffey JG, Kavanagh BP. CrossTalk proposal: there is added benefit to providing permissive hypercapnia in the treatment of ARDS. J Physiol 2013; 591:2763-5. [PMID: 23729790 DOI: 10.1113/jphysiol.2013.252601] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Gerard F Curley
- Department of Anesthesia, Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, Ontario, Canada
| | | | | |
Collapse
|
20
|
Rho-kinase inhibitor Y-27632 attenuates pulmonary hypertension in hyperoxia-exposed newborn rats. Acta Pharmacol Sin 2013; 34:1310-6. [PMID: 23974518 DOI: 10.1038/aps.2013.93] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/24/2013] [Indexed: 12/12/2022] Open
Abstract
AIM To test the hypothesis that neonatal hyperoxia induced pulmonary hypertension accompanied by increased Rho-kinase expression in rat lungs and that Rho-kinase inhibitor could attenuate right ventricular hypertrophy and pulmonary arterial remodeling. METHODS Newborn rats were exposed to >95% O2 in the first week after birth, then to 60% O2 in the following 2 weeks. Control pups were exposed to room air over the same periods. The pups were injected with either Rho-kinase inhibitor Y-27632 (10 mg·kg(-1)·d(-1), ip) or vehicle from postnatal d 14 to 20. Lung and heart tissues were collected on postnatal d 7 and 21. Rho-kinase activity in lungs was measured using Western blotting and immunohistochemistry. The right ventricular hypertrophy and arterial medial wall thickness (MWT) were assessed morphologically. RESULTS Rho-kinase activity in lungs was comparable between the hyperoxic and control pups on postnatal d 7, but it had a more than 2-fold increase in the hyperoxic pups on postnatal d 21. Moreover, the hyperoxic exposure induced structural features of pulmonary hypertension, as shown by the right ventricular hypertrophy and significantly increased arterial MWT. Administration with Y-27632 effectively blocked the hyperoxia-induced increase of Rho-kinase activity in lungs, and attenuated the right ventricular hypertrophy. CONCLUSION Rho-kinase inhibitor may be a novel therapy for attenuating the hyperoxia-induced structural changes in pulmonary hypertension.
Collapse
|
21
|
Li J, Masood A, Yi M, Lau M, Belcastro R, Ivanovska J, Jankov RP, Tanswell AK. The IGF-I/IGF-R1 pathway regulates postnatal lung growth and is a nonspecific regulator of alveologenesis in the neonatal rat. Am J Physiol Lung Cell Mol Physiol 2013; 304:L626-37. [PMID: 23457189 DOI: 10.1152/ajplung.00198.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
IGF-I, IGF-II, and the IGF-I receptor are widely distributed throughout the neonatal rat lung on days 4, 7, 10, and 14 of life, with a similar abundance at each of these time points. Injection of 20 μg/g of a truncated soluble IGF-I receptor on days 2 and 5 of life, to decoy ligand away from the endogenous IGF-I receptor, reduced lung weight and lung-to-body weight ratio, reduced lung tissue fraction, and impaired alveolar formation, as assessed by secondary crest formation and mean linear intercepts on day 7 of life. Lung procollagen I content and elastin fiber density were also reduced. Injection of 100 μg/day of neutralizing anti-IGF-I, to prevent IGF-I from binding to the IGF-I receptor, on days 3, 4, and 5 of life reduced tissue fraction and elastin fiber density and impaired alveolar formation on day 6 of life. Both interventions reduced total lung cell and secondary crest cell DNA synthesis and small vessel counts per unit area, but these effects were lost after normalization to the reduced tissue fraction. These findings are consistent with a role for IGF-I binding to the IGF-I receptor in postnatal lung growth and on alveologenesis through a nonspecific positive effect on DNA synthesis. Injection of 100 μg/day of neutralizing anti-IGF-II, to prevent IGF-II from binding to the IGF-I receptor, on days 3, 4, and 5 of life had no effect on total lung cell DNA synthesis per unit area on day 6 of life, and a role for IGF-II in postnatal alveologenesis was not further pursued.
