1
|
Zheng Y, Peng W, Wen X, Wan Q. Protein interactome analysis of ATP1B1 in alveolar epithelial cells using Co-Immunoprecipitation mass spectrometry and parallel reaction monitoring assay. Heliyon 2024; 10:e32579. [PMID: 38912441 PMCID: PMC11193012 DOI: 10.1016/j.heliyon.2024.e32579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Aims Alveolar epithelial barrier integrity is essential for lung homeostasis. Na, K-ATPase β1 subunit (ATP1B1) involves alveolar edema fluid clearance and alveolar epithelial barrier stability. However, the underlying molecular mechanism of ATP1B1 in alveolar epithelial cells still needs to be understood. Main methods We utilized Co-Immunoprecipitation mass spectrometry proteomic analysis, protein-protein interaction (PPI) analysis, enrichment analysis, and parallel reaction monitoring (PRM) analysis to investigate proteins interacting with ATP1B1 in A549 cells. Key findings A total of 159 proteins were identified as significant proteins interacting with ATP1B1 in A549 cells. Ribosomal and heat shock proteins were major constituents of the two main functional modules based on the PPI network. Enrichment analysis showed that significant proteins were involved in protein translation, posttranslational processing, and function regulation. Moreover, 10 proteins of interest were verified by PRM, and fold changes in 6 proteins were consistent with proteomics results. Finally, HSP90AB1, EIF4A1, TUBB4B, HSPA8, STAT1, and PLEC were considered candidates for binding to ATP1B1 to function in alveolar epithelial cells. Significance Our study provides new insights into the role of ATP1B1 in alveolar epithelial cells and indicates that six proteins, in particular HSP90AB1, may be key proteins interacting with and regulating ATP1B1, which might be potential targets for the treatment of acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Weiting Peng
- 8-Year Clinical Medicine Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xupeng Wen
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qiquan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Kinaneh S, Knany Y, Khoury EE, Ismael-Badarneh R, Hamoud S, Berger G, Abassi Z, Azzam ZS. Identification, localization and expression of NHE isoforms in the alveolar epithelial cells. PLoS One 2021; 16:e0239240. [PMID: 33882062 PMCID: PMC8059851 DOI: 10.1371/journal.pone.0239240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers (NHEs), encoded by Solute Carrier 9A (SLC9A) genes in human, are ubiquitous integral membrane ion transporters that mediate the electroneutral exchange of H+ with Na+ or K+. NHEs, found in the kidney and intestine, play a major role in the process of fluid reabsorption together via Na+,K+-ATPase pump and Na+ channels. Nevertheless, the expression pattern of NHE in the lung and its role in alveolar fluid homeostasis has not been addressed. Therefore, we aimed to examine the expression of NHE specific isoforms in alveolar epithelial cells (AECs), and assess their role in congestive heart failure (CHF). Three NHE isoforms were identified in AEC and A549 cell line, at the level of protein and mRNA; NHE1, NHE2 and mainly NHE8, the latter was shown to be localized in the apical membrane of AEC. Treating A549 cells with angiotensin (Ang) II for 3, 5 and 24 hours displayed a significant reduction in NHE8 protein abundance. Moreover, the abundance of NHE8 protein was downregulated in A549 cells that were treated overnight with Ang II. NHE8 abundance in whole lung lysate was increased in rats with 1-week CHF compared to sham operated rats. However, lower abundance of NHE8 was observed in 4-week CHF group. In conclusion, we herein show for the first time, the expression of a novel NHE isoform in AEC, namely NHE8. Notably, Ang II decreased NHE8 protein levels. Moreover, NHE8 was distinctly affected in CHF rats, probably depending on the severity of the heart failure.
