1
|
Gao ZG, Haddad M, Jacobson KA. A 2B adenosine receptor signaling and regulation. Purinergic Signal 2024:10.1007/s11302-024-10025-y. [PMID: 38833181 DOI: 10.1007/s11302-024-10025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The A2B adenosine receptor (A2BR) is one of the four adenosine-activated G protein-coupled receptors. In addition to adenosine, protein kinase C (PKC) was recently found to activate the A2BR. The A2BR is coupled to both Gs and Gi, as well as Gq proteins in some cell types. Many primary cells and cell lines, such as bladder and breast cancer, bronchial smooth muscle, skeletal muscle, and fat cells, express the A2BR endogenously at high levels, suggesting its potentially important role in asthma, cancer, diabetes, and other conditions. The A2BR has been characterized as both pro- and anti-inflammatory, inducing cell type-dependent secretion of IL-6, IL-8, and IL-10. Theophylline and enprofylline have long been used for asthma treatment, although it is still not entirely clear if their A2BR antagonism contributes to their therapeutic effects or side effects. The A2BR is required in ischemic cardiac preconditioning by adenosine. Both A2BR and protein kinase C (PKC) contribute to cardioprotection, and both modes of A2BR signaling can be blocked by A2BR antagonists. Inhibitors of PKC and A2BR are in clinical cancer trials. Sulforaphane and other isothiocyanates from cruciferous vegetables such as broccoli and cauliflower have been reported to inhibit A2BR signaling via reaction with an intracellular A2BR cysteine residue (C210). A full, A2BR-selective agonist, critical to elucidate many controversial roles of the A2BR, is still not available, although agonist-bound A2BR structures have recently been reported.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| | - Mansour Haddad
- Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Kawaguchi K, Tsuji S, Hirao T, Liu Y, Boshi Z, Asano S. Adenosine Stimulates Beating of Neonatal Brain-Derived Cilia through Adenosine A 2B Receptor on the Cilia and Activation of Protein Kinase A Pathway. Biol Pharm Bull 2024; 47:1113-1118. [PMID: 38839362 DOI: 10.1248/bpb.b23-00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Motile cilia in the ependymal cells that line the brain ventricles play pivotal roles in cerebrospinal fluid (CSF) flow in well-defined directions. However, the substances and pathways which regulate their beating have not been well studied. Here, we used primary cultured cells derived from neonatal mouse brain that possess motile cilia and found that adenosine (ADO) stimulates ciliary beating by increasing the ciliary beat frequency (CBF) in a concentration-dependent manner, with the ED50 value being 5 µM. Ciliary beating stimulated by ADO was inhibited by A2B receptor (A2BR) antagonist MRS1754 without any inhibition by antagonists of other ADO receptor subtypes. The expression of A2BR on the cilia was also confirmed by immunofluorescence. The values of CBF were also increased by forskolin, which is an activator of adenylate cyclase, whereas they were not further increased by the addition of ADO. Furthermore, ciliary beating was not stimulated by ADO in the presence of a protein kinase A (PKA) inhibitors. These results altogether suggest that ADO stimulates ciliary beating through A2BR on the cilia, and activation of PKA.
Collapse
Affiliation(s)
- Kotoku Kawaguchi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Suzuka Tsuji
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Takuya Hirao
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yixin Liu
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Zhao Boshi
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Shinji Asano
- Department of Molecular Physiology, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
3
|
Adenosine and ATPγS protect against bacterial pneumonia-induced acute lung injury. Sci Rep 2020; 10:18078. [PMID: 33093565 PMCID: PMC7581771 DOI: 10.1038/s41598-020-75224-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Lipopolysaccharide (LPS), a component of the outer membrane of gram-negative bacteria, disrupts the alveolar-capillary barrier, triggering pulmonary vascular leak thus inducing acute lung injury (ALI). Extracellular purines, adenosine and ATP, protected against ALI induced by purified LPS. In this study, we investigated whether these purines can impact vascular injury in more clinically-relevant E.coli (non-sterile LPS) murine ALI model. Mice were inoculated with live E. coli intratracheally (i.t.) with or without adenosine or a non-hydrolyzable ATP analog, adenosine 5'-(γ-thio)-triphosphate (ATPγS) added intravenously (i.v.). After 24 h of E. coli treatment, we found that injections of either adenosine or ATPγS 15 min prior or adenosine 3 h after E.coli insult significantly attenuated the E.coli-mediated increase in inflammatory responses. Furthermore, adenosine prevented weight loss, tachycardia, and compromised lung function in E. coli-exposed mice. Accordingly, treatment with adenosine or ATPγS increased oxygen saturation and reduced histopathological signs of lung injury in mice exposed to E. coli. Lastly, lung-targeting gene delivery of adenosine or ATPγS downstream effector, myosin phosphatase, significantly attenuated the E. coli-induced compromise of lung function. Collectively, our study has demonstrated that adenosine or ATPγS mitigates E. coli-induced ALI in mice and may be useful as an adjuvant therapy in future pre-clinical studies.