Collapse
Affiliation(s)
- Jun Li
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jamal M, Masood A, Belcastro R, Lopez L, Li J, Belik J, Jankov RP, Keith Tanswell A. Lipid hydroperoxide formation regulates postnatal rat lung cell apoptosis and alveologenesis. Free Radic Biol Med 2013. [PMID: 23195685 DOI: 10.1016/j.freeradbiomed.2012.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An acute increase in oxygen tension after birth imposes an oxidative stress upon the lung. We hypothesized that the resultant increase in reactive oxygen species, specifically lipid hydroperoxides, would trigger postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat. Neonatal rats were either untreated or treated daily with subcutaneous vehicle or diphenyl phenyl diamine, a scavenger of lipid hydroperoxides and inhibitor of lipid peroxidation, from day 1 to 6 of life. Alveolar formation and physiological lung cell apoptosis were assessed by morphometry, immunohistochemistry, and Western blot analyses on day 7 samples. Substitution experiments were conducted using the prototypic lipid hydroperoxide t-butylhydroperoxide. At a minimum effective dose of 15μg/g body wt, treatment with diphenyl phenyl diamine resulted in a significant increase in tissue fraction and mean linear intercept and significant reductions in small peripheral blood vessels, secondary crest formation, lung and secondary crest cell DNA synthesis, and estimated alveolar number. Decreased numbers of apoptotic type II pneumocytes and mesenchymal cells, and decreased contents of proapoptotic cleaved caspase-3 and -7 and cytoplasmic cytochrome c, and an increase in antiapoptotic Bcl-xL were found in lungs treated with diphenyl phenyl diamine. A prevention of selected changes induced by diphenyl phenyl diamine was observed with concurrent treatment with intraperitoneal t-butylhydroperoxide, at a minimally effective dose of 187μg/g body wt. We conclude that oxidative stress after birth induces lipid hydroperoxide formation, which, in turn, triggers postnatal alveologenesis and physiological lung cell apoptosis in the neonatal rat.
Collapse
Affiliation(s)
- Mobin Jamal
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 1X8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Meau-Petit V, Thouvenin G, Guillemot-Lambert N, Champion V, Tillous-Borde I, Flamein F, de Saint Blanquat L, Essouri S, Guilbert J, Nathan N, Guellec I, Kout S, Epaud R, Lévy M. [Bronchopulmonary dysplasia-associated pulmonary arterial hypertension of very preterm infants]. Arch Pediatr 2012; 20:44-53. [PMID: 23266170 DOI: 10.1016/j.arcped.2012.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 09/05/2012] [Accepted: 10/26/2012] [Indexed: 11/17/2022]
Abstract
Bronchopulmonary dysplasia (BPD) of very preterm infants is a multifactorial chronic lung disease and its incidence has not decreased despite improvements in neonatal intensive care, including lung protective strategies. Pulmonary hypertension (PH) can complicate the course of BPD. Mortality in infants with BPD-associated PH is thought to be very high, but its incidence is unknown and a standard diagnostic and therapeutic strategy has not been well defined. In this article, we will first describe the current knowledge on the BPD-associated PH and the current treatments available for this pathology. We will then present the HTP-DBP Study, carried out in Paris (France) starting in 2012. The diagnosis of PH is suspected on echocardiographic criteria, but cardiac catheterization is considered the gold standard for diagnosis and evaluation of the severity of PH. Moreover, pulmonary vasoreactivity testing is used to guide the management of patients with PH. The pathogenesis of BPD-associated PH is poorly understood and even less is known about appropriate therapy. Today, optimizing ventilation and reducing the pulmonary vascular tone with specific pulmonary vasodilatator drugs are the main goals in treating HTP-associated DBP. Animal studies and a few clinical studies suggest that medications targeting the nitric oxide (NO) signaling pathway (NO inhalation, oral sildenafil citrate) could be effective treatments for BPD-associated PH, but they have not been approved for this indication. The HTP-DBP study is a French multicenter prospective observational study. The objective is to evaluate the frequency of BPD-associated PH, to describe its physiopathology, its severity (morbidity and mortality), and the effectiveness of current treatments.
