1
|
Liu G, Dong BB, Devanarayana S, Chen RC, Liu Q. Emerging roles of mechanosensitive ion channels in ventilator induced lung injury: a systematic review. Front Immunol 2024; 15:1479230. [PMID: 39664395 PMCID: PMC11631737 DOI: 10.3389/fimmu.2024.1479230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Background The pathogenetic mechanisms of ventilator-induced lung injury (VILI) still need to be elucidated. The mechanical forces during mechanical ventilation are continually sensed and transmitted by mechanosensitive ion channels (MSICs) in pulmonary endothelial, epithelial, and immune cells. In recent years, MSICs have been shown to be involved in VILI. Methods A systematic search across PubMed, the Cochrane Library, Web of Science, and ScienceDirect was performed from inception to March 2024, and the review was conducted in accordance with PRISMA guidelines. The potential eligible studies were evaluated by two authors independently. Study characteristics, quality assessment, and potential mechanisms were analyzed. Results We included 23 eligible studies, most of which were performed with murine animals in vivo. At the in vitro level, 52% and 48% of the experiments were conducted with human or animal cells, respectively. No clinical studies were found. The most reported MSICs include Piezo channels, transient receptor potential channels, potassium channels, and stretch-activated sodium channels. Piezo1 has been the most concerned channel in the recent five years. This study found that signal pathways, such as RhoA/ROCK1, could be enhanced by cyclic stretch-activated MSICs, which contribute to VILI through dysregulated inflammation and immune responses mediated by ion transport. The review indicates the emerging role of MSICs in the pathogenesis of VILI, especially as a signal-transmitting link between mechanical stretch and pathogenesis such as inflammation, disruption of cell junctions, and edema formation. Conclusions Mechanical stretch stimulates MSICs to increase transcellular ion exchange and subsequently generates VILI through inflammation and other pathogeneses mediated by MSICs signal-transmitting pathways. These findings make it possible to identify potential therapeutic targets for the prevention of lung injury through further exploration and more studies. Systematic review registration https://inplasy.com/inplasy-2024-10-0115/, identifier INPLASY2024100115.
Collapse
Affiliation(s)
- Gang Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin-bin Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shalika Devanarayana
- School of International Education, Zhengzhou University, Zhengzhou, Henan, China
| | - Rong-Chang Chen
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital, Shenzhen, Guangdong, China
| | - Qi Liu
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem 2022; 110:109130. [PMID: 35988833 DOI: 10.1016/j.jnutbio.2022.109130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury is a life-threatening medical problem induced by sepsis or endotoxins and may be associated with enhanced Endoplasmic reticulum stress (ER stress). Vitamin-D (Vit-D) possesses an anti-inflammatory effect; however, this specific mechanism on acute lung injury is still unknown. Here we scrutinize the mechanism of Vit-D on Acute lung injury (ALI) models and explored the Vit-D augmented miRNA's role in regulating the ER stress pathway in ALI. Sepsis was induced by CLP, and Endotoxemia was caused by lipopolysaccharide (LPS). We found that Vit-D alleviates pulmonary edema, improves lung histoarchitecture, infiltration of neutrophils, endothelial barrier in mice, and improves ER stress markers Activating Transcription Factor 6 (ATF6) and CHOP (C/EBP Homologous Protein) expression elevated by CLP/LPS induce ALI. Vit-D decreases the nitric oxide production and ATF6 in macrophages induced by LPS. Vit-D augments miR (miR-149-5p) in LPS-induce macrophages, CLP, and LPS-induced ALI models. Vit-D enhanced miRNA-149-5p when overexpressed, inhibited ER-specific ATF6 inflammatory pathway in LPS-stimulated macrophages, and improved histoarchitecture of the lung in LPS/CLP-induced mice models. This vitro and vivo studies demonstrate that Vit-D could improve ALI induced by CLP/LPS. In this regard, miR-149-5p may play a crucial role in vitamin-D inhibiting LPS/CLP induce ALI. The mechanism might be an association of increased miR-149-5p and its regulated gene target ATF6, and downstream CHOP proteins were suppressed. Thus, these findings demonstrate that the anti-inflammatory effect of Vit-D is achieved by augmentation of miRNA-149-5p expression, which may be a key physiologic mediator in the prevention and treatment of ALI.
