1
|
Esther CR, O'Neal WK, Alexis NE, Koch AL, Cooper CB, Barjaktarevic I, Raffield LM, Bowler RP, Comellas AP, Peters SP, Hastie AT, Curtis JL, Ronish B, Ortega VE, Wells JM, Halper-Stromberg E, Rennard SI, Boucher RC. Prolonged, physiologically relevant nicotine concentrations in the airways of smokers. Am J Physiol Lung Cell Mol Physiol 2023; 324:L32-L37. [PMID: 36342131 PMCID: PMC9829458 DOI: 10.1152/ajplung.00038.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotine from cigarette smoke is a biologically active molecule that has pleiotropic effects in the airway, which could play a role in smoking-induced lung disease. However, whether nicotine and its metabolites reach sustained, physiologically relevant concentrations on airway surfaces of smokers is not well defined. To address these issues, concentrations of nicotine, cotinine, and hydroxycotinine were measured by mass spectrometry (MS) in supernatants of induced sputum obtained from participants in the subpopulations and intermediate outcome measures in COPD study (SPIROMICS), an ongoing observational study that included never smokers, former smokers, and current smokers with and without chronic obstructive pulmonary disease (COPD). A total of 980 sputum supernatants were analyzed from 77 healthy never smokers, 494 former smokers (233 with COPD), and 396 active smokers (151 with COPD). Sputum nicotine, cotinine, and hydroxycotinine concentrations corresponded to self-reported smoking status and were strongly correlated to urine measures. A cutoff of ∼8-10 ng/mL of sputum cotinine distinguished never smokers from active smokers. Accounting for sample dilution during processing, active smokers had airway nicotine concentrations in the 70-850 ng/mL (∼0.5-5 µM) range, and concentrations remained elevated even in current smokers who had not smoked within 24 h. This study demonstrates that airway nicotine and its metabolites are readily measured in sputum supernatants and can serve as biological markers of smoke exposure. In current smokers, nicotine is present at physiologically relevant concentrations for prolonged periods, supporting a contribution to cigarette-induced airway disease.
Collapse
Affiliation(s)
- Charles R Esther
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Neil E Alexis
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Abigail L Koch
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christopher B Cooper
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Igor Barjaktarevic
- Department of Medicine and Physiology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Laura M Raffield
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Russel P Bowler
- Department of Medicine, National Jewish Health, Denver, Colorado
| | - Alejandro P Comellas
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, Iowa
| | - Stephen P Peters
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Annette T Hastie
- Department of Internal Medicine, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Jeffrey L Curtis
- Division of Pulmonary and Critical Care Medicine, University of Michigan Ann Arbor, Ann Arbor, Michigan
- Medical Service, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, Michigan
| | - Bonnie Ronish
- Occupational and Environmental Medicine, University of Washington, Seattle, Washington
| | - Victor E Ortega
- Division of Respiratory Medicine, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona
| | - J Michael Wells
- Division of Pulmonary Allergy and Critical Care, Lung Health Center, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Stephen I Rennard
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
2
|
Zhuang R, Yang X, Cai W, Xu R, Lv L, Sun Y, Guo Y, Ni J, Zhao G, Lu Z. MCTR3 reduces LPS-induced acute lung injury in mice via the ALX/PINK1 signaling pathway. Int Immunopharmacol 2021; 90:107142. [PMID: 33268042 DOI: 10.1016/j.intimp.2020.107142] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI), a common respiratory distress syndrome in the intensive care unit (ICU), is mainly caused by severe infection and shock. Epithelial and capillary endothelial cell injury, interstitial edema and inflammatory cell infiltration are the main pathological changes observed in ALI animal models. Maresin conjugates in tissue regeneration (MCTR) are a new family of anti-inflammatory proteins. MCTR3 is a key enhancer of the host response, that promotes tissue regeneration and reduces infection; however, its role and mechanism in ALI are still unclear. The purpose of our research was to assess the protective effects of MCTR3 against ALI and its underlying mechanism. The work in this study was conducted in a murine model and the pulmonary epithelial cell line MLE-12. In vivo, MCTR3 (2 ng/g) was given 2 h after lipopolysaccharide (LPS) injection. We found that the treatment of mice with LPS-induced ALI with MCTR3 significantly reduced the cell number and protein levels in the bronchoalveolar lavage fluid (BALF); decreased the production of inflammatory cytokines; alleviated oxidative stress and cell apoptosis, consequently decreased lung injury; and restored pulmonary function. These protective effects of MCTR3 were dependent on down-regulation of the PTEN-induced putative kinase 1 (PINK1) pathway. Additionally, in MLE-12 cells stimulated with LPS, MCTR3 inhibited cell death, inflammatory cytokine levels and oxidative stress via the ALX/PINK1 signaling pathway. Thus, we conclude that MCTR3 protected against LPS-induced ALI partly through inactivation of the ALX/PINK1 mediated mitophagy pathway.
Collapse
Affiliation(s)
- Rong Zhuang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiyu Yang
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenchao Cai
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rongxiao Xu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang Lv
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yingying Sun
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yayong Guo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Ni
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhongqiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Jia M, Zhang Y, Zhang H, Qin Q, Xu CB. Cigarette Smoke Particles-Induced Airway Hyperreactivity in Vivo and in Vitro. Biol Pharm Bull 2019; 42:703-711. [PMID: 31061312 DOI: 10.1248/bpb.b18-00736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cigarette smoke is a well-known strong risk factor for inducing airway hyperreactivity (AHR), but the underlying molecular mechanisms are not fully understood. In the present study, mouse in-vivo and in-vitro models were used to study effects of dimethyl sulfoxide (DMSO)-extracted cigarette smoke particles (DSP) on the airway, and to explore the underlying molecular mechanisms that are involved in DSP-induced AHR. In mouse in-vivo model, DSP (0.75, 1.5 or 3 µL/mL) was administered intranasally daily for 7 d. At the end of this period, lung functions were measured with flexiVent™. The results showed that the mice exhibited AHR in a dose-dependent manner following methacholine inhalation in vivo. In mouse in-vitro organ culture model, exposure of mouse tracheal segments to DSP (0.1 µL/mL) with or without the following pharmacological inhibitors: specific c-Jun-N-terminal kinase (JNK) inhibitor SP600125 (10 µM) or the anti-inflammatory drug dexamethasone (1 µM). DSP-induced bradykinin receptor-mediated airway contraction with increased mRNA and protein expressions for bradykinin B1 and B2 receptors could be significantly reduced by SP600125 or dexamethasone. In conclusion, the present study demonstrates that DSP could induce AHR in vivo and in vitro. In addition to this, the upregulation of bradykinin receptors in airway is most likely one of the underlying molecular mechanisms involved.
Collapse
Affiliation(s)
- Min Jia
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
- Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University
| | - Yaping Zhang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
| | - Han Zhang
- College of Pharmacy, Xi'an Medical University
| | - Qiaohong Qin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
| | - Cang-Bao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi'an Medical University
- Division of Experimental Vascular Research, Institute of Clinical Science in Lund, Lund University
| |
Collapse
|