Collapse
Affiliation(s)
- V Meau-Petit
- Service de maternité, réanimation, soins intensifs et pédiatrie néonatales, hôpital Necker-Enfants-Malades, AP-HP, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates: the role and therapeutic potential of stem cells. Antioxid Redox Signal 2012; 17:1013-40. [PMID: 22400813 DOI: 10.1089/ars.2011.4267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Continuous improvements in perinatal care have allowed the survival of ever more premature infants, making the task of protecting the extremely immature lung from injury increasingly challenging. Premature infants at risk of developing chronic lung disease or bronchopulmonary dysplasia (BPD) are now born at the late canalicular stage of lung development, just when the airways become juxtaposed to the lung vasculature and when gas-exchange becomes possible. Readily available strategies, including improved antenatal management (education, regionalization, steroids, and antibiotics), together with exogenous surfactant and exclusive/early noninvasive ventilatory support, will likely decrease the incidence/severity of BPD over the next few years. Nonetheless, because of the extreme immaturity of the developing lung, the extent to which disruption of lung growth after prematurity and neonatal management lead to an earlier or more aggravated decline in respiratory function in later life is a matter of concern. Consequently, much more needs to be learned about the mechanisms of lung development, injury, and repair. Recent insight into stem cell biology has sparked interest for stem cells to repair damaged organs. This review summarizes the exciting potential of stem cell-based therapies for lung diseases in general and BPD in particular.
Collapse
|
25
|
Sewing ACP, Kantores C, Ivanovska J, Lee AH, Masood A, Jain A, McNamara PJ, Tanswell AK, Jankov RP. Therapeutic hypercapnia prevents bleomycin-induced pulmonary hypertension in neonatal rats by limiting macrophage-derived tumor necrosis factor-α. Am J Physiol Lung Cell Mol Physiol 2012; 303:L75-87. [DOI: 10.1152/ajplung.00072.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Bleomycin-induced lung injury is characterized in the neonatal rat by inflammation, arrested lung growth, and pulmonary hypertension (PHT), as observed in human infants with severe bronchopulmonary dysplasia. Inhalation of CO2 (therapeutic hypercapnia) has been described to limit cytokine production and to have anti-inflammatory effects on the injured lung; we therefore hypothesized that therapeutic hypercapnia would prevent bleomycin-induced lung injury. Spontaneously breathing rat pups were treated with bleomycin (1 mg/kg/d ip) or saline vehicle from postnatal days 1–14 while being continuously exposed to 5% CO2 (PaCO2 elevated by 15–20 mmHg), 7% CO2 (PaCO2 elevated by 35 mmHg), or normocapnia. Bleomycin-treated animals exposed to 7%, but not 5%, CO2, had significantly attenuated lung tissue macrophage influx and PHT, as evidenced by normalized pulmonary vascular resistance and right ventricular systolic function, decreased right ventricular hypertrophy, and attenuated remodeling of pulmonary resistance arteries. The level of CO2 neither prevented increased tissue neutrophil influx nor led to improvements in decreased lung weight, septal thinning, impaired alveolarization, or decreased numbers of peripheral arteries. Bleomycin led to increased expression and content of lung tumor necrosis factor (TNF)-α, which was found to colocalize with tissue macrophages and to be attenuated by exposure to 7% CO2. Inhibition of TNF-α signaling with the soluble TNF-2 receptor etanercept (0.4 mg/kg ip from days 1–14 on alternate days) prevented bleomycin-induced PHT without decreasing tissue macrophages and, similar to CO2, had no effect on arrested alveolar development. Our findings are consistent with a preventive effect of therapeutic hypercapnia with 7% CO2 on bleomycin-induced PHT via attenuation of macrophage-derived TNF-α. Neither tissue macrophages nor TNF-α appeared to contribute to arrested lung development induced by bleomycin. That 7% CO2 normalized pulmonary vascular resistance and right ventricular function without improving inhibited airway and vascular development suggests that vascular hypoplasia does not contribute significantly to functional changes of PHT in this model.
