1
|
Proskocil BJ, Bash GN, Jacoby DB, Fryer AD, Nie Z. Eosinophils prevent diet-induced airway hyperresponsiveness in mice on a high-fat diet. Am J Physiol Lung Cell Mol Physiol 2024; 327:L867-L875. [PMID: 39316677 DOI: 10.1152/ajplung.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Eosinophils contribute to metabolic homeostasis and airway hyperresponsiveness, but their specific role in obesity-related airway hyperresponsiveness remains unclear. To address this, we used transgenic mice that overexpress interleukin-5 (IL-5) in peripheral T cells (+IL-5T) and wild-type controls. On a normal diet, +IL-5T and wild-type mice have similar body weight, body fat, and airway nerve-mediated reflex bronchoconstriction in response to inhaled serotonin. Feeding wild-type mice a 61.6% high-fat diet resulted in significantly increased body weight, body fat, fasting glucose, fasting insulin, and reflex bronchoconstriction induced by serotonin, which was blocked by vagotomy. In contrast, +IL-5T mice on a high-fat diet gained less body weight and fat than wild-type mice on the same diet and did not exhibit potentiation in fasting glucose, fasting insulin, or reflex bronchoconstriction induced by serotonin. Compared with wild-type mice, +IL-5T mice on normal diet had significantly more adipose tissue eosinophils, and this was further increased by high-fat diet. High-fat diet did not increase adipose tissue eosinophils in wild-type mice. Our findings suggest that adipose tissue eosinophils may play a role in regulating body fat, thereby reducing insulin, which is a mediator of obesity-related airway hyperresponsiveness. Thus, our data indicate adipose tissue eosinophils may be an important avenue for research in obesity-related asthma.NEW & NOTEWORTHY This study investigates how eosinophils influence systemic metabolism and airway function in obesity. Known for their immune functions, eosinophils also mitigate obesity-related hyperinsulinemia, reducing airway hyperresponsiveness in obese mice models. The findings suggest potential therapeutic strategies targeting the intricate interplay among neurons, eosinophils, and the endocrine system to alleviate asthma in obesity. This research provides novel insights into the critical neuro-immune-endocrine interactions essential for managing obesity-related asthma.
Collapse
Grants
- HL163087 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL164474 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL144088 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131525 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- F30HL154526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- AI152498 HHS | NIH | NIAID | Division of Intramural Research (DIR, NIAID)
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Gina N Bash
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
2
|
Haruna NF, Berdnikovs S, Nie Z. Eosinophil biology from the standpoint of metabolism: implications for metabolic disorders and asthma. J Leukoc Biol 2024; 116:288-296. [PMID: 38700084 PMCID: PMC11288379 DOI: 10.1093/jleuko/qiae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/15/2024] [Accepted: 04/01/2024] [Indexed: 05/05/2024] Open
Abstract
Eosinophils, recognized for their immune and remodeling functions and participation in allergic inflammation, have recently garnered attention due to their impact on host metabolism, especially in the regulation of adipose tissue. Eosinophils are now known for their role in adipocyte beiging, adipokine secretion, and adipose tissue inflammation. This intricate interaction involves complex immune and metabolic processes, carrying significant implications for systemic metabolic health. Importantly, the interplay between eosinophils and adipocytes is bidirectional, revealing the dynamic nature of the immune-metabolic axis in adipose tissue. While the homeostatic regulatory role of eosinophils in adipose tissue is appreciated, this relationship in the context of obesity or allergic inflammation is much less understood. Mechanistic details of eosinophil-adipose interactions, especially the direct regulation of adipocytes by eosinophils, are also lacking. Another poorly understood aspect is the metabolism of the eosinophils themselves, encompassing metabolic shifts during eosinophil subset transitions in different tissue microenvironments, along with potential effects of host metabolism on the programming of eosinophil hematopoiesis and the resulting plasticity. This review consolidates recent research in this emerging and fascinating frontier of eosinophil investigation, identifying unexplored areas and presenting innovative perspectives on eosinophil biology in the context of metabolic disorders and associated health conditions, including asthma.