Collapse
|
4
|
Lee L, Ostrowski LE. Motile cilia genetics and cell biology: big results from little mice. Cell Mol Life Sci 2020; 78:769-797. [PMID: 32915243 DOI: 10.1007/s00018-020-03633-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Our understanding of motile cilia and their role in disease has increased tremendously over the last two decades, with critical information and insight coming from the analysis of mouse models. Motile cilia form on specific epithelial cell types and typically beat in a coordinated, whip-like manner to facilitate the flow and clearance of fluids along the cell surface. Defects in formation and function of motile cilia result in primary ciliary dyskinesia (PCD), a genetically heterogeneous disorder with a well-characterized phenotype but no effective treatment. A number of model systems, ranging from unicellular eukaryotes to mammals, have provided information about the genetics, biochemistry, and structure of motile cilia. However, with remarkable resources available for genetic manipulation and developmental, pathological, and physiological analysis of phenotype, the mouse has risen to the forefront of understanding mammalian motile cilia and modeling PCD. This is evidenced by a large number of relevant mouse lines and an extensive body of genetic and phenotypic data. More recently, application of innovative cell biological techniques to these models has enabled substantial advancement in elucidating the molecular and cellular mechanisms underlying the biogenesis and function of mammalian motile cilia. In this article, we will review genetic and cell biological studies of motile cilia in mouse models and their contributions to our understanding of motile cilia and PCD pathogenesis.
Collapse
Affiliation(s)
- Lance Lee
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA. .,Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, Sioux Falls, SD, USA.
| | - Lawrence E Ostrowski
- Marsico Lung Institute/Cystic Fibrosis Center and Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
5
|
Joskova M, Mokry J, Franova S. Respiratory Cilia as a Therapeutic Target of Phosphodiesterase Inhibitors. Front Pharmacol 2020; 11:609. [PMID: 32435198 PMCID: PMC7218135 DOI: 10.3389/fphar.2020.00609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 11/30/2022] Open
Abstract
Mucociliary clearance is an essential airway defense mechanism dependent predominantly on the proper ciliary function and mucus rheology. The crucial role of cilia is evident in `a variety of respiratory diseases, as the ciliary dysfunction is associated with a progressive decline in lung function over time. The activity of cilia is under supervision of multiple physiological regulators, including second messengers. Their role is to enable a movement in coordinated metachronal waves at certain beat frequency. Ciliary function can be modulated by various stimuli, including agents from the group of beta2 agonists, cholinergic drugs, and adenosine triphosphate (ATP). They trigger cilia to move faster in response to elevated cytoplasmic Ca2+ originated from intracellular sources or replenished from extracellular space. Well-known cilia-stimulatory effect of Ca2+ ions can be abolished or even reversed by modulating the phosphodiesterase (PDE)-mediated breakdown of cyclic adenosine monophosphate (cAMP) since the overall change in ciliary beating has been dependent on the balance between Ca2+ ions and cAMP. Moreover, in chronic respiratory diseases, high ATP levels may contribute to cAMP hydrolysis and thus to a decrease in the ciliary beat frequency (CBF). The role of PDE inhibitors in airway cilia-driven transport may help in prevention of progressive loss of pulmonary function often observed despite current therapy. Furthermore, administration of selective PDE inhibitors by inhalation lowers the risk of their systemic effects. Based on this review we may conclude that selective (PDE1, PDE4) or dual PDE inhibitors (PDE3/4) increase the intracellular level of cyclic nucleotides in airway epithelial cells and thus may be an important target in the development of new inhaled mucokinetic agents. Further research is required to provide evidence of their effectiveness and feasibility regarding their cilia-modulating properties.
