1
|
Gu WJ, Shi R, Cen Y, Ye YY, Xie XD, Yin HY. Association Between Arterial Hyperoxia and Mortality in Pediatric and Adult Patients Undergoing Extracorporeal Membrane Oxygenation: A Systematic Review and Meta-Analysis. Anesth Analg 2024:00000539-990000000-01086. [PMID: 39705180 DOI: 10.1213/ane.0000000000007348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
BACKGROUND In patients receiving extracorporeal membrane oxygenation (ECMO) support, the association between arterial hyperoxia and outcomes is unclear. We performed a systematic review and meta-analysis to determine the association between arterial Po2 (Pao2) and mortality in patients with ECMO. METHODS The meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement and registered in International Prospective Register of Systematic Reviews (PROSPERO; CRD42023467361). We systematically searched PubMed and Embase databases up to September 2023 for randomized trials or observational studies that investigated the association between Pao2 and mortality in pediatric and adult patients receiving venovenous ECMO (VV-ECMO), venoarterial ECMO (VA-ECMO), and extracorporeal cardiopulmonary resuscitation (ECPR). The predefined outcome was 28-day mortality. We synthesized the data using a random-effects model, calculating odds ratios (OR) and corresponding 95% confidence intervals (CI). RESULTS Thirteen cohort studies (17,766 participants) were included. All studies used categorical Pao2 cutoff, with varying thresholds ranging from ≥100 mm Hg to ≥300 mm Hg. When compared with patients with normoxia, elevated Pao2 levels at all studied thresholds were consistently associated with increased mortality (≥300 mm Hg: OR 1.56, 95% CI, 1.31-1.85, P < .01; ≥200 mm Hg: OR 1.43, 95% CI, 1.10-1.87, P < .01; ≥150 mm Hg: OR 1.51, 95% CI, 1.15-1.98, P < .01; and ≥100 mm Hg: OR 1.44, 95% CI, 1.03-2.02, P = .03). A sensitivity analysis focusing on studies reporting adjusted OR yielded similar results. We observed this association in both adult and pediatric populations. CONCLUSIONS In critically ill patients on VV- or VA-ECMO, increased Pao2 values were associated with increased 28-day mortality in ECMO patients. Our results should be interpreted with caution given observational nature of included studies. Further randomized trials are warranted to validate these results.
Collapse
Affiliation(s)
- Wan-Jie Gu
- From the Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Rui Shi
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Cen
- From the Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ying-Ying Ye
- From the Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xu-Dong Xie
- From the Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hai-Yan Yin
- From the Department of Intensive Care Unit, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Smith CJ, Hodge D, Harrison FE, Roberson SW. The Pathophysiology and Biomarkers of Delirium. Semin Neurol 2024; 44:720-731. [PMID: 39419070 PMCID: PMC11622424 DOI: 10.1055/s-0044-1791666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Delirium is a major disturbance in the mental state characterized by fluctuations in arousal, deficits in attention, distorted perception, and disruptions in memory and cognitive processing. Delirium affects approximately 18% to 25% of hospital inpatients, with even higher rates observed during critical illness. To develop therapies to shorten the duration and limit the adverse effects of delirium, it is important to understand the mechanisms underlying its presentation. Neuroimaging modalities such as magnetic resonance imaging (MRI), positron emission tomography, functional MRI, and near-infrared spectroscopy point to global atrophy, white matter changes, and disruptions in cerebral blood flow, oxygenation, metabolism, and connectivity as key correlates of delirium pathogenesis. Electroencephalography demonstrates generalized slowing of normal background activity, with pathologic decreases in variability of oscillatory patterns and disruptions in functional connectivity among specific brain regions. Elevated serum biomarkers of inflammation, including interleukin-6, C-reactive protein, and S100B, suggest a role of dysregulated inflammatory processes and cellular metabolism, particularly in perioperative and sepsis-related delirium. Emerging animal models that can mimic delirium-like clinical states will reveal further insights into delirium pathophysiology. The combination of clinical and basic science methods of exploring delirium shows great promise in elucidating its underlying mechanisms and revealing potential therapeutic targets.
Collapse
Affiliation(s)
- Camryn J. Smith
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
| | - Dasia Hodge
- College of Nursing and Allied Health Sciences, Howard University
| | - Fiona E. Harrison
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN
- Critical Illness, Brain dysfunction, and Survivorship (CIBS) Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Shawniqua Williams Roberson
- Critical Illness, Brain dysfunction, and Survivorship (CIBS) Center, Nashville, TN
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
3
|
Behnke J, Goetz MJ, Holzfurtner L, Korte P, Weiss A, Shahzad T, Wilhelm J, Schermuly RT, Rivetti S, Bellusci S, Ehrhardt H. Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. Am J Physiol Lung Cell Mol Physiol 2024; 327:L694-L711. [PMID: 39316679 PMCID: PMC11563592 DOI: 10.1152/ajplung.00355.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Maurizio J Goetz
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Pauline Korte
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
4
|
Wick KD, Ware LB, Matthay MA. Acute respiratory distress syndrome. BMJ 2024; 387:e076612. [PMID: 39467606 DOI: 10.1136/bmj-2023-076612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The understanding of acute respiratory distress syndrome (ARDS) has evolved greatly since it was first described in a 1967 case series, with several subsequent updates to the definition of the syndrome. Basic science advances and clinical trials have provided insight into the mechanisms of lung injury in ARDS and led to reduced mortality through comprehensive critical care interventions. This review summarizes the current understanding of the epidemiology, pathophysiology, and management of ARDS. Key highlights include a recommended new global definition of ARDS and updated guidelines for managing ARDS on a backbone of established interventions such as low tidal volume ventilation, prone positioning, and a conservative fluid strategy. Future priorities for investigation of ARDS are also highlighted.