Collapse
Affiliation(s)
- Nana-Fatima Haruna
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, 240 East Huron, McGaw M309, Chicago, IL 60611, United States
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Feinberg School of Medicine, Northwestern University, 240 East Huron, McGaw M309, Chicago, IL 60611, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| |
Collapse
|
3
|
Ararat E, Landes RD, Forno E, Tas E, Perry TT. Metformin use is associated with decreased asthma exacerbations in adolescents and young adults. Pediatr Pulmonol 2024; 59:48-54. [PMID: 37772681 PMCID: PMC10872793 DOI: 10.1002/ppul.26704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
RATIONALE Metformin is a commonly used antidiabetes medication with suggested anti-inflammatory and antioxidative effects. Metformin use has been associated with lower risk of asthma exacerbations and hospitalizations in adults. Here, we aimed to evaluate how asthma exacerbation rates changed after adolescents and young adults were prescribed metformin, and to learn if those changes were related to metformin prescription adherence. METHODS Using secondary data of patients between 12 and 20 years old with asthma diagnosis and a metformin prescription from the Arkansas All Payers Claim Database and Arkansas School body mass index (BMI) database, we estimated the change in annualized asthma exacerbation rates after metformin prescription. We also evaluated the association of prescription adherence to the changes in those rates using univariate and multivariate regression models. RESULTS A total of 464 patients met inclusion criteria. Outpatient exacerbation rates decreased after metformin prescription (13.4% only before vs. 7.8% only after, p = .009), and the annualized rate decreased more after metformin prescription as adherence increased (rank r = -.165, p < .001). After adjusting for potential confounders-age, sex, BMI, and inhaled corticoid steroid use-the strength of the association was attenuated. CONCLUSIONS Asthma exacerbation rates decreased after metformin prescription, but a larger sample of patients who have experienced exacerbations and including patients with asthma who have not been prescribed metformin is needed to better know whether these decreases are driven by metformin use.
Collapse
Affiliation(s)
- Erhan Ararat
- Department of Pediatrics, Division of Pulmonology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Reid D Landes
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Erick Forno
- Division of Pediatric Pulmonary, Allergy, and Sleep Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Emir Tas
- Pediatric Endocrinology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tamara T Perry
- Department of Pediatrics, Allergy and Immunology, University of Arkansas for Medical Sciences and Arkansas Children’s Research Institute, Little Rock, AR, USA
| |
Collapse
|
4
|
Shailesh H, Bhat AA, Janahi IA. Obesity-Associated Non-T2 Mechanisms in Obese Asthmatic Individuals. Biomedicines 2023; 11:2797. [PMID: 37893170 PMCID: PMC10603840 DOI: 10.3390/biomedicines11102797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Obesity and asthma are two common health issues that have shown increased prevalence in recent years and have become a significant socioeconomic burden worldwide. Obesity increases asthma incidence and severity. Obese asthmatic individuals often experience increased exacerbation rates, enhanced airway remodeling, and reduced response to standard corticosteroid therapy. Recent studies indicate that obesity-associated non-T2 factors such as mechanical stress, hyperinsulinemia, systemic inflammation, adipose tissue mediators, metabolic dysregulation, microbiome dysbiosis, and high-fat-diet are responsible for increased asthma symptoms and reduced therapeutic response in obese asthmatic individuals. This manuscript reviews the recent findings highlighting the role of obesity-associated factors that contribute to airway hyper-reactivity, airway inflammation and remodeling, and immune cell dysfunction, consequently contributing to worsening asthma symptoms. Furthermore, the review also discusses the possible future therapies that might play a role in reducing asthma symptoms by diminishing the impact of obesity-associated non-T2 factors.