Collapse
|
3
|
Peng G, Tang X, Gui Y, Yang J, Ye L, Wu L, Ding YH, Wang L. Transient receptor potential vanilloid subtype 1: A potential therapeutic target for fibrotic diseases. Front Physiol 2022; 13:951980. [PMID: 36045746 PMCID: PMC9420870 DOI: 10.3389/fphys.2022.951980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
The transient receptor potential vanilloid subtype 1 (TRPV1), belonging to the TRPV channel family, is a non-selective, calcium-dependent, cation channel implicated in several pathophysiological processes. Collagen, an extracellular matrix component, can accumulate under pathological conditions and may lead to the destruction of tissue structure, organ dysfunction, and organ failure. Increasing evidence indicates that TRPV1 plays a role in the development and occurrence of fibrotic diseases, including myocardial, renal, pancreatic, and corneal fibrosis. However, the mechanism by which TRPV1 regulates fibrosis remains unclear. This review highlights the comprehensive role played by TRPV1 in regulating pro-fibrotic processes, the potential of TRPV1 as a therapeutic target in fibrotic diseases, as well as the different signaling pathways associated with TRPV1 and fibrosis.
Collapse
Affiliation(s)
- Guangxin Peng
- Zhejiang University of Technology, Hangzhou, China
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiaoling Tang
- Zhejiang University of Technology, Hangzhou, China
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yang Gui
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jing Yang
- Zhejiang University of Technology, Hangzhou, China
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lifang Ye
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Liuyang Wu
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ya hui Ding
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Lihong Wang
- Department of Cardiovascular Medicine, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Lihong Wang,
| |
Collapse
|
4
|
Xu J, Ghadiri M, Svolos M, McParland B, Traini D, Ong HX, Young PM. Investigating Potential TRPV1 Positive Feedback to Explain TRPV1 Upregulation in Airway Disease States. Drug Dev Ind Pharm 2022; 47:1924-1934. [PMID: 35473456 DOI: 10.1080/03639045.2022.2070759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE The airway epithelium is a potential source of pathophysiology through activation of transient potential receptor vallinoid type 1 (TRPV1) channel. A positive feedback cycle caused by TRPV1 activity is hypothesised to induce upregulation and production of inflammatory cytokines, leading to exacerbations of chronic airway diseases. These cytokine and protein regulation effects were investigated in this study. METHODS Healthy (BEAS-2B) and cancer-derived (Calu-3) airway epithelial cell lines were assessed for changes to TRPV1 protein expression and mRNA expression following exposure to capsaicin (5 µM to 50 µM), and TRPV1 modulators including heat (43 °C), and hydrochloric acid (pH 3.4 to pH 6.4). Cytotoxicity was measured to determine the working concentration ranges of treatment. Subsequent bronchoconstriction by TRPV1 activation with capsaicin was measured on guinea pig airway tissue to confirm locally mediated activity without the action of known neuronal inputs. RESULTS TRPV1 protein expression was not different for all capsaicin, acidity, and heat exposures (P > 0.05), and was replicated in mRNA protein expression (P > 0.05). IL-6 and IL-8 expression were lower in BEAS-2B and Calu-3 cell lines exposed with acidity and heat (P < 0.05), but not consistently with capsaicin exposure, with potential cytotoxic effects possible. CONCLUSIONS TRPV1 expression was present in airway epithelial cells but its expression was not changed after activation by TRPV1 activators. Thus, it was not apparent the reason for reported TRPV1 upregulation in patients with airway disease states. More complex mechanisms are likely involved and will require further investigation.