Collapse
Affiliation(s)
- Safa Kinaneh
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Yara Knany
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Emad E. Khoury
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | | | - Shadi Hamoud
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “E”, Rambam: Human Health Care Campus, Haifa, Israel
| | - Gidon Berger
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam: Human Health Care Campus, Haifa, Israel
| | - Zaid Abassi
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zaher S. Azzam
- Ruth & Bruce Rappaport Faculty of Medicine, Department of Physiology, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam: Human Health Care Campus, Haifa, Israel
- * E-mail:
| |
Collapse
|
3
|
Azzam ZS, Kinaneh S, Bahouth F, Ismael-Badarneh R, Khoury E, Abassi Z. Involvement of Cytokines in the Pathogenesis of Salt and Water Imbalance in Congestive Heart Failure. Front Immunol 2017; 8:716. [PMID: 28674538 PMCID: PMC5474564 DOI: 10.3389/fimmu.2017.00716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/02/2017] [Indexed: 12/28/2022] Open
Abstract
Congestive heart failure (CHF) has become a major medical problem in the western world with high morbidity and mortality rates. CHF adversely affects several systems, mainly the kidneys and the lungs. While the involvement of the renin-angiotensin-aldosterone system and the sympathetic nervous system in the progression of cardiovascular, pulmonary, and renal dysfunction in experimental and clinical CHF is well established, the importance of pro-inflammatory mediators in the pathogenesis of this clinical setting is still evolving. In this context, CHF is associated with overexpression of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1, and IL-6, which are activated in response to environmental injury. This family of cytokines has been implicated in the deterioration of CHF, where it plays an important role in initiating and integrating homeostatic responses both at the myocardium and circulatory levels. We and others showed that angiotensin II decreased the ability of the lungs to clear edema and enhanced the fibrosis process via phosphorylation of the mitogen-activated protein kinases p38 and p42/44, which are generally involved in cellular responses to pro-inflammatory cytokines. Literature data also indicate the involvement of these effectors in modulating ion channel activity. It has been reported that in heart failure due to mitral stenosis; there were varying degrees of vascular and other associated parenchymal changes such as edema and fibrosis. In this review, we will discuss the effects of cytokines and other inflammatory mediators on the kidneys and the lungs in heart failure; especially their role in renal and alveolar ion channels activity and fluid balance.
Collapse
Affiliation(s)
- Zaher S. Azzam
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
- Internal Medicine “B”, Rambam Health Care Campus, Haifa, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Fadel Bahouth
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Reem Ismael-Badarneh
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Emad Khoury
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
4
|
Abstract
Pulmonary edema clearance is necessary for patients with lung injury to recover and survive. The mechanisms regulating edema clearance from the lungs are distinct from the factors contributing edema formation during injury. Edema clearance is effected via vectorial transport of Na(+) out of the airspaces which generates an osmotic gradient causing water to follow the gradient out of the cells. This Na(+) transport across the alveolar epithelium is mostly effected via apical Na(+) and chloride channels and basolateral Na,K-ATPase. The Na,K-ATPase pumps Na(+) out of the cell and K(+) into the cell against their respective gradients in an ATP-consuming reaction. Two mechanisms contribute to the regulation of the Na,K-ATPase activity:recruitment of its subunits from intracellular compartments into the basolateral membrane, and transcriptional/translational regulation. Na,K-ATPase activity and edema clearance are increased by catecholamines, aldosterone, vasopressin, overexpression of the pump genes, and others. During lung injury, mechanisms regulating edema clearance are inhibited by yet unclear pathways. Better understanding of the mechanisms that regulate pulmonary edema clearance may lead to therapeutic interventions that counterbalance the inhibition of edema clearance during lung injury and improve the lungs' ability to clear fluid, which is crucial for patient survival.
Collapse
Affiliation(s)
- Zaher S. Azzam
- Internal Medicine “B”, Rambam Health Care Campus, Department of Physiology and Biophysics, The Rappaport Family Faculty of Medicine and Research Institute, Technion, Israel Institute of Technology, Haifa, Israel
| | - Jacob I. Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
5
|
Dixon DL, Mayne GC, Griggs KM, De Pasquale CG, Bersten AD. Chronic elevation of pulmonary microvascular pressure in chronic heart failure reduces bi-directional pulmonary fluid flux. Eur J Heart Fail 2012; 15:368-75. [PMID: 23248216 DOI: 10.1093/eurjhf/hfs201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Chronic heart failure leads to pulmonary vascular remodelling and thickening of the alveolar-capillary barrier. We examined whether this protective effect may slow resolution of pulmonary oedema consistent with decreased bi-directional fluid flux. METHODS AND RESULTS Seven weeks following left coronary artery ligation, we measured both fluid flux during an acute rise in left atrial pressure (n = 29) and intrinsic alveolar fluid clearance (n = 45) in the isolated rat lung. Chronic elevation of pulmonary microvascular pressure prevented pulmonary oedema and decreased lung compliance when left atrial pressure was raised to 20 cmH2O, and was associated with reduced expression of endothelial aquaporin 1 (P = 0.03). However, no other changes were found in mediators of fluid flux or cellular fluid channels. In isolated rat lungs, chronic LV dysfunction (LV end-diastolic pressure and infarct circumference) was also inversely related to alveolar fluid clearance (P ≤ 0.001). The rate of pulmonary oedema reabsorption was estimated by plasma volume expansion in eight patients with a previous clinical history of chronic heart failure and eight without, who presented with acute pulmonary oedema. Plasma volume expansion was reduced at 24 h in those with chronic heart failure (P = 0.03). CONCLUSIONS Chronic elevation of pulmonary microvascular pressure in CHF leads to decreased intrinsic bi-directional fluid flux at the alveolar-capillary barrier. This adaptive response defends against alveolar flooding, but may delay resolution of alveolar oedema.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, and Department of Critical Care Medicine, Flinders University, Adelaide, Australia.