Collapse
Affiliation(s)
| | - Ajaz A. Bhat
- Precision Medicine in Diabetes, Obesity and Cancer Research Program, Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar;
| | - Ibrahim A. Janahi
- Department of Medical Education, Sidra Medicine, Doha 26999, Qatar;
- Department of Pediatric Medicine, Sidra Medicine, Doha 26999, Qatar
- Department of Pediatrics, Weill Cornell Medicine, Doha 24144, Qatar
| |
Collapse
|
5
|
Fu D, Zhao H, Huang Y, Li J, Feng H, Li A, Liu Y, He L. Metformin regulates the effects of IR and IGF-1R methylation on mast cell activation and airway reactivity in diabetic rats with asthma through miR-152-3p/DNMT1 axis. Cell Biol Toxicol 2023; 39:1851-1872. [PMID: 36547818 DOI: 10.1007/s10565-022-09787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIM Metformin is a drug for treating type 2 diabetes mellitus (T2DM). Recently, metformin has been shown to reduce the risks of asthma-associated outcomes and asthma deterioration, thereby holding promise as a superior medicine for diabetic patients with asthma. However, the mechanism by which metformin reduces diabetic asthma is yet to be clarified. This study aimed at ascertaining the downstream molecules underlying the effect of metformin on the activation of mast cells (MCs) and airway reactivity in a concomitant diabetic and asthmatic rat model. METHODS A T2DM model was induced utilizing a high-fat diet and streptozotocin. Then, 10% ovalbumin was utilized to stimulate asthma-like pathology in the T2DM rats. RBL-2H3 cells were induced by anti-dinitrophenyl-specific immunoglobulin E for constructing an in vitro model. Luciferase assay and RNA immunoprecipitation (IP) assay were conducted to identify the interaction between microRNA-152-3p (miR-152-3p) and DNA methyltransferase 1 (DNMT1), while chromatin IP to identify the binding of DNMT1 to insulin receptor (IR) and insulin-like growth factor 1 receptor (IGF-1R) promoters. The effects of metformin on both pathological changes in vivo and biological behaviors of cells were evaluated. Using gain- and loss-of-function approaches, we assessed the role of the two interactions in the metformin-induced effect. RESULTS It was suggested that metformin could impede the MC activation and airway resistance in the concomitant diabetic and asthmatic rats. Additionally, metformin downregulated IR and IGF-1R through DNMT1-dependent methylation to repress MC activation and airway resistance. DNMT1 was testified to be a target gene of miR-152-3p. Furthermore, miR-152-3p-induced silencing of DNMT1 was blocked by metformin, hence restraining MC activation and airway resistance. CONCLUSION The findings cumulatively demonstrate that metformin downregulates IR/IGF-1R to block MC activation and airway resistance via impairing the binding affinity between miR-152-3p and DNMT1.
Collapse
Affiliation(s)
- Dan Fu
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Hailu Zhao
- Diabetic Systems Center, Guangxi Key Laboratory of Excellence, Guilin Medical University, Guilin, Guangxi, 541000, People's Republic of China
| | - Yan Huang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Jingjuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Huafeng Feng
- Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Aiguo Li
- Department of Anesthesiology, The Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, People's Republic of China
| | - Yefen Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital of Southern Medical University, No.566, Congcheng Ave, Guangzhou, Guangdong, 510900, People's Republic of China.