Collapse
Affiliation(s)
- A. Charlotte P. Sewing
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Alvin H. Lee
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Azhar Masood
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Amish Jain
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. McNamara
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - A. Keith Tanswell
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Peng G, Ivanovska J, Kantores C, Van Vliet T, Engelberts D, Kavanagh BP, Enomoto M, Belik J, Jain A, McNamara PJ, Jankov RP. Sustained therapeutic hypercapnia attenuates pulmonary arterial Rho-kinase activity and ameliorates chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Heart Circ Physiol 2012; 302:H2599-611. [DOI: 10.1152/ajpheart.01180.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sustained therapeutic hypercapnia prevents pulmonary hypertension in experimental animals, but its rescue effects on established disease have not been studied. Therapies that inhibit Rho-kinase (ROCK) and/or augment nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) signaling can reverse or prevent progression of chronic pulmonary hypertension. Our objective in the present study was to determine whether sustained rescue treatment with inhaled CO2 (therapeutic hypercapnia) would improve structural and functional changes of chronic hypoxic pulmonary hypertension. Spontaneously breathing pups were exposed to normoxia (21% O2) or hypoxia (13% O2) from postnatal days 1–21 with or without 7% CO2 (PaCO2 elevated by ∼25 mmHg) or 10% CO2 (PaCO2 elevated by ∼40 mmHg) from days 14 to 21. Compared with hypoxia alone, animals exposed to hypoxia and 10% CO2 had significantly ( P < 0.05) decreased pulmonary vascular resistance, right-ventricular systolic pressure, right-ventricular hypertrophy, and medial wall thickness of pulmonary resistance arteries as well as decreased lung phosphodiesterase (PDE) V, RhoA, and ROCK activity. Rescue treatment with 10% CO2, or treatment with a ROCK inhibitor (15 mg/kg ip Y-27632 twice daily from days 14 to 21), also increased pulmonary arterial endothelial nitric oxide synthase and lung NO content. In contrast, cGMP content and cGMP-dependent protein kinase (PKG) activity were increased by exposure to 10% CO2, but not by ROCK inhibition with Y-27632. In vitro exposure of pulmonary artery smooth muscle cells to hypercapnia suppressed serum-induced ROCK activity, which was prevented by inhibition of PKG with Rp-8-Br-PET-cGMPS. We conclude that sustained hypercapnia dose-dependently inhibited ROCK activity, augmented NO-cGMP-PKG signaling, and led to partial improvements in the hemodynamic and structural abnormalities of chronic hypoxic PHT in juvenile rats. Increased PKG content and activity appears to play a major upstream role in CO2-induced suppression of ROCK activity in pulmonary arterial smooth muscle.
Collapse
Affiliation(s)
- Gary Peng
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Julijana Ivanovska
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Crystal Kantores
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Todd Van Vliet
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
| | - Doreen Engelberts
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Brian P. Kavanagh
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- the 4Department of Anaesthesia, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Masahiro Enomoto
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Jaques Belik
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Amish Jain
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
| | - Patrick J. McNamara
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Robert P. Jankov
- Physiology & Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Heart and Stroke Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
- Division of Neonatology, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada; and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
L-citrulline Prevents Alveolar and Vascular Derangement in a Rat Model of Moderate Hyperoxia-induced Lung Injury. Lung 2012; 190:419-30. [DOI: 10.1007/s00408-012-9382-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 02/18/2012] [Indexed: 10/28/2022]
|
28
|
Belik J, McIntyre BAS, Enomoto M, Pan J, Grasemann H, Vasquez-Vivar J. Pulmonary hypertension in the newborn GTP cyclohydrolase I-deficient mouse. Free Radic Biol Med 2011; 51:2227-33. [PMID: 21982896 PMCID: PMC5050525 DOI: 10.1016/j.freeradbiomed.2011.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 09/10/2011] [Accepted: 09/13/2011] [Indexed: 11/30/2022]
Abstract
Tetrahydrobiopterin (BH4) is a regulator of endothelial nitric oxide synthase (eNOS) activity. Deficient levels result in eNOS uncoupling, with a shift from nitric oxide to superoxide generation. The hph-1 mutant mouse has deficient GTP cyclohydrolase I (GTPCH1) activity, resulting in low BH4 tissue content. The adult hph-1 mouse has pulmonary hypertension, but whether such condition is present from birth is not known. Thus, we evaluated newborn animals' pulmonary arterial medial thickness, biopterin content (BH4+BH2), H(2)O(2) and eNOS, right ventricle-to-left ventricle+septum (RV/LV+septum) ratio, near-resistance pulmonary artery agonist-induced force, and endothelium-dependent and -independent relaxation. The lung biopterin content was inversely related to age for both types, but significantly lower in hph-1 mice, compared to wild-type animals. As judged by the RV/LV+septum ratio, newborn hph-1 mice have pulmonary hypertension and, after a 2-week 13% oxygen exposure, the ratios were similar in both types. The pulmonary arterial agonist-induced force was reduced (P<0.01) in hph-1 animals and no type-dependent difference in endothelium-dependent or -independent vasorelaxation was observed. Compared to wild-type mice, the lung H(2)O(2) content was increased, whereas the eNOS expression was decreased (P<0.01) in hph-1 animals. The pulmonary arterial medial thickness, a surrogate marker of vascular remodeling, was increased (P<0.01) in hph-1 compared to wild-type mice. In conclusion, our data suggest that pulmonary hypertension is present from birth in the GTPCH1-deficient mice, not as a result of impaired vasodilation, but secondary to vascular remodeling.