Collapse
Affiliation(s)
- Jesse Xu
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Maliheh Ghadiri
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia
| | - Maree Svolos
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia
| | - Brent McParland
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown NSW 2006, Australia
| | - Daniela Traini
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Hui Xin Ong
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Paul M Young
- Respiratory Technology Group, Woolcock Institute of Medical Research, 431 Glebe Point Road, Glebe NSW 2037, Australia.,Department of Marketing, Macquarie Business School, Macquarie University, NSW 2109, Australia
| |
Collapse
|
5
|
Zhong T, Zhang W, Guo H, Pan X, Chen X, He Q, Yang B, Ding L. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B 2022; 12:1761-1780. [PMID: 35847486 PMCID: PMC9279634 DOI: 10.1016/j.apsb.2021.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/11/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023] Open
Abstract
Transient receptor potential (TRP) channels are one primary type of calcium (Ca2+) permeable channels, and those relevant transmembrane and intracellular TRP channels were previously thought to be mainly associated with the regulation of cardiovascular and neuronal systems. Nowadays, however, accumulating evidence shows that those TRP channels are also responsible for tumorigenesis and progression, inducing tumor invasion and metastasis. However, the overall underlying mechanisms and possible signaling transduction pathways that TRP channels in malignant tumors might still remain elusive. Therefore, in this review, we focus on the linkage between TRP channels and the significant characteristics of tumors such as multi-drug resistance (MDR), metastasis, apoptosis, proliferation, immune surveillance evasion, and the alterations of relevant tumor micro-environment. Moreover, we also have discussed the expression of relevant TRP channels in various forms of cancer and the relevant inhibitors' efficacy. The chemo-sensitivity of the anti-cancer drugs of various acting mechanisms and the potential clinical applications are also presented. Furthermore, it would be enlightening to provide possible novel therapeutic approaches to counteract malignant tumors regarding the intervention of calcium channels of this type.
Collapse
Key Words
- 4α-PDD, 4α-phorbol-12,13-didecanoate
- ABCB, ATP-binding cassette B1
- AKT, protein kinase B
- ALA, alpha lipoic acid
- AMPK, AMP-activated protein kinase
- APB, aminoethoxydiphenyl borate
- ATP, adenosine triphosphate
- CBD, cannabidiol
- CRAC, Ca2+ release-activated Ca2+ channel
- CaR, calcium-sensing receptor
- CaSR, calcium sensing receptor
- Cancer progression
- DAG, diacylglycerol
- DBTRG, Denver Brain Tumor Research Group
- ECFC, endothelial colony-forming cells
- ECM, enhanced extracellular matrix
- EGF, epidermal growth factor
- EMT, epithelial–mesenchymal transition
- ER, endoplasmic reticulum
- ERK, extracellular signal-regulated kinase
- ETS, erythroblastosis virus E26 oncogene homolog
- FAK, focal adhesion kinase
- GADD, growth arrest and DNA damage-inducible gene
- GC, gastric cancer
- GPCR, G-protein coupled receptor
- GSC, glioma stem-like cells
- GSK, glycogen synthase kinase
- HCC, hepatocellular carcinoma
- HIF, hypoxia-induced factor
- HSC, hematopoietic stem cells
- IP3R, inositol triphosphate receptor
- Intracellular mechanism
- KO, knockout
- LOX, lipoxygenase
- LPS, lipopolysaccharide
- LRP, lipoprotein receptor-related protein
- MAPK, mitogen-activated protein kinase
- MLKL, mixed lineage kinase domain-like protein
- MMP, matrix metalloproteinases
- NEDD4, neural precursor cell expressed, developmentally down-regulated 4
- NFAT, nuclear factor of activated T-cells
- NLRP3, NLR family pyrin domain containing 3
- NO, nitro oxide
- NSCLC, non-small cell lung cancer
- Nrf2, nuclear factor erythroid 2-related factor 2
- P-gp, P-glycoprotein
- PCa, prostate cancer
- PDAC, pancreatic ductal adenocarcinoma
- PHD, prolyl hydroxylases
- PI3K, phosphoinositide 3-kinase
- PKC, protein kinase C
- PKD, polycystic kidney disease
- PLC, phospholipase C
- Programmed cancer cell death
- RNS/ROS, reactive nitrogen species/reactive oxygen species
- RTX, resiniferatoxin