Collapse
Affiliation(s)
- Marta Joskova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Juraj Mokry
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
6
|
Wang M, Guo X, Zhao H, Lv J, Wang H, An Y. Adenosine A 2B receptor activation stimulates alveolar fluid clearance through alveolar epithelial sodium channel via cAMP pathway in endotoxin-induced lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 318:L787-L800. [PMID: 32129084 DOI: 10.1152/ajplung.00195.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Clinical studies have established that the capacity of removing excess fluid from alveoli is impaired in most patients with acute respiratory distress syndrome. Impaired alveolar fluid clearance (AFC) correlates with poor outcomes. Adenosine A2B receptor (A2BAR) has the lowest affinity with adenosine among four adenosine receptors. It is documented that A2BAR can activate adenylyl cyclase (AC) resulting in elevated cAMP. Based on the understanding that cAMP is a key regulator of epithelial sodium channel (ENaC), which is the limited step in sodium transport, we hypothesized that A2BAR signaling may affect AFC in acute lung injury (ALI) through regulating ENaC via cAMP, thus attenuating pulmonary edema. To address this, we utilized pharmacological approaches to determine the role of A2BAR in AFC in rats with endotoxin-induced lung injury and further focused on the mechanisms in vitro. We observed elevated pulmonary A2BAR level in rats with ALI and the similar upregulation in alveolar epithelial cells exposed to LPS. A2BAR stimulation significantly attenuated pulmonary edema during ALI, an effect that was associated with enhanced AFC and increased ENaC expression. The regulatory effects of A2BAR on ENaC-α expression were further verified in cultured alveolar epithelial type II (ATII) cells. More importantly, activation of A2BAR dramatically increased amiloride-sensitive Na+ currents in ATII cells. Moreover, we observed that A2BAR activation stimulated cAMP accumulation, whereas the cAMP inhibitor abolished the regulatory effect of A2BAR on ENaC-α expression, suggesting that A2BAR activation regulates ENaC-α expression via cAMP-dependent mechanism. Together, these findings suggest that signaling through alveolar epithelial A2BAR promotes alveolar fluid balance during endotoxin-induced ALI by regulating ENaC via cAMP pathway, raising the hopes for treatment of pulmonary edema due to ALI.
Collapse
Affiliation(s)
- Mengnan Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Xiaoxia Guo
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Jie Lv
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Huixia Wang
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| | - Youzhong An
- Department of Critical Care Medicine, Peking University People's Hospital, Beijing, China
| |
Collapse
|
7
|
Bhalla M, Hui Yeoh J, Lamneck C, Herring SE, Tchalla EYI, Heinzinger LR, Leong JM, Bou Ghanem EN. A1 adenosine receptor signaling reduces Streptococcus pneumoniae adherence to pulmonary epithelial cells by targeting expression of platelet-activating factor receptor. Cell Microbiol 2019; 22:e13141. [PMID: 31709673 DOI: 10.1111/cmi.13141] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/24/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
Abstract
Extracellular adenosine production is crucial for host resistance against Streptococcus pneumoniae (pneumococcus) and is thought to affect antibacterial immune responses by neutrophils. However, whether extracellular adenosine alters direct host-pathogen interaction remains unexplored. An important determinant for lung infection by S. pneumoniae is its ability to adhere to the pulmonary epithelium. Here we explored whether extracellular adenosine can directly impact bacterial adherence to lung epithelial cells. We found that signaling via A1 adenosine receptor significantly reduced the ability of pneumococci to bind human pulmonary epithelial cells. A1 receptor signaling blocked bacterial binding by reducing the expression of platelet-activating factor receptor, a host protein used by S. pneumoniae to adhere to host cells. In vivo, A1 was required for control of pneumococcal pneumonia as inhibiting it resulted in increased host susceptibility. As S. pneumoniae remain a leading cause of community-acquired pneumonia in the elderly, we explored the role of A1 in the age-driven susceptibility to infection. We found no difference in A1 pulmonary expression in young versus old mice. Strikingly, triggering A1 signaling boosted host resistance of old mice to S. pneumoniae pulmonary infection. This study demonstrates a novel mechanism by which extracellular adenosine modulates resistance to lung infection by targeting bacterial-host interactions.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Jun Hui Yeoh
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Claire Lamneck
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Sydney E Herring
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Essi Y I Tchalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - Lauren R Heinzinger
