1
|
Wang G, Wang Z. Investigation into the role of H2-Ab1 in vascular remodeling in pulmonary arterial hypertension via Bioinformatics. BMC Pulm Med 2024; 24:342. [PMID: 39010027 PMCID: PMC11251127 DOI: 10.1186/s12890-024-03156-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a progressive disease of vascular remodeling characterized by persistent pulmonary arterial pressure elevation, which can lead to right heart failure and premature death. Given the complex pathogenesis and poor prognosis of PAH, the identification and investigation of biomarkers become increasingly critical for advancing further understanding of the disease. METHODS PAH-related datasets, GSE49114, GSE180169 and GSE154959, were downloaded from the publicly available GEO database. By performing WGCNA on the GSE49114 dataset, a total of 906 PAH-related key module genes were screened out. By carrying out differential analysis on the GSE180169 dataset, a total of 576 differentially expressed genes were identified. Additionally, the GSE154959 single-cell sequencing dataset was also subjected to differential analysis, leading to the identification of 34 DEGs within endothelial cells. By taking intersection of the above three groups of DEGs, five PAH-related hub genes were screened out, namely Plvap, Cyp4b1, Foxf1, H2-Ab1, and H2-Eb1, among which H2-Ab1 was selected for subsequent experiments. RESULTS A SuHx mouse model was prepared using the SU5416/hypoxia method, and the successful construction of the model was evaluated through Hematoxylin-Eosin staining, hemodynamic detection, fulton index, and Western Blot (WB). The results of WB and qRT-PCR demonstrated a significant upregulation of H2-Ab1 expression in SuHx mice. Consistent with the results of bioinformatics analysis, a time-dependent increase was observed in H2-Ab1 expression in hypoxia-treated mouse pulmonary artery endothelial cells (PAECs). To investigate whether H2-Ab1 affects the development and progression of PAH, we knocked down H2-Ab1 expression in PAECs, and found that its knockdown inhibited the viability, adhesion, migration, and angiogenesis, while concurrently promoted the apoptosis of PAECs. CONCLUSION H2-Ab1 could regulate the proliferation, apoptosis, adhesion, migration, and angiogenesis of PAECs.
Collapse
Affiliation(s)
- Guowen Wang
- Department of Respiratory Medicine, Affiliated Hospital of Shaoxing University, No. 999 South Zhongxing Road, Shaoxing, Zhejiang, 312000, China
| | - Zhuoyan Wang
- Center for General Practice Medicine, General Practice and Health Management Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, No. 158 Shangtang Road, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
2
|
Pham AT, Oliveira AC, Albanna M, Alvarez-Castanon J, Dupee Z, Patel D, Fu C, Mukhsinova L, Nguyen A, Jin L, Bryant AJ. Non-Interferon-Dependent Role of STING Signaling in Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:124-142. [PMID: 37942608 PMCID: PMC10872846 DOI: 10.1161/atvbaha.123.320121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Patients with constitutive activation of DNA-sensing pathway through stimulator of IFN (interferon) genes (STING), such as those with STING-associated vasculopathy with onset in infancy, develop pulmonary hypertension (PH). However, the role of STING signaling in general PH patients is heretofore undescribed. Here, we seek to investigate the role of STING in PH development. METHODS STING expression in patient lung samples was examined. PH was induced in global STING-deficient mice and global type I IFN receptor 1-deficient mice using bleomycin or chronic hypoxia exposure. PH development was evaluated by right ventricular systolic pressure and Fulton index, with additional histological and flow cytometric analysis. VEGF (vascular endothelial growth factor) expression on murine immune cells was quantified and evaluated with multiplex and flow cytometry. Human myeloid-derived cells were differentiated from peripheral blood mononuclear cells and treated with either STING agonist or STING antagonist for evaluation of VEGF secretion. RESULTS Global STING deficiency protects mice from PH development, and STING-associated PH seems independent of type I IFN signaling. Furthermore, a role for STING-VEGF signaling pathway in PH development was demonstrated, with altered VEGF secretion in murine pulmonary infiltrated myeloid cells in a STING-dependent manner. In addition, pharmacological manipulation of STING in human myeloid-derived cells supports in vivo findings. Finally, a potential role of STING-VEGF-mediated apoptosis in disease development and progression was illustrated, providing a roadmap toward potential therapeutic applications. CONCLUSIONS Overall, these data provide concrete evidence of STING involvement in PH, establishing biological plausibility for STING-related therapies in PH treatment.