- SMAD, Caenorhabditis elegans protein (Sma) and mothers against decapentaplegic (Mad)
- SOCE, store operated calcium entry
- SOR, soricimed
- STIM1, stromal interaction molecules 1
- TEC, tumor endothelial cells
- TGF, transforming growth factor-β
- TNF-α, tumor necrosis factor-α
- TRP channels
- TRPA/C/M/ML/N/P/V, transient receptor potential ankyrin/canonical/melastatin/mucolipon/NOMPC/polycystin/vanilloid
- Targeted tumor therapy
- Tumor microenvironment
- Tumor-associated immunocytes
- UPR, unfolded protein response
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- VPAC, vasoactive intestinal peptide receptor subtype
- mTOR, mammalian target of rapamycin
- pFRG/RTN, parafacial respiratory group/retrotrapezoid nucleus
Collapse
|
6
|
Chen Y, Wu X, Yang X, Liu X, Zeng Y, Li J. Melatonin antagonizes ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59858-59867. [PMID: 34146326 DOI: 10.1007/s11356-021-14945-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 06/12/2021] [Indexed: 06/12/2023]
Abstract
Over the past few years, ozone has been identified as a potential risk factor for exacerbating asthma. However, few attempts have been made to prevent the progression of ozone-exacerbated asthma. This study investigated the attenuating effects of melatonin on ozone-aggravated allergic asthma, and explored the changes to the transient receptor potential vanilloid 1 (TRPV1)-nuclear factor erythroid-derived 2-related factor 2 (Nrf2) pathway associated with melatonin treatment. The levels of TRPV1 and calcitonin gene-related peptides (CGRP) in lung tissue were detected by immunohistochemistry, western blot, and enzyme-linked immunosorbent assay (ELISA). The Nrf2 signaling involved proteins and mRNA were evaluated by western blot and RT-qPCR. The change of Immunoglobulin E (IgE) and T helper (Th) 2 and Th17 cytokines in serum and bronchoalveolar lavage fluid (BALF) was determined by ELISA. Recruitment of inflammatory cells in BALF, histopathological changes, and airway hyperresponsiveness (AHR) were also determined in lung tissues. Our results indicated that melatonin treatment significantly reduced oxidative stress, as indicated by levels of glutathione (GSH), malonaldehyde (MDA), and 8-hydroxy-2-deoxyguanosine (8-OH-dG). Moreover, ozone-exacerbated asthma symptoms, such as inflammatory cell infiltration, levels of serum immunoglobulin, Th2 and Th17 cytokines in BALF, obvious changes in lung histology, and AHR, were all ameliorated by melatonin treatment. Interestingly, melatonin not only markedly decreased the protein levels of TRPV1 and CGRP, but also enhanced the expression of Nrf2, quinone oxidoreductase-1 (NQO-1), and heme oxygenase-1 (HO-1). Taken together, our results demonstrate that melatonin administration could antagonize ozone-exacerbated asthma by inhibiting the TRPV1 channel and stabilizing the Nrf2 pathway.
Collapse
Affiliation(s)
- Yushan Chen
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xiaoyu Wu
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Xu Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xudong Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, 564507, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jinquan Li
- Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
7
|
Zergane M, Kuebler WM, Michalick L. Heteromeric TRP Channels in Lung Inflammation. Cells 2021; 10:cells10071654. [PMID: 34359824 PMCID: PMC8307017 DOI: 10.3390/cells10071654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/09/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Activation of Transient Receptor Potential (TRP) channels can disrupt endothelial barrier function, as their mediated Ca2+ influx activates the CaM (calmodulin)/MLCK (myosin light chain kinase)-signaling pathway, and thereby rearranges the cytoskeleton, increases endothelial permeability and thus can facilitate activation of inflammatory cells and formation of pulmonary edema. Interestingly, TRP channel subunits can build heterotetramers, whereas heteromeric TRPC1/4, TRPC3/6 and TRPV1/4 are expressed in the lung endothelium and could be targeted as a protective strategy to reduce endothelial permeability in pulmonary inflammation. An update on TRP heteromers and their role in lung inflammation will be provided with this review.