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| | - John M Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts
| | - Elsa N Bou Ghanem
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York
| |
Collapse
|
8
|
Naji M, Drögemüller C, Mészáros G, Sölkner J. Deviation Patterns of Observed and Expected Haplotype Blocks Associated with Potential Recessive Disorders in Tyrol Grey Cattle. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2019. [DOI: 10.11118/actaun201967051183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
9
|
Turner MJ, Matthes E, Billet A, Ferguson AJ, Thomas DY, Randell SH, Ostrowski LE, Abbott-Banner K, Hanrahan JW. The dual phosphodiesterase 3 and 4 inhibitor RPL554 stimulates CFTR and ciliary beating in primary cultures of bronchial epithelia. Am J Physiol Lung Cell Mol Physiol 2015; 310:L59-70. [PMID: 26545902 DOI: 10.1152/ajplung.00324.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/30/2015] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF), a genetic disease caused by mutations in the CFTR gene, is a life-limiting disease characterized by chronic bacterial airway infection and severe inflammation. Some CFTR mutants have reduced responsiveness to cAMP/PKA signaling; hence, pharmacological agents that elevate intracellular cAMP are potentially useful for the treatment of CF. By inhibiting cAMP breakdown, phosphodiesterase (PDE) inhibitors stimulate CFTR in vitro and in vivo. Here, we demonstrate that PDE inhibition by RPL554, a drug that has been shown to cause bronchodilation in asthma and chronic obstructive pulmonary disease (COPD) patients, stimulates CFTR-dependent ion secretion across bronchial epithelial cells isolated from patients carrying the R117H/F508del CF genotype. RPL554-induced CFTR activity was further increased by the potentiator VX-770, suggesting an additional benefit by the drug combination. RPL554 also increased cilia beat frequency in primary human bronchial epithelial cells. The results indicate RPL554 may increase mucociliary clearance through stimulation of CFTR and increasing ciliary beat frequency and thus could provide a novel therapeutic option for CF.
Collapse
Affiliation(s)
- Mark J Turner
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada;
| | - Elizabeth Matthes
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Arnaud Billet
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada
| | - Amy J Ferguson
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - David Y Thomas
- McGill CF Translational Research Centre, Montreal, Canada; Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Canada
| | - Scott H Randell
- Department of Cell Biology and Physiology and the Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence E Ostrowski
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | | | - John W Hanrahan
- Department of Physiology, McIntyre Medical Sciences Building, McGill University, Montreal, Canada; McGill CF Translational Research Centre, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
10
|
Wyatt TA, Poole JA, Nordgren TM, DeVasure JM, Heires AJ, Bailey KL, Romberger DJ. cAMP-dependent protein kinase activation decreases cytokine release in bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2014; 307:L643-51. [PMID: 25150062 DOI: 10.1152/ajplung.00373.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lung injury caused by inhalation of dust from swine-concentrated animal-feeding operations (CAFO) involves the release of inflammatory cytokine interleukin 8 (IL-8), which is mediated by protein kinase C-ε (PKC-ε) in airway epithelial cells. Once activated by CAFO dust, PKC-ε is responsible for slowing cilia beating and reducing cell migration for wound repair. Conversely, the cAMP-dependent protein kinase (PKA) stimulates contrasting effects, such as increased cilia beating and an acceleration of cell migration for wound repair. We hypothesized that a bidirectional mechanism involving PKA and PKC regulates epithelial airway inflammatory responses. To test this hypothesis, primary human bronchial epithelial cells and BEAS-2B cells were treated with hog dust extract (HDE) in the presence or absence of cAMP. PKC-ε activity was significantly reduced in cells that were pretreated for 1 h with 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) before exposure to HDE (P < 0.05). HDE-induced IL-6, and IL-8 release was significantly lower in cells that were pretreated with 8-Br-cAMP (P < 0.05). To exclude exchange protein activated by cAMP (EPAC) involvement, cells were pretreated with either 8-Br-cAMP or 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-CPT-2Me-cAMP) (EPAC agonist). 8-CPT-2Me-cAMP did not activate PKA and did not reduce HDE-stimulated IL-6 release. In contrast, 8-Br-cAMP decreased HDE-stimulated tumor necrosis factor (TNF)-α-converting enzyme (TACE; ADAM-17) activity and subsequent TNF-α release (P < 0.001). 8-Br-cAMP also blocked HDE-stimulated IL-6 and keratinocyte-derived chemokine release in precision-cut mouse lung slices (P < 0.05). These data show bidirectional regulation of PKC-ε via a PKA-mediated inhibition of TACE activity resulting in reduced PKC-ε-mediated release of IL-6 and IL-8.