Collapse
Affiliation(s)
- Ann T Pham
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Aline C Oliveira
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Muhammad Albanna
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | | | - Zadia Dupee
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Diya Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Chunhua Fu
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Laylo Mukhsinova
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Amy Nguyen
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Lei Jin
- Department of Medicine, University of Florida College of Medicine, Gainesville
| | - Andrew J Bryant
- Department of Medicine, University of Florida College of Medicine, Gainesville
| |
Collapse
|
3
|
Borek I, Birnhuber A, Voelkel NF, Marsh LM, Kwapiszewska G. The vascular perspective on acute and chronic lung disease. J Clin Invest 2023; 133:e170502. [PMID: 37581311 PMCID: PMC10425217 DOI: 10.1172/jci170502] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
The pulmonary vasculature has been frequently overlooked in acute and chronic lung diseases, such as acute respiratory distress syndrome (ARDS), pulmonary fibrosis (PF), and chronic obstructive pulmonary disease (COPD). The primary emphasis in the management of these parenchymal disorders has largely revolved around the injury and aberrant repair of epithelial cells. However, there is increasing evidence that the vascular endothelium plays an active role in the development of acute and chronic lung diseases. The endothelial cell network in the capillary bed and the arterial and venous vessels provides a metabolically highly active barrier that controls the migration of immune cells, regulates vascular tone and permeability, and participates in the remodeling processes. Phenotypically and functionally altered endothelial cells, and remodeled vessels, can be found in acute and chronic lung diseases, although to different degrees, likely because of disease-specific mechanisms. Since vascular remodeling is associated with pulmonary hypertension, which worsens patient outcomes and survival, it is crucial to understand the underlying vascular alterations. In this Review, we describe the current knowledge regarding the role of the pulmonary vasculature in the development and progression of ARDS, PF, and COPD; we also outline future research directions with the hope of facilitating the development of mechanism-based therapies.
Collapse
Affiliation(s)
- Izabela Borek
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Norbert F. Voelkel
- Pulmonary Medicine Department, University of Amsterdam Medical Centers, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Leigh M. Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, German Lung Center (DZL), Cardiopulmonary Institute, Giessen, Germany
| |
Collapse
|
4
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Role of myeloid-derived suppressor cells in tumor recurrence. Cancer Metastasis Rev 2023; 42:113-142. [PMID: 36640224 PMCID: PMC9840433 DOI: 10.1007/s10555-023-10079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
The establishment of primary tumor cells in distant organs, termed metastasis, is the principal cause of cancer mortality and is a crucial therapeutic target in oncology. Thus, it is critical to establish a better understanding of metastatic progression for the future development of improved therapeutic approaches. Indeed, such development requires insight into the timing of tumor cell dissemination and seeding of distant organs resulting in occult lesions. Following dissemination of tumor cells from the primary tumor, they can reside in niches in distant organs for years or decades, following which they can emerge as an overt metastasis. This timeline of metastatic dormancy is regulated by interactions between the tumor, its microenvironment, angiogenesis, and tumor antigen-specific T-cell responses. An improved understanding of the mechanisms and interactions responsible for immune evasion and tumor cell release from dormancy would help identify and aid in the development of novel targeted therapeutics. One such mediator of dormancy is myeloid derived suppressor cells (MDSC), whose number in the peripheral blood (PB) or infiltrating tumors has been associated with cancer stage, grade, patient survival, and metastasis in a broad range of tumor pathologies. Thus, extensive studies have revealed a role for MDSCs in tumor escape from adoptive and innate immune responses, facilitating tumor progression and metastasis; however, few studies have considered their role in dormancy. We have posited that MDSCs may regulate disseminated tumor cells resulting in resurgence of senescent tumor cells. In this review, we discuss clinical studies that address mechanisms of tumor recurrence including from dormancy, the role of MDSCs in their escape from dormancy during recurrence, the development of occult metastases, and the potential for MDSC inhibition as an approach to prolong the survival of patients with advanced malignancies. We stress that assessing the impact of therapies on MDSCs versus other cellular targets is challenging within the multimodality interventions required clinically.