Collapse
Affiliation(s)
- Jaques Belik
- Department of Paediatrics, The Hospital for Sick Children Research Institute, University of Toronto, Toronto, ON M5G 1X8, Canada.
| | | | | | | | | | | |
Collapse
|
29
|
Fuchs H, Mendler MR, Scharnbeck D, Ebsen M, Hummler HD. Very low tidal volume ventilation with associated hypercapnia--effects on lung injury in a model for acute respiratory distress syndrome. PLoS One 2011; 6:e23816. [PMID: 21886825 PMCID: PMC3158784 DOI: 10.1371/journal.pone.0023816] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Ventilation using low tidal volumes with permission of hypercapnia is recommended to protect the lung in acute respiratory distress syndrome. However, the most lung protective tidal volume in association with hypercapnia is unknown. The aim of this study was to assess the effects of different tidal volumes with associated hypercapnia on lung injury and gas exchange in a model for acute respiratory distress syndrome. METHODOLOGY/PRINCIPAL FINDINGS In this randomized controlled experiment sixty-four surfactant-depleted rabbits were exposed to 6 hours of mechanical ventilation with the following targets: Group 1: tidal volume = 8-10 ml/kg/PaCO(2) = 40 mm Hg; Group 2: tidal volume = 4-5 ml/kg/PaCO(2) = 80 mm Hg; Group 3: tidal volume = 3-4 ml/kg/PaCO(2) = 120 mm Hg; Group 4: tidal volume = 2-3 ml/kg/PaCO(2) = 160 mm Hg. Decreased wet-dry weight ratios of the lungs, lower histological lung injury scores and higher PaO(2) were found in all low tidal volume/hypercapnia groups (group 2, 3, 4) as compared to the group with conventional tidal volume/normocapnia (group 1). The reduction of the tidal volume below 4-5 ml/kg did not enhance lung protection. However, oxygenation and lung protection were maintained at extremely low tidal volumes in association with very severe hypercapnia and no adverse hemodynamic effects were observed with this strategy. CONCLUSION Ventilation with low tidal volumes and associated hypercapnia was lung protective. A tidal volume below 4-5 ml/kg/PaCO(2) 80 mm Hg with concomitant more severe hypercapnic acidosis did not increase lung protection in this surfactant deficiency model. However, even at extremely low tidal volumes in association with severe hypercapnia lung protection and oxygenation were maintained.
Collapse
Affiliation(s)
- Hans Fuchs
- Division of Neonatology and Pediatric Critical Care, Department of Pediatrics and Adolescent Medicine, Ulm University, Ulm, Germany.