Collapse
Affiliation(s)
- Todd A Wyatt
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska; Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Jill A Poole
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Tara M Nordgren
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Jane M DeVasure
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Art J Heires
- Pulmonary, Critical Care, Sleep and Allergy Division, Department of Internal Medicine, Nebraska Medical Center, Omaha, Nebraska
| | - Kristina L Bailey
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| | - Debra J Romberger
- VA Nebraska-Western Iowa Health Care System Research Service, Department of Veterans Affairs Medical Center, Omaha, Nebraska; Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
11
|
Milara J, Armengot M, Bañuls P, Tenor H, Beume R, Artigues E, Cortijo J. Roflumilast N-oxide, a PDE4 inhibitor, improves cilia motility and ciliated human bronchial epithelial cells compromised by cigarette smoke in vitro. Br J Pharmacol 2012; 166:2243-62. [PMID: 22385203 DOI: 10.1111/j.1476-5381.2012.01929.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mucociliary malfunction occurs in chronic obstructive pulmonary disease (COPD) and compromised functions of ciliated bronchial epithelial cells may contribute to this. Cigarette smoke, a major risk factor for COPD, impairs ciliary beat frequency (CBF). cAMP augments CBF. This in vitro study addressed, in differentiated, primary human bronchial epithelial cells, whether roflumilast N-oxide, a PDE4 inhibitor, (i) augments CBF; (ii) prevents the reduction in CBF induced by cigarette smoke extract (CSE); and (iii) protects against the loss of the ciliated phenotype following long-term CSE exposure. EXPERIMENTAL APPROACH Air-liquid interface cultured human bronchial epithelial cells were incubated with roflumilast N-oxide and exposed to CSE. CBF was assessed by digital high speed video microscopy (DHSV). Ciliated cells were characterized by β-tubulin IV staining and analyses of Foxj1 and Dnai2 mRNA and protein (real-time quantitative PCR, Western blotting). KEY RESULTS Roflumilast N-oxide concentration-dependently triggered a rapid and persistent increase in CBF and reversed the decrease in CBF following CSE. Long-term incubation of bronchial epithelial cells with CSE resulted in a loss in ciliated cells associated with reduced expression of the ciliated cell markers Foxj1 and Dnai2. The PDE4 inhibitor prevented this loss in the ciliated cell phenotype and the compromised Foxj1 and Dnai2 expression. The enhanced release of IL-13 following CSE, a cytokine that diminishes the proportion of ciliated cells and in parallel, reduces Foxj1 and Dnai2, was reversed by roflumilast N-oxide. CONCLUSION AND IMPLICATIONS Roflumilast N-oxide protected differentiated human bronchial epithelial cells from reduced CBF and loss of ciliated cells following CSE.
Collapse
Affiliation(s)
- J Milara
- Research Unit, University General Hospital Consortium, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
12
|
Raju SV, Wang G. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia. PLoS One 2012; 7:e32112. [PMID: 22442662 PMCID: PMC3307712 DOI: 10.1371/journal.pone.0032112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 12/21/2022] Open
Abstract
Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC)) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B) adenosine receptor (A(2B)AR), largely abolished the adenosine-stimulated chloride transport, suggesting that A(2B)AR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2B)AR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.
Collapse
Affiliation(s)
- Sammeta V. Raju
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Guoshun Wang
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
13
|
Gessi S, Merighi S, Fazzi D, Stefanelli A, Varani K, Borea PA. Adenosine receptor targeting in health and disease. Expert Opin Investig Drugs 2011; 20:1591-609. [PMID: 22017198 DOI: 10.1517/13543784.2011.627853] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The adenosine receptors A(1), A(2A), A(2B) and A(3) are important and ubiquitous mediators of cellular signaling that play vital roles in protecting tissues and organs from damage. In particular, adenosine triggers tissue protection and repair by different receptor-mediated mechanisms, including increasing the oxygen supply:demand ratio, pre-conditioning, anti-inflammatory effects and the stimulation of angiogenesis. AREAS COVERED The state of the art of the role of adenosine receptors which have been proposed as targets for drug design and discovery, in health and disease, and an overview of the ligands for these receptors in clinical development. EXPERT OPINION Selective ligands of A(1), A(2A), A(2B) and A(3) adenosine receptors are likely to find applications in the treatment of pain, ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The aim of this review is to provide an overview of the present knowledge regarding the role of these adenosine receptors in health and disease.
Collapse
Affiliation(s)
- Stefania Gessi
- University of Ferrara, Department of Clinical and Experimental Medicine, Pharmacology Section, 44100 Ferrara, Italy
| | | | | | | | | | | |
Collapse
|