Collapse
|
6
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [PMID: 35908611 DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
7
|
van Geffen C, Heiss C, Deißler A, Kolahian S. Pharmacological modulation of myeloid-derived suppressor cells to dampen inflammation. Front Immunol 2022; 13:933847. [PMID: 36110844 PMCID: PMC9468781 DOI: 10.3389/fimmu.2022.933847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous cell population with potent suppressive and regulative properties. MDSCs’ strong immunosuppressive potential creates new possibilities to treat chronic inflammation and autoimmune diseases or induce tolerance towards transplantation. Here, we summarize and critically discuss different pharmacological approaches which modulate the generation, activation, and recruitment of MDSCs in vitro and in vivo, and their potential role in future immunosuppressive therapy.
Collapse
|
8
|
Xu W, Deng M, Meng X, Sun X, Tao X, Wang D, Zhang S, Zhen Y, Liu X, Liu M. The alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension, a study with transcriptome sequencing and bioinformatic analysis. Front Cardiovasc Med 2022; 9:961305. [PMID: 35958401 PMCID: PMC9362860 DOI: 10.3389/fcvm.2022.961305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/04/2022] [Indexed: 12/05/2022] Open
Abstract
Background At present, the alterations in molecular markers and signaling pathways in chronic thromboembolic pulmonary hypertension (CTEPH) remain unclear. We aimed to compare the difference of molecular markers and signaling pathways in patients with CTEPH and healthy people with transcriptome sequencing and bioinformatic analysis. Methods We prospectively included 26 patients with CTEPH and 35 sex- and age-matched healthy volunteers as control. We extracted RNA from whole blood samples to construct the library. Then, qualified libraries were sequenced using PE100 strategy on BGIseq platform. Subsequently, the DESeq2 package in R was used to screen differentially expressed mRNAs (DEmRNAs) and differentially expressed long non-coding RNAs (DElncRNAs) of 7 patients with CTEPH and 5 healthy volunteers. Afterwards, we performed functional enrichment and protein–protein interaction analysis of DEmRNAs. We also performed lncRNA-mRNA co-expression analysis and lncRNA-miRNA-mRNA network construction. In addition, we performed diagnostic analysis on the GSE130391 dataset. Finally, we performed reverse transcription polymerase chain reaction (RT-PCR) of genes in 19 patients with CTEPH and 30 healthy volunteers. Results Gender and age between patients with CTEPH and healthy controls, between sequencing group and in vitro validation group, were comparable. A total of 437 DEmRNAs and 192 DElncRNAs were obtained. Subsequently, 205 pairs of interacting DEmRNAs and 232 pairs of lncRNA-mRNA relationship were obtained. DEmRNAs were significantly enriched in chemokine signaling pathway, metabolic pathways, arachidonic acid metabolism, and MAPK signaling pathway. Only one regulation pathway of SOBP-hsa-miR-320b-LINC00472 was found through ceRNA network construction. In diagnostic analysis, the area under curve (AUC) values of LINC00472, PIK3R6, SCN3A, and TCL6, respectively, were 0.964, 0.893, 0.750, and 0.732. Conclusion The identification of alterations in molecules and pathways may provide further research directions on pathogenesis of CTEPH. Additionally, LINC00472, PIK3R6, SCN3A, and TCL6 may act as the potential gene markers in CTEPH.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mei Deng
- Department of Radiology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiapei Meng
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xuebiao Sun
- Department of Radiology, Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xincao Tao
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Dingyi Wang
- Institute of Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Shuai Zhang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Yanan Zhen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Xiaopeng Liu
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Min Liu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Min Liu
| |
Collapse
|
9
|
Crislip GR, Wohlgemuth SE, Wolff CA, Gutierrez-Monreal MA, Douglas CM, Ebrahimi E, Cheng KY, Masten SH, Barral D, Bryant AJ, Esser KA, Gumz ML. Apparent Absence of BMAL1-Dependent Skeletal Muscle-Kidney Cross Talk in Mice. Biomolecules 2022; 12:261. [PMID: 35204763 PMCID: PMC8961518 DOI: 10.3390/biom12020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 12/05/2022] Open
Abstract