| | | | | | | | | |
Collapse
|
6
|
Guetta J, Klorin G, Tal R, Berger G, Ismael-Badarneh R, Bishara B, Sabo E, Abassi Z, Azzam ZS. Vasopressin-2 Receptor Antagonist Attenuates the Ability of the Lungs to Clear Edema in an Experimental Model. Am J Respir Cell Mol Biol 2012; 47:583-8. [DOI: 10.1165/rcmb.2012-0117oc] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
7
|
Pedersen LRE, Müllertz KM, Amtorp O, Christensen S, Jonassen TEN. Enhanced alveolar fluid clearance following 72 h of continuous isoproterenol infusion in rats. Acta Physiol (Oxf) 2012; 206:142-9. [PMID: 22681716 DOI: 10.1111/j.1748-1716.2012.02459.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 06/01/2012] [Accepted: 06/02/2012] [Indexed: 11/28/2022]
Abstract
AIM We wished to determine the effect of continuous β-receptor stimulation on alveolar fluid clearance and to elucidate the mechanisms behind this effect. METHODS Alveolar fluid clearance was measured in anaesthetized rats pretreated for 72 h with the β-agonist isoproterenol (200 μg kg(-1) h(-1) sc) or vehicle. Alveolar fluid clearance in artificially ventilated rats was determined over 1 h by infusion of isotonic Ringer solution containing (125) I-albumin into the lungs. Additionally, alveolar fluid clearance was determined when amiloride or l-cis-diltiazem was added to the solution to block ENaC and cyclic nucleotide-gated (CNG) channels respectively. RESULTS Isoproterenol treatment induced a 42% increase in alveolar fluid clearance (18.9 ± 1.4%) vs. vehicle (13.3 ± 3.3%). Addition of amiloride resulted in a net decrease of 8% in both groups, while l-cis-diltiazem caused a net decrease of 12% in isoproterenol-treated animals, but only 5% in vehicle-treated animals. Western blotting showed that isoproterenol treatment increased the abundance of the α-ENaC and β-ENaC subunits (223 ± 51% and 274 ± 55% of vehicle, respectively) but we saw no changes in protein level of the γ-EnaC subunit. CONCLUSION Continuous β-adrenoceptor stimulation with isoproterenol enhances alveolar fluid clearance through alternative pathways involving l-cis-diltiazem-sensitive channels.
Collapse
Affiliation(s)
- L. R. E. Pedersen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - K. M. Müllertz
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - O. Amtorp
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - S. Christensen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| | - T. E. N. Jonassen
- Department of Biomedical Sciences, Faculty of Health Sciences; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
8
|
Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: a novel divergent amiloride-inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1013-26. [PMID: 22983350 DOI: 10.1152/ajplung.00206.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The fourth subunit of the epithelial sodium channel, termed delta subunit (δ ENaC), was cloned in human and monkey. Increasing evidence shows that this unique subunit and its splice variants exhibit biophysical and pharmacological properties that are divergent from those of α ENaC channels. The widespread distribution of epithelial sodium channels in both epithelial and nonepithelial tissues implies a range of physiological functions. The altered expression of SCNN1D is associated with numerous pathological conditions. Genetic studies link SCNN1D deficiency with rare genetic diseases with developmental and functional disorders in the brain, heart, and respiratory systems. Here, we review the progress of research on δ ENaC in genomics, biophysics, proteomics, physiology, pharmacology, and clinical medicine.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Maron MB, Luther DJ, Pilati CF, Ohanyan V, Li T, Koshy S, Horne WI, Meszaros JG, Walro JM, Folkesson HG. Beta-adrenoceptor stimulation of alveolar fluid clearance is increased in rats with heart failure. Am J Physiol Lung Cell Mol Physiol 2009; 297:L487-95. [PMID: 19592457 DOI: 10.1152/ajplung.90629.2008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The alveolar epithelium plays a critical role in resolving pulmonary edema. We thus hypothesized that its function might be upregulated in rats with heart failure, a condition that severely challenges the lung's ability to maintain fluid balance. Heart failure was induced by left coronary artery ligation. Echocardiographic and cardiovascular hemodynamics confirmed its development at 16 wk postligation. At that time, alveolar fluid clearance was measured by an increase in protein concentration over 1 h of a 5% albumin solution instilled into the lungs. Baseline alveolar fluid clearance was similar in heart failure and age-matched control rats. Terbutaline was added to the instillate to determine whether heart failure rats responded to beta-adrenoceptor stimulation. Alveolar fluid clearance in heart failure rats was increased by 194% after terbutaline stimulation compared with a 153% increase by terbutaline in control rats. To determine the mechanisms responsible for this accelerated alveolar fluid clearance, we measured ion transporter expression (ENaC, Na-K- ATPase, CFTR). No significant upregulation was observed for these ion transporters in the heart failure rats. Lung morphology showed significant alveolar epithelial type II cell hyperplasia in heart failure rats. Thus, alveolar epithelial type II cell hyperplasia is the likely explanation for the increased terbutaline-stimulated alveolar fluid clearance in heart failure rats. These data provide evidence for previously unrecognized mechanisms that can protect against or hasten resolution of alveolar edema in heart failure.