| |
Collapse
|
6
|
Calco GN, Alharithi YJ, Williams KR, Jacoby DB, Fryer AD, Maloyan A, Nie Z. Maternal high-fat diet increases airway sensory innervation and reflex bronchoconstriction in adult offspring. Am J Physiol Lung Cell Mol Physiol 2023; 325:L66-L73. [PMID: 37280517 PMCID: PMC10390047 DOI: 10.1152/ajplung.00115.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/08/2023] Open
Abstract
Children born to obese mothers are prone to develop asthma and airway hyperresponsiveness, but the mechanisms behind this are unclear. Here we developed a mouse model of maternal diet-induced obesity that recapitulates metabolic abnormalities seen in humans born to obese mothers. Offspring of dams fed a high-fat diet (HFD) showed increased adiposity, hyperinsulinemia, and insulin resistance at 16 wk of age despite being fed only a regular diet (RD). Bronchoconstriction induced by inhaled 5-hydroxytriptamine was also significantly increased in offspring of HFD-fed versus RD-fed dams. Increased bronchoconstriction was blocked by vagotomy, indicating this reflex was mediated by airway nerves. Three-dimensional (3-D) confocal imaging of tracheas collected from 16-wk-old offspring showed that both epithelial sensory innervation and substance P expression were increased in the offspring of HFD-fed dams compared with offspring of RD-fed dams. For the first time, we show that maternal high-fat diet increases airway sensory innervation in offspring, leading to reflex airway hyperresponsiveness.NEW & NOTEWORTHY Our study reveals a novel potential mechanism, by which maternal high-fat diet increases the risk and severity of asthma in offspring. We found that exposure to maternal high-fat diet in mice leads to hyperinnervation of airway sensory nerves and increased reflex bronchoconstriction in offspring fed a regular diet only. These findings have important clinical implications and provide new insights into the pathophysiology of asthma, highlighting the need for preventive strategies in this patient population.
Collapse
Affiliation(s)
- Gina N Calco
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Yem J Alharithi
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Kayla R Williams
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - David B Jacoby
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, United States
| | - Zhenying Nie
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
7
|
Liu J, Zhang M, Deng D, Zhu X. The function, mechanisms, and clinical applications of metformin: potential drug, unlimited potentials. Arch Pharm Res 2023; 46:389-407. [PMID: 36964307 DOI: 10.1007/s12272-023-01445-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/08/2023] [Indexed: 03/26/2023]
Abstract
Metformin has been used clinically for more than 60 years. As time goes by, more and more miraculous effects of metformin beyond the clinic have been discovered and discussed. In addition to the clinically approved hypoglycemic effect, it also has a positive metabolic regulation effect on the human body that cannot be ignored. Such as anti-cancer, anti-aging, brain repair, cardiovascular protection, gastrointestinal regulation, hair growth and inhibition of thyroid nodules, and other nonclinical effects. Metformin affects almost the entire body in the situation taking it over a long period, and the preventive effects of metformin in addition to treating diabetes are also beginning to be recommended in some guidelines. This review is mainly composed of four parts: the development history of metformin, the progress of clinical efficacy, the nonclinical efficacy of metformin, and the consideration and prospect of its application.
Collapse
Affiliation(s)
- Jianhong Liu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, China
| | - Dan Deng
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China.
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital (Shenzhen Institute of Translational Medicine), Shenzhen, China.
| |
Collapse
|
8
|
Nie Z, Fryer AD, Jacoby DB, Drake MG. Mechanisms of Obesity-related Asthma: Is Insulin Getting on Your Nerves? Am J Respir Crit Care Med 2023; 207:109-110. [PMID: 36029301 PMCID: PMC9952872 DOI: 10.1164/rccm.202207-1419le] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Zhenying Nie
- Oregon Health and Science UniversityPortland, Oregon
| | | | | | | |
Collapse
|
9
|
Bodine SC, Brooks HL, Coller HA, Domingos AI, Frey MR, Goodman BE, Kleyman TR, Lindsey ML, Morty RE, Petersen OH, Ramírez JM, Schaefer L, Thomsen MB, Yosten GLC. An American Physiological Society cross-journal Call for Papers on "The Physiology of Obesity". Am J Physiol Lung Cell Mol Physiol 2022; 323:L593-L602. [PMID: 36223636 PMCID: PMC9665636 DOI: 10.1152/ajplung.00335.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sue C Bodine
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Hilary A Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California
- Molecular Biology Institute, University of California, Los Angeles, California
- Department of Biological Chemistry at the David Geffen School of Medicine, University of California, Los Angeles, California