Collapse
Affiliation(s)
- Meryam Zergane
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
| | - Wolfgang M. Kuebler
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
- German Center for Lung Research (DZL), 35392 Gießen, Germany
- The Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada
- Department of Surgery and Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence:
| | - Laura Michalick
- Institute of Physiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; (M.Z.); (L.M.)
- German Centre for Cardiovascular Research (DZHK), 10785 Berlin, Germany
| |
Collapse
|
8
|
Chrysin prevents lipopolysaccharide-induced acute lung injury in mice by suppressing the IRE1α/TXNIP/NLRP3 pathway. Pulm Pharmacol Ther 2021; 68:102018. [PMID: 33771723 DOI: 10.1016/j.pupt.2021.102018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
Acute lung injury (ALI) remains a serious challenge in the intensive care unit. Inflammation plays a key role in the progression of ALI. Chrysin (CHR) is a natural flavonoid with anti-inflammatory functions. We investigated the anti-inflammatory effects in a mouse model of ALI induced by lipopolysaccharide (LPS), and identified the underlying mechanisms of its action. Following CHR administration, mice were challenged with LPS intratracheally for 6 h to induce ALI. Compared to mice challenged with LPS alone, the presence of CHR showed a reduction in the development of lung injuries, as confirmed by histopathological observation. Pre-treatment with CHR attenuated inflammation by reducing the production of myeloperosidase (MPO), and pro-inflammatory cytokine levels in the lung and bronchoalveolar lavage fluid (BALF). Furthermore, CHR improved lung edema by reducing the vascular permeability, as demonstrated by less evans blue staining in the lung tissue and low levels of protein in BALF. In addition, our results proved that CHR improved the antioxidant capacity by increasing the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the lung tissue. Results of western blot assays suggested that CHR suppressed the LPS-induced expression of glucose-regulated protein 78 (GRP78) and phosphorylated inositol-requiring enzyme 1α (p-IRE1α). We also found that CHR suppressed the expression of thioredoxin interaction protein (TXNIP), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) and cleaved caspase-1. In conclusion, CHR improved vascular permeability and mitigated the inflammatory response of lung tissue by suppressing the IRE1α/TXNIP/NLRP3 pathway, thereby alleviating LPS-induced ALI in the lungs of mice.
Collapse
|
9
|
Nguyen ND, Memon TA, Burrell KL, Almestica-Roberts M, Rapp E, Sun L, Scott AF, Rower JE, Deering-Rice CE, Reilly CA. Transient Receptor Potential Ankyrin-1 and Vanilloid-3 Differentially Regulate Endoplasmic Reticulum Stress and Cytotoxicity in Human Lung Epithelial Cells After Pneumotoxic Wood Smoke Particle Exposure. Mol Pharmacol 2020; 98:586-597. [PMID: 32938721 DOI: 10.1124/molpharm.120.000047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/27/2020] [Indexed: 12/25/2022] Open
Abstract
This study investigated the roles of transient receptor potential (TRP) ankyrin-1 (TRPA1) and TRP vanilloid-3 (TRPV3) in regulating endoplasmic reticulum stress (ERS) and cytotoxicity in human bronchial epithelial cells (HBECs) treated with pneumotoxic wood smoke particulate matter (WSPM) and chemical agonists of each channel. Functions of TRPA1 and TRPV3 in pulmonary epithelial cells remain largely undefined. This study shows that TRPA1 activity localizes to the plasma membrane and endoplasmic reticulum (ER) of cells, whereas TRPV3 resides primarily in the ER. Additionally, treatment of cells using moderately cytotoxic concentrations of pine WSPM, carvacrol, and other TRPA1 agonists caused ERS as a function of both TRPA1 and TRPV3 activities. Specifically, ERS and cytotoxicity were attenuated by TRPA1 inhibition, whereas inhibiting TRPV3 exacerbated ERS and cytotoxicity. Interestingly, after treatment with pine WSPM, TRPA1 transcription was suppressed, whereas TRPV3 was increased. TRPV3 overexpression in HBECs conferred resistance to ERS and an attenuation of ERS-associated cell cycle arrest caused by WSPM and multiple prototypical ERS-inducing agents. Alternatively, short hairpin RNA-mediated knockdown of TRPV3, like the TRPV3 antagonist, exacerbated ERS. This study reveals previously undocumented roles for TRPA1 in promoting pathologic ERS and cytotoxicity elicited by pneumotoxic WSPM and TRPA1 agonists, and a unique role for TRPV3 in fettering pathologic facets of the integrated ERS response. SIGNIFICANCE STATEMENT: These findings provide new insights into how wood smoke particulate matter and other transient receptor potential ankyrin-1 (TRPA1) and transient receptor potential vanilloid-3 (TRPV3) agonists can affect human bronchial epithelial cells and highlight novel physiological and pathophysiological roles for TRPA1 and TRPV3 in these cells.