Collapse
Affiliation(s)
- Michael B Maron
- Department of Integrative Medical Sciences, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, PO Box 95, Rootstown, OH 44272-0095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dixon DL, De Pasquale CG, De Smet HR, Klebe S, Orgeig S, Bersten AD. Reduced surface tension normalizes static lung mechanics in a rodent chronic heart failure model. Am J Respir Crit Care Med 2009; 180:181-7. [PMID: 19372252 DOI: 10.1164/rccm.200809-1506oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Chronic elevation of pulmonary microvascular pressure in chronic heart failure results in compensatory changes in the lung that reduce alveolar fluid filtration and protect against pulmonary microvascular rupture. OBJECTIVES To determine whether these compensatory responses may have maladaptive effects on lung function. METHODS Six weeks after myocardial infarction (chronic heart failure model) rat lung composition, both gross and histologic; air and saline mechanics; surfactant production; and immunological mediators were examined. MEASUREMENTS AND MAIN RESULTS An increase in dry lung weight, due to increased insoluble protein, lipid and cellular infiltrate, without pulmonary edema was found. Despite this, both forced impedance and air pressure-volume mechanics were normal. However, there was increased tissue stiffness in the absence of surface tension (saline pressure-volume curve) with a concurrent increase in both surfactant content and alveolar type II cell numbers, suggesting a novel homeostatic phenomenon. CONCLUSIONS These studies suggest a compensatory reduction in pulmonary surface tension that attenuates the effect of lung parenchymal remodeling on lung mechanics, hence work of breathing.
Collapse
Affiliation(s)
- Dani-Louise Dixon
- Intensive and Critical Care Unit, Flinders Medical Centre, Bedford Park, Adelaide, South Australia 5042, Australia.
| | | | | | | | | | | |
Collapse
|
11
|
Hochberg I, Abassi Z, Azzam ZS. Patterns of alveolar fluid clearance in heart failure. Int J Cardiol 2008; 130:125-30. [PMID: 18579236 DOI: 10.1016/j.ijcard.2008.03.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 02/19/2008] [Accepted: 03/01/2008] [Indexed: 11/17/2022]
Abstract
Alveolar fluid clearance (AFC) is important in keeping the airspaces free of edema. This process is accomplished via passive and active transport of Na(+) across the alveolo-capillary barrier mostly by apical Na(+) channels and basolateral Na,K-ATPases, respectively. Patterns of alveolar fluid clearance were found to be decreased in acutely elevated left atrial pressures, possibly due to the inhibition of alveolar epithelial active sodium transport. On the other hand, chronic elevation of pulmonary capillary pressure, such as seen in experimental and clinical congestive heart failure, increases alveolar fluid clearance most likely secondary to upregulation of active sodium transport.