BMAL1 is a core mammalian circadian clock transcription factor responsible for the regulation of the expression of thousands of genes. Previously, male skeletal-muscle-specific BMAL1-inducible-knockout (iMS-BMAL1 KO) mice have been described as a model that exhibits an aging-like phenotype with an altered gait, reduced mobility, muscle weakness, and impaired glucose uptake. Given this aging phenotype and that chronic kidney disease is a disease of aging, the goal of this study was to determine if iMS-BMAL1 KO mice exhibit a renal phenotype. Male iMS-BMAL1 KO and control mice were challenged with a low potassium diet for five days. Both genotypes responded appropriately by conserving urinary potassium. The iMS-BMAL1 KO mice excreted less potassium during the rest phase during the normal diet but there was no genotype difference during the active phase. Next, iMS-BMAL1 KO and control mice were used to compare markers of kidney injury and assess renal function before and after a phase advance protocol. Following phase advance, no differences were detected in renal mitochondrial function in iMS-BMAL1 KO mice compared to control mice. Additionally, the glomerular filtration rate and renal morphology were similar between groups in response to phase advance. Disruption of the clock in skeletal muscle tissue activates inflammatory pathways within the kidney of male mice, and there is evidence of this affecting other organs, such as the lungs. However, there were no signs of renal injury or altered function following clock disruption of skeletal muscle under the conditions tested.
Collapse
Affiliation(s)
- Gene Ryan Crislip
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Stephanie E. Wohlgemuth
- Department of Aging and Geriatric Research, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Christopher A. Wolff
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Miguel A. Gutierrez-Monreal
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Elnaz Ebrahimi
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (E.E.); (A.J.B.)
| | - Kit-Yan Cheng
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
| | - Sarah H. Masten
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
| | - Dominique Barral
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
| | - Andrew J. Bryant
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (E.E.); (A.J.B.)
| | - Karyn A. Esser
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Myology Institute, University of Florida, Gainesville, FL 32610, USA
| | - Michelle L. Gumz
- Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.R.C.); (C.A.W.); (M.A.G.-M.); (C.M.D.); (K.-Y.C.)
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (S.H.M.); (D.B.)
- Center for Integrative Cardiovascular and Metabolic Disease, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
10
|
Bryant AJ, Ebrahimi E, Nguyen A, Wolff CA, Gumz ML, Liu AC, Esser KA. A wrinkle in time: circadian biology in pulmonary vascular health and disease. Am J Physiol Lung Cell Mol Physiol 2022; 322:L84-L101. [PMID: 34850650 PMCID: PMC8759967 DOI: 10.1152/ajplung.00037.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An often overlooked element of pulmonary vascular disease is time. Cellular responses to time, which are regulated directly by the core circadian clock, have only recently been elucidated. Despite an extensive collection of data regarding the role of rhythmic contribution to disease pathogenesis (such as systemic hypertension, coronary artery, and renal disease), the roles of key circadian transcription factors in pulmonary hypertension remain understudied. This is despite a large degree of overlap in the pulmonary hypertension and circadian rhythm fields, not only including shared signaling pathways, but also cell-specific effects of the core clock that are known to result in both protective and adverse lung vessel changes. Therefore, the goal of this review is to summarize the current dialogue regarding common pathways in circadian biology, with a specific emphasis on its implications in the progression of pulmonary hypertension. In this work, we emphasize specific proteins involved in the regulation of the core molecular clock while noting the circadian cell-specific changes relevant to vascular remodeling. Finally, we apply this knowledge to the optimization of medical therapy, with a focus on sleep hygiene and the role of chronopharmacology in patients with this disease. In dissecting the unique relationship between time and cellular biology, we aim to provide valuable insight into the practical implications of considering time as a therapeutic variable. Armed with this information, physicians will be positioned to more efficiently use the full four dimensions of patient care, resulting in improved morbidity and mortality of pulmonary hypertension patients.