Collapse
Affiliation(s)
- Katherine D Wick
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Lorraine B Ware
- Departments of Medicine and Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, University of California San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Shimoda LA, Alvira CM, Bastarache JA, Britt RD, Kuebler WM, Moreira TS, Schmidt EP. Good things: announcing the next round of the American Journal of Physiology-Lung Cellular and Molecular Physiology Editorial Board Fellowship Program. Am J Physiol Lung Cell Mol Physiol 2024; 326:L805-L807. [PMID: 39270076 DOI: 10.1152/ajplung.00133.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/09/2024] Open
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Cristina M Alvira
- Division of Critical Care Medicine, Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University School of Medicine, Stanford, California, United States
| | - Julie A Bastarache
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Rodney D Britt
- Department of Pediatrics, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio, United States
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thiago S Moreira
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Eric P Schmidt
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Shimoda LA. Feeling good: welcoming the new editorial team for American Journal of Physiology-Lung Cellular and Molecular Physiology. Am J Physiol Lung Cell Mol Physiol 2024; 326:L1-L6. [PMID: 38032943 DOI: 10.1152/ajplung.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 12/02/2023] Open
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
7
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Cai L, Rodgers E, Schoenmann N, Raju RP. Advances in Rodent Experimental Models of Sepsis. Int J Mol Sci 2023; 24:9578. [PMID: 37298529 PMCID: PMC10253762 DOI: 10.3390/ijms24119578] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the development of therapeutic strategies for human diseases, preclinical experimental models have a key role. However, the preclinical immunomodulatory therapies developed using rodent sepsis were not successful in human clinical trials. Sepsis is characterized by a dysregulated inflammation and redox imbalance triggered by infection. Human sepsis is simulated in experimental models using methods that trigger inflammation or infection in the host animals, most often mice or rats. It remains unknown whether the characteristics of the host species, the methods used to induce sepsis, or the molecular processes focused upon need to be revisited in the development of treatment methods that will succeed in human clinical trials. Our goal in this review is to provide a survey of existing experimental models of sepsis, including the use of humanized mice and dirty mice, and to show how these models reflect the clinical course of sepsis. We will discuss the strengths and limitations of these models and present recent advances in this subject area. We maintain that rodent models continue to have an irreplaceable role in studies toward discovering treatment methods for human sepsis.
Collapse
Affiliation(s)
- Lun Cai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Elizabeth Rodgers
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Nick Schoenmann
- Department of Emergency Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Raghavan Pillai Raju
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
9
|
Wang N, Lu Y, Zheng J, Liu X. Of mice and men: Laboratory murine models for recapitulating the immunosuppression of human sepsis. Front Immunol 2022; 13:956448. [PMID: 35990662 PMCID: PMC9388785 DOI: 10.3389/fimmu.2022.956448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Prolonged immunosuppression is increasingly recognized as the major cause of late phase and long-term mortality in sepsis. Numerous murine models with different paradigms, such as lipopolysaccharide injection, bacterial inoculation, and barrier disruption, have been used to explore the pathogenesis of immunosuppression in sepsis or to test the efficacy of potential therapeutic agents. Nonetheless, the reproducibility and translational value of such models are often questioned, owing to a highly heterogeneric, complex, and dynamic nature of immunopathology in human sepsis, which cannot be consistently and stably recapitulated in mice. Despite of the inherent discrepancies that exist between mice and humans, we can increase the feasibility of murine models by minimizing inconsistency and increasing their clinical relevance. In this mini review, we summarize the current knowledge of murine models that are most commonly used to investigate sepsis-induced immunopathology, highlighting their strengths and limitations in mimicking the dysregulated immune response encountered in human sepsis. We also propose potential directions for refining murine sepsis models, such as reducing experimental inconsistencies, increasing the clinical relevance, and enhancing immunological similarities between mice and humans; such modifications may optimize the value of murine models in meeting research and translational demands when applied in studies of sepsis-induced immunosuppression.