Collapse
Affiliation(s)
- Irit Hochberg
- Internal Medicine B, Rambam: Human Health Care Campus, Haifa, Israel
| | | | | |
Collapse
|
12
|
Gandhi SG, Rafii B, Harris MS, Garces A, Mahuran D, Chen XJ, Bao HF, Jain L, Eaton DC, Otulakowski G, O'Brodovich H. Effects of cardiogenic edema fluid on ion and fluid transport in the adult lung. Am J Physiol Lung Cell Mol Physiol 2007; 293:L651-9. [PMID: 17557800 DOI: 10.1152/ajplung.00464.2006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We have previously shown that cardiogenic pulmonary edema fluid (EF) increases Na+ and fluid transport by fetal distal lung epithelia (FDLE) (Rafii B, Gillie DJ, Sulowski C, Hannam V, Cheung T, Otulakowski G, Barker PM and O'Brodovich H. J Physiol 544: 537–548, 2002). We now report the effect of EF on Na+ and fluid transport by the adult lung. We first studied primary cultures of adult type II (ATII) epithelium and found that overnight exposure to EF increased Na+ transport, and this effect was mainly due to factors other than catecholamines. Plasma did not stimulate Na+ transport in ATII. Purification of EF demonstrated that at least some agent(s) responsible for the amiloride-insensitive component resided within the globulin fraction. ATII exposed to globulins demonstrated a conversion of amiloride-sensitive short-circuit current ( Isc) to amiloride-insensitive Isc with no increase in total Isc. Patch-clamp studies showed that ATII exposed to EF for 18 h had increased the number of highly selective Na+ channels in their apical membrane. In situ acute exposure to EF increased the open probability of Na+-permeant ion channels in ATII within rat lung slices. EF did increase, by amiloride-sensitive pathways, the alveolar fluid clearance from the lungs of adult rats. We conclude that cardiogenic EF increases Na+ transport by adult lung epithelia in primary cell culture, in situ and in vivo.
Collapse
Affiliation(s)
- Shephali G Gandhi
- Canadian Institutes of Health Research Group in Lung Development, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kaestle SM, Reich CA, Yin N, Habazettl H, Weimann J, Kuebler WM. Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 2007; 293:L859-69. [PMID: 17616651 DOI: 10.1152/ajplung.00008.2007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Formation of cardiogenic pulmonary edema in acute left heart failure is traditionally attributed to increased fluid filtration from pulmonary capillaries and subsequent alveolar flooding. Here, we demonstrate that hydrostatic edema formation at moderately elevated vascular pressures is predominantly caused by an inhibition of alveolar fluid reabsorption, which is mediated by endothelial-derived nitric oxide (NO). In isolated rat lungs, we quantified fluid fluxes into and out of the alveolar space and endothelial NO production by a two-compartmental double-indicator dilution technique and in situ fluorescence imaging, respectively. Elevation of hydrostatic pressure induced Ca(2+)-dependent endothelial NO production and caused a net fluid shift into the alveolar space, which was predominantly attributable to impaired fluid reabsorption. Inhibition of NO production or soluble guanylate cyclase reconstituted alveolar fluid reabsorption, whereas fluid clearance was blocked by exogenous NO donors or cGMP analogs. In isolated mouse lungs, hydrostatic edema formation was attenuated by NO synthase inhibition. Similarly, edema formation was decreased in isolated mouse lungs of endothelial NO synthase-deficient mice. Chronic heart failure results in endothelial dysfunction and preservation of alveolar fluid reabsorption. These findings identify impaired alveolar fluid clearance as an important mechanism in the pathogenesis of hydrostatic lung edema. This effect is mediated by endothelial-derived NO acting as an intercompartmental signaling molecule at the alveolo-capillary barrier.
Collapse
Affiliation(s)
- Stephanie M Kaestle
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin Arnimallee 22, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Vadász I, Raviv S, Sznajder JI. Alveolar epithelium and Na,K-ATPase in acute lung injury. Intensive Care Med 2007; 33:1243-1251. [PMID: 17530222 PMCID: PMC7095466 DOI: 10.1007/s00134-007-0661-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 03/05/2007] [Indexed: 01/11/2023]
Abstract
Active transport of sodium across the alveolar epithelium, undertaken in part by the Na,K-adenosine triphosphatase (Na,K-ATPase), is critical for clearance of pulmonary edema fluid and thus the outcome of patients with acute lung injury. Acute lung injury results in disruption of the alveolar epithelial barrier and leads to impaired clearance of edema fluid and altered Na,K-ATPase function. There has been significant progress in the understanding of mechanisms regulating alveolar edema clearance and signaling pathways modulating Na,K-ATPase function during lung injury. The accompanying review by Morty et al. focuses on intact organ and animal models as well as clinical studies assessing alveolar fluid reabsorption in alveolar epithelial injury. Elucidation of the mechanisms underlying regulation of active Na+ transport, as well as the pathways by which the Na,K-ATPase regulates epithelial barrier function and edema clearance, are of significance to identify interventional targets to improve outcomes of patients with acute lung injury.
Collapse
Affiliation(s)
- István Vadász
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Stacy Raviv
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, 240 E. Huron Street, McGaw 2300, 60611, Chicago, IL, USA.
| |
Collapse
|