Collapse
Affiliation(s)
- Andrew J. Bryant
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Elnaz Ebrahimi
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Amy Nguyen
- 1Department of Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - Christopher A. Wolff
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Michelle L. Gumz
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Andrew C. Liu
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| | - Karyn A. Esser
- 2Department of Physiology, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
11
|
Liang J, Wang S, Zhang G, He B, Bie Q, Zhang B. A New Antitumor Direction: Tumor-Specific Endothelial Cells. Front Oncol 2021; 11:756334. [PMID: 34988011 PMCID: PMC8721012 DOI: 10.3389/fonc.2021.756334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Targeting tumor blood vessels is an important strategy for tumor therapies. At present, antiangiogenic drugs are known to have significant clinical effects, but severe drug resistance and side effects also occur. Therefore, new specific targets for tumor and new treatment methods must be developed. Tumor-specific endothelial cells (TECs) are the main targets of antiangiogenic therapy. This review summarizes the differences between TECs and normal endothelial cells, assesses the heterogeneity of TECs, compares tumorigenesis and development between TECs and normal endothelial cells, and explains the interaction between TECs and the tumor microenvironment. A full and in-depth understanding of TECs may provide new insights for specific antitumor angiogenesis therapies.
Collapse
Affiliation(s)
- Jing Liang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Shouqi Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Guowei Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Baoyu He
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Qingli Bie
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Institute of Forensic Medicine and Laboratory Medicine, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Huaux F. Interpreting Immunoregulation in Lung Fibrosis: A New Branch of the Immune Model. Front Immunol 2021; 12:690375. [PMID: 34489937 PMCID: PMC8417606 DOI: 10.3389/fimmu.2021.690375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
Immunostimulation is recognized as an important contribution in lung fibrosis in some animal models and patient subsets. With this review, we illustrate an additional scenario covering the possible implication of immunoregulation during fibrogenesis. Available animal and human data indicate that pulmonary fibrosis also includes diverse and discrete immunoregulating populations comprising regulatory lymphocytes (T and B regs) and myeloid cells (immunosuppressive macrophages and myeloid-derived suppressive cells; MDSC). They are initially recruited to limit the establishment of deleterious inflammation but participate in the development of lung fibrosis by producing immunoregulatory mediators (mainly TGF-β1 and IL-10) that directly or indirectly stimulate fibroblasts and matrix protein deposition. The existence of this silent immunoregulatory environment sustains an alternative mechanism of fibrosis that explains why in some conditions neither pro-inflammatory cytokine deficiency nor steroid and immunosuppressive therapies limit lung fibrosis. Therefore, the persistent presence of immunoregulation is an important parameter to consider for refining therapeutical strategies in lung fibrotic disorders under non-immunostimulatory conditions.
Collapse
Affiliation(s)
- François Huaux
- Louvain Centre for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
13
|
Ruffenach G, O'Connor E, Vaillancourt M, Hong J, Cao N, Sarji S, Moazeni S, Papesh J, Grijalva V, Cunningham CM, Shu L, Chattopadhyay A, Tiwari S, Mercier O, Perros F, Umar S, Yang X, Gomes AV, Fogelman AM, Reddy ST, Eghbali M. Oral 15-Hydroxyeicosatetraenoic Acid Induces Pulmonary Hypertension in Mice by Triggering T Cell-Dependent Endothelial Cell Apoptosis. Hypertension 2020; 76:985-996. [PMID: 32713273 DOI: 10.1161/hypertensionaha.120.14697] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.