Collapse
Affiliation(s)
- Nam D Nguyen
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Tosifa A Memon
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Katherine L Burrell
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Marysol Almestica-Roberts
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Emmanuel Rapp
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Lili Sun
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Abigail F Scott
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Joseph E Rower
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Cassandra E Deering-Rice
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| | - Christopher A Reilly
- Department of Pharmacology and Toxicology, Center for Human Toxicology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
10
|
Christie S, O'Rielly R, Li H, Wittert GA, Page AJ. High fat diet induced obesity alters endocannabinoid and ghrelin mediated regulation of components of the endocannabinoid system in nodose ganglia. Peptides 2020; 131:170371. [PMID: 32659299 DOI: 10.1016/j.peptides.2020.170371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/31/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ghrelin and anandamide (AEA) can regulate the sensitivity of gastric vagal afferents to stretch, an effect mediated via the transient receptor potential vanilloid 1 (TPRV1) channel. High fat diet (HFD)-induced obesity alters the modulatory effects of ghrelin and AEA on gastric vagal afferent sensitivity. This may be a result of altered gastric levels of these hormones and subsequent changes in the expression of their receptors. Therefore, the current study aimed to determine the effects of ghrelin and AEA on vagal afferent cell body mRNA content of cannabinoid 1 receptor (CB1), ghrelin receptor (GHSR), TRPV1, and the enzyme responsible for the breakdown of AEA, fatty acid amide hydrolase (FAAH). METHODS Mice were fed a standard laboratory diet (SLD) or HFD for 12wks. Nodose ganglia were removed and cultured for 14 h in the absence or presence of ghrelin or methAEA (mAEA; stable analogue of AEA). Relative mRNA content of CB1, GHSR, TRPV1, and FAAH were measured. RESULTS In nodose cells from SLD-mice, mAEA increased TRPV1 and FAAH mRNA content, and decreased CB1 and GHSR mRNA content. Ghrelin decreased TRPV1, CB1, and GHSR mRNA content. In nodose cells from HFD-mice, mAEA had no effect on TRPV1 mRNA content, and increased CB1, GHSR, and FAAH mRNA content. Ghrelin decreased TRPV1 mRNA content and increased CB1 and GHSR mRNA content. CONCLUSIONS AEA and ghrelin modulate receptors and breakdown enzymes involved in the mAEA-vagal afferent satiety signalling pathways. This was disrupted in HFD-mice, which may contribute to the altered vagal afferent signalling in obesity.
Collapse
Affiliation(s)
- Stewart Christie
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Rebecca O'Rielly
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia
| | - Hui Li
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Gary A Wittert
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA 5000, Australia.
| |
Collapse
|
11
|
Genova T, Gaglioti D, Munaron L. Regulation of Vessel Permeability by TRP Channels. Front Physiol 2020; 11:421. [PMID: 32431625 PMCID: PMC7214926 DOI: 10.3389/fphys.2020.00421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The vascular endothelium constitutes a semi-permeable barrier between blood and interstitial fluids. Since an augmented endothelial permeability is often associated to pathological states, understanding the molecular basis for its regulation is a crucial biomedical and clinical challenge. This review focuses on the processes controlling paracellular permeability that is the permeation of fluids between adjacent endothelial cells (ECs