Collapse
Affiliation(s)
- Ning Wang
- West China Biopharm Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
| | - Jiang Zheng
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Jiang Zheng, ; Xin Liu,
| | - Xin Liu
- Medical Research Center, Southwest Hospital, Army Military Medical University, Chongqing, China
- *Correspondence: Jiang Zheng, ; Xin Liu,
| |
Collapse
|
10
|
Meegan JE, Komalavilas P, Cheung‐Flynn J, Yim TW, Putz ND, Jesse JJ, Smith KD, Sidorova TN, Lee HNR, Tomasek T, Shaver CM, Ware LB, Brophy CM, Bastarache JA. Blocking P2X7 receptor with AZ 10606120 exacerbates vascular hyperpermeability and inflammation in murine polymicrobial sepsis. Physiol Rep 2022; 10:e15290. [PMID: 35668576 PMCID: PMC9170948 DOI: 10.14814/phy2.15290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/03/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022] Open
Abstract
Sepsis is a devastating disease with high morbidity and mortality and no specific treatments. The pathophysiology of sepsis involves a hyperinflammatory response and release of damage-associated molecular patterns (DAMPs), including adenosine triphosphate (ATP), from activated and dying cells. Purinergic receptors activated by ATP have gained attention for their roles in sepsis, which can be pro- or anti-inflammatory depending on the context. Current data regarding the role of ATP-specific purinergic receptor P2X7 (P2X7R) in vascular function and inflammation during sepsis are conflicting, and its role on the endothelium has not been well characterized. In this study, we hypothesized that the P2X7R antagonist AZ 10606120 (AZ106) would prevent endothelial dysfunction during sepsis. As proof of concept, we first demonstrated the ability of AZ106 (10 µM) to prevent endothelial dysfunction in intact rat aorta in response to IL-1β, an inflammatory mediator upregulated during sepsis. Likewise, blocking P2X7R with AZ106 (10 µg/g) reduced the impairment of endothelial-dependent relaxation in mice subjected to intraperitoneal injection of cecal slurry (CS), a model of polymicrobial sepsis. However, contrary to our hypothesis, AZ106 did not improve microvascular permeability or injury, lung apoptosis, or illness severity in mice subjected to CS. Instead, AZ106 elevated spleen bacterial burden and circulating inflammatory markers. In conclusion, antagonism of P2X7R signaling during sepsis appears to disrupt the balance between its roles in inflammatory, antimicrobial, and vascular function.
Collapse
Affiliation(s)
- Jamie E. Meegan
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Padmini Komalavilas
- Division of Vascular SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Joyce Cheung‐Flynn
- Division of Vascular SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tsz Wing Yim
- Division of Vascular SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Nathan D. Putz
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Jordan J. Jesse
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Kyle D. Smith
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tatiana N. Sidorova
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Han Noo Ri Lee
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Toria Tomasek
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ciara M. Shaver
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lorraine B. Ware
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Colleen M. Brophy
- Division of Vascular SurgeryVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Julie A. Bastarache
- Division of Allergy, Pulmonary and Critical Care MedicineDepartment of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Pathology, Microbiology and ImmunologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Cell and Developmental BiologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
11
|
Bos LDJ, Laffey JG, Ware LB, Heijnen NFL, Sinha P, Patel B, Jabaudon M, Bastarache JA, McAuley DF, Summers C, Calfee CS, Shankar-Hari M. Towards a biological definition of ARDS: are treatable traits the solution? Intensive Care Med Exp 2022; 10:8. [PMID: 35274164 PMCID: PMC8913033 DOI: 10.1186/s40635-022-00435-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) includes the accumulation of protein-rich pulmonary edema in the air spaces and interstitial areas of the lung, variable degrees of epithelial injury, variable degrees of endothelial barrier disruption, transmigration of leukocytes, alongside impaired fluid and ion clearance. These pathophysiological features are different between patients contributing to substantial biological heterogeneity. In this context, it is perhaps unsurprising that a wide range of pharmacological interventions targeting these pathophysiological processes have failed to improve patient outcomes. In this manuscript, our goal is to provide a narrative summary of the potential methods to capture the underlying biological heterogeneity of ARDS and discuss how this information could inform future ARDS redefinitions. We discuss what biological tests are available to identify patients with any of the following predominant biological patterns: (1) epithelial and/or endothelial injury, (2) protein rich pulmonary edema and (3) systemic or within lung inflammatory responses.
Collapse
Affiliation(s)
- Lieuwe D J Bos
- Intensive Care, Amsterdam UMC, Location AMC, 1105AZ, Amsterdam, The Netherlands.
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, Galway University Hospitals, National University of Ireland Galway, Galway, Ireland
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nanon F L Heijnen
- Department of Intensive Care Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Pratik Sinha
- Department of Anesthesiology, School of Medicine, Washington University, St. Louis, USA
| | - Brijesh Patel
- Division of Anaesthetics, Pain Medicine, and Intensive Care, Department of Surgery and Cancer, Imperial College, London, UK
| | - Matthieu Jabaudon
- Department of Perioperative Medicine, CHU Clermont-Ferrand, Clermont-Ferrand, France.,GReD, Université Clermont Auvergne, CNRS, INSERM, Clermont-Ferrand, France
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Charlotte Summers
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Manu Shankar-Hari
- School of Immunology and Microbial Sciences, King's College London, London, UK.,Centre for Inflammation Research, The University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|