Collapse
Affiliation(s)
- Grégoire Ruffenach
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Ellen O'Connor
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
| | - Mylène Vaillancourt
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jason Hong
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
- Department of Medicine, Division of Pulmonary and Critical Care (J.H.)
| | - Nancy Cao
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shervin Sarji
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Shayan Moazeni
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Jeremy Papesh
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Victor Grijalva
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Christine M Cunningham
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Le Shu
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Arnab Chattopadhyay
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Shuchita Tiwari
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation (O.M.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Frédéric Perros
- andUMR-S 999, INSERM and Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et l'Innovation Thérapeutique (F.P.), Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Soban Umar
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, California (L.S., X.Y.)
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology and Behavior, UC Davis, Davis, CA (S.T., A.V.G.)
| | - Alan M Fogelman
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Srinivasa T Reddy
- Molecular Toxicology Interdepartmental Degree Program (E.O., S.T.R.)
- Department of Medicine, Division of Cardiology (J.P., V.G., A.C., A.F., S.T.R.)
| | - Mansoureh Eghbali
- From the Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine (G.R., M.V., J.H., N.C., S.S., S.M., C.M.C., S.U., M.E.)
| |
Collapse
|
14
|
Fu C, Lu Y, Williams MA, Brantly ML, Ventetuolo CE, Morel LM, Mehrad B, Scott EW, Bryant AJ. Emergency myelopoiesis contributes to immune cell exhaustion and pulmonary vascular remodelling. Br J Pharmacol 2020; 178:187-202. [PMID: 31793661 PMCID: PMC8240454 DOI: 10.1111/bph.14945] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/04/2019] [Accepted: 11/18/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary hypertension (PH) secondary to chronic lung disease (World Health Organization Group 3 PH) is deadly, with lung transplant being the only available long-term treatment option. Myeloid-derived cells are known to affect progression of both pulmonary fibrosis and PH, although the mechanism of action is unknown. Therefore, we investigated the effect of myeloid cell proliferation induced by emergency myelopoiesis on development of PH and therapy directed against programmed death-ligand 1 (PD-L1), expressed by myeloid cells in prevention of pulmonary vascular remodelling. EXPERIMENTAL APPROACH LysM.Cre-DTR ("mDTR") mice were injected with bleomycin (0.018 U·g-1 , i.p.) while receiving either vehicle or diphtheria toxin (DT; 100 ng, i.p.) to induce severe PH. Approximately 4 weeks after initiation of bleomycin protocol, right ventricular pressure measurements were performed and tissue samples collected for histologic assessment. In a separate experiment, DT-treated mice were given anti-PD-L1 antibody (αPD-L1; 500 μg, i.p.) preventive treatment before bleomycin administration. KEY RESULTS Mice undergoing induction of emergency myelopoiesis displayed more severe PH, right ventricular remodelling and pulmonary vascular muscularization compared to controls, without a change in lung fibrosis. This worsening of PH was associated with increased pulmonary myeloid-derived suppressor cell (MDSC), particularly polymorphonuclear MDSC (PMN-MDSC). Treatment with αPD-L1 normalized pulmonary pressures. PD-L1 expression was likewise found to be elevated on circulating PMN-MDSC from patients with interstitial lung disease and PH. CONCLUSIONS AND IMPLICATIONS PD-L1 is a viable therapeutic target in PH, acting through a signalling axis involving MDSC. LINKED ARTICLES This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.
Collapse
Affiliation(s)
- Chunhua Fu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Yuanqing Lu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mason A Williams
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Mark L Brantly
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Laurence M Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida
| | - Edward W Scott
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| | - Andrew J Bryant
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida.,Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
George PM, Mitchell JA. Defining a pathological role for the vasculature in the development of fibrosis and pulmonary hypertension in interstitial lung disease. Am J Physiol Lung Cell Mol Physiol 2019; 317:L431-L433. [PMID: 31432711 DOI: 10.1152/ajplung.00330.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Peter M George
- Interstitial Lung Disease Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom.,Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jane A Mitchell
- Department of Cardiothoracic Pharmacology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|