| | | | | | | | | |
Collapse
|
30
|
Therapeutic hypercapnia enhances the inflammatory response to endotoxin in the lung of spontaneously breathing rats*. Crit Care Med 2011; 39:1400-6. [DOI: 10.1097/ccm.0b013e31820ee1f2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Yi M, Masood A, Ziino A, Johnson BH, Belcastro R, Li J, Shek S, Kantores C, Jankov RP, Keith Tanswell A. Inhibition of apoptosis by 60% oxygen: a novel pathway contributing to lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2011; 300:L319-29. [DOI: 10.1152/ajplung.00126.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During early postnatal alveolar formation, the lung tissue of rat pups undergoes a physiological remodeling involving apoptosis of distal lung cells. Exposure of neonatal rats to severe hyperoxia (≥95% O2) both arrests lung growth and results in increased lung cell apoptosis. In contrast, exposure to moderate hyperoxia (60% O2) for 14 days does not completely arrest lung cell proliferation and is associated with parenchymal thickening. On the basis of similarities in lung architecture observed following either exposure to 60% O2, or pharmacological inhibition of physiological apoptosis, we hypothesized that exposure to 60% O2 would result in an inhibition of physiological lung cell apoptosis. Consistent with this hypothesis, we observed that the parenchymal thickening induced by exposure to 60% O2 was associated with decreased numbers of apoptotic cells, increased expressions of the antiapoptotic regulator Bcl-xL, and the putative antiapoptotic protein survivin, and decreased expressions of the proapoptotic cleaved caspases-3 and -7. In summary, exposure of the neonatal rat lung to moderate hyperoxia results in an inhibition of physiological apoptosis, which contributes to the parenchymal thickening observed in the resultant lung injury.
Collapse
Affiliation(s)
- Man Yi
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Azhar Masood
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| | - Adrian Ziino
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ben-Hur Johnson
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| | - Rosetta Belcastro
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Jun Li
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Samuel Shek
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
| | - Crystal Kantores
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Robert P. Jankov
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
- Clinical Integrative Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - A. Keith Tanswell
- Lung Biology Programme, Physiology and Experimental Medicine, Hospital for Sick Children Research Institute, Toronto
- The Departments of Paediatrics and Physiology, University of Toronto, Toronto; and
| |
Collapse
|
32
|
Lau M, Masood A, Yi M, Belcastro R, Li J, Tanswell AK. Long-term failure of alveologenesis after an early short-term exposure to a PDGF-receptor antagonist. Am J Physiol Lung Cell Mol Physiol 2011; 300:L534-47. [PMID: 21239531 DOI: 10.1152/ajplung.00262.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Survivors of moderate-to-severe bronchopulmonary dysplasia have impaired alveologenesis lasting at least into early adult life. The mechanisms underlying this long-term effect are unknown. We hypothesized that short-term inhibition of growth factor-mediated early alveolar formation would result in a long-term impairment of subsequent alveologenesis. Neonatal rats were injected daily with the platelet-derived growth factor (PDGF) receptor antagonist, imatinib mesylate, from day 1-7 of life, to inhibit the early alveolar formation occurring by in-growth of secondary crests into precursor saccules. The pups were then allowed to recover for 7, 14, 21, or 58 days. In imatinib-treated pups, DNA synthesis in total lung cells, and specifically in cells of secondary crests, was reduced at day 8 of life, had rebounded on day 14 of life but was then again reduced by day 28 of life. At day 8 of life, imatinib-treated pups had impaired alveologenesis as reflected by a decrease in secondary crests, an increase in alveolar size, and an overall decrease in both estimated alveolar number and generations compared with age-matched controls. No meaningful recovery was observed, even after a 21- or 58-day recovery period. The lungs of imatinib-treated pups had increased fibulin-5 content and an abnormal deposition of elastin. We conclude that reduced signaling through the PDGF pathways, at an early stage of alveologenesis, can result in long-lasting changes in lung architecture. A likely mechanism is through impaired formation of the elastin scaffold required for alveolarization.