| | - Ana I Domingos
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mark R Frey
- The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California
| | - Barbara E Goodman
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Merry L Lindsey
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee
- Research Service, Nashville VA Medical Center, Nashville, Tennessee
| | - Rory E Morty
- Department of Translational Pulmonology and the Translational Lung Research Center Heidelberg, University Hospital Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ole H Petersen
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jan-Marino Ramírez
- Department of Neurological Surgery, University of Washington Medical Center, Seattle, Washington
- Center on Human Development and Disability, University of Washington, Seattle, Washington
- Center for Integrative Brain Research at the Seattle Children's Research Institute, University of Washington, Seattle, Washington
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Morten B Thomsen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
10
|
Calco GN, Maung JN, Jacoby DB, Fryer AD, Nie Z. Insulin increases sensory nerve density and reflex bronchoconstriction in obese mice. JCI Insight 2022; 7:e161898. [PMID: 36107629 PMCID: PMC9714782 DOI: 10.1172/jci.insight.161898] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity-induced asthma responds poorly to all current pharmacological interventions, including steroids, suggesting that classic, eosinophilic inflammation is not a mechanism. Since insulin resistance and hyperinsulinemia are common in obese individuals and associated with increased risk of asthma, we used diet-induced obese mice to study how insulin induces airway hyperreactivity. Inhaled 5-HT or methacholine induced dose-dependent bronchoconstriction that was significantly potentiated in obese mice. Cutting the vagus nerves eliminated bronchoconstriction in both obese and nonobese animals, indicating that it was mediated by a neural reflex. There was significantly greater density of airway sensory nerves in obese compared with nonobese mice. Deleting insulin receptors on sensory nerves prevented the increase in sensory nerve density and prevented airway hyperreactivity in obese mice with hyperinsulinemia. Our data demonstrate that high levels of insulin drives obesity-induced airway hyperreactivity by increasing sensory innervation of the airways. Therefore, pharmacological interventions to control metabolic syndrome and limit reflex-mediated bronchoconstriction may be a more effective approach to reduce asthma exacerbations in obese and patients with asthma.
Collapse
|
11
|
Gu C, Loube J, Lee R, Bevans-Fonti S, Wu TD, Barmine JH, Jun JC, McCormack MC, Hansel NN, Mitzner W, Polotsky VY. Metformin Alleviates Airway Hyperresponsiveness in a Mouse Model of Diet-Induced Obesity. Front Physiol 2022; 13:883275. [PMID: 35574481 PMCID: PMC9098833 DOI: 10.3389/fphys.2022.883275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Obese asthma is a unique phenotype of asthma characterized by non-allergic airway hyperresponsiveness (AHR) and inflammation which responds poorly to standard asthma therapy. Metformin is an oral hypoglycemic drug with insulin-sensitizing and anti-inflammatory properties. The objective of the current study was to test the effect of metformin on AHR in a mouse model of diet-induced obesity (DIO). We fed 12-week-old C57BL/6J DIO mice with a high fat diet for 8 weeks and treated them with either placebo (control, n = 10) or metformin (n = 10) added in drinking water (300 mg/kg/day) during the last 2 weeks of the experiment. We assessed AHR, metabolic profiles, and inflammatory markers after treatments. Metformin did not affect body weight or fasting blood glucose, but significantly reduced serum insulin (p = 0.0117). Metformin reduced AHR at 30 mg/ml of methacholine challenge (p = 0.0052) without affecting baseline airway resistance. Metformin did not affect circulating white blood cell counts or lung cytokine mRNA expression, but modestly decreased circulating platelet count. We conclude that metformin alleviated AHR in DIO mice. This finding suggests metformin has the potential to become an adjuvant pharmacological therapy in obese asthma.
Collapse
Affiliation(s)
- Chenjuan Gu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jeff Loube
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Rachel Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tianshi David Wu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Baylor College of Medicine and the Center for Innovations in Quality, Effectiveness, and Safety, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Jessica H. Barmine
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan C. Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Meredith C. McCormack
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Vsevolod Y. Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Vsevolod Y. Polotsky,
| |
Collapse
|