Collapse
Affiliation(s)
- Mandy Lau
- Lung Biology Programme, Physiology & Experimental Medicine, Hospital for Sick Children Research Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
33
|
Honoré JC, Kooli A, Hou X, Hamel D, Rivera JC, Picard É, Hardy P, Tremblay S, Varma DR, Jankov RP, Mancini JA, Balazy M, Chemtob S. Sustained hypercapnia induces cerebral microvascular degeneration in the immature brain through induction of nitrative stress. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1522-30. [DOI: 10.1152/ajpregu.00807.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress. We investigated whether exposure to clinically relevant sustained high CO2 causes microvascular degeneration in the newborn brain by inducing nitrative stress, and whether this microvascular degeneration has an impact on brain growth. Newborn rat pups were exposed to 10% CO2 as inspired gas (PaCO2 = 60–70 mmHg) starting within 24 h of birth until postnatal day 7 (P7). Brains were notably collected at different time points to measure vascular density, determine brain cortical nitrite/nitrate, and trans-arachidonic acids (TAAs; products of nitration) levels as effectors of vessel damage. Chronic exposure of rat pups to high CO2 (PaCO2 ≈ 65 mmHg) induced a 20% loss in cerebrovascular density at P3 and a 15% decrease in brain mass at P7; at P30, brain mass remained lower in CO2-exposed animals. Within 24 h of exposure to CO2, brain eNOS expression and production of nitrite/nitrate doubled, lipid nitration products (TAAs) increased, and protein nitration (3-nitrotyrosine immunoreactivity) was also coincidently augmented on brain microvessels (lectin positive). Intracerebroventricular injection of TAAs (10 μM) replicated cerebrovascular degeneration. Treatment of rat pups with NOS inhibitor (l-Nω-nitroarginine methyl ester) or a peroxynitrite decomposition catalyst (FeTPPS) prevented hypercapnia-induced microvascular degeneration and preserved brain mass. Cytotoxic effects of high CO2 were reproduced in vitro /ex vivo on cultured endothelial cells and sprouting microvessels. In summary, hypercapnia at values frequently observed in preterm infants with chronic lung disease results in increased nitrative stress, which leads to cerebral cortical microvascular degeneration and curtails brain growth.
Collapse
Affiliation(s)
- Jean-Claude Honoré
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
| | - Amna Kooli
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Xin Hou
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
| | - David Hamel
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
| | - José Carlos Rivera
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
| | - Émilie Picard
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
| | - Pierre Hardy
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
| | - Sophie Tremblay
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
| | - Daya R. Varma
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| | - Robert P. Jankov
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada; and
| | - Joseph A. Mancini
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
| | - Michael Balazy
- Department of Pathology, New York Medical College, New York, New York
| | - Sylvain Chemtob
- Department of Pediatrics, Research Center-Centre Hospitalier Universitaire Ste-Justine, Montréal, Quebec, Canada
- Department of Pharmacology, Université de Montréal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
34
|
Abstract
Carbon dioxide is a waste product of aerobic cellular respiration in all aerobic life forms. PaCO2 represents the balance between the carbon dioxide produced and that eliminated. Hypocapnia remains a common - and generally underappreciated - component of many disease states, including early asthma, high-altitude pulmonary edema, and acute lung injury. Induction of hypocapnia remains a common, if controversial, practice in both adults and children with acute brain injury. In contrast, hypercapnia has traditionally been avoided in order to keep parameters normal. More recently, advances in our understanding of the role of excessive tidal volume has prompted clinicians to use ventilation strategies that result in hypercapnia. Consequently, hypercapnia has become increasingly prevalent in the critically ill patient. Hypercapnia may play a beneficial role in the pathogenesis of inflammation and tissue injury, but may hinder the host response to sepsis and reduce repair. In contrast, hypocapnia may be a pathogenic entity in the setting of critical illness. The present paper reviews the current clinical status of low and high PaCO2 in the critically ill patient, discusses the insights gained to date from studies of carbon dioxide, identifies key concerns regarding hypocapnia and hypercapnia, and considers the potential clinical implications for the management of patients with acute lung injury.
Collapse
Affiliation(s)
- Gerard Curley
- Department of Anaesthesia, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
- Lung Biology Group, National Centre of Biomedical Engineering Sciences, National University of Ireland, Galway, Ireland
| | - John G Laffey
- Department of Anaesthesia, Clinical Sciences Institute, National University of Ireland, Galway, Ireland
- Lung Biology Group, National Centre of Biomedical Engineering Sciences, National University of Ireland, Galway, Ireland
| | - Brian P Kavanagh
- Departments of Critical Care Medicine and Anesthesia and the Program in Physiology and Experimental Medicine, The Hospital for Sick Children, University of Toronto, 555 university Avenue, Toronto, ON M5G 1X8, Canada
| |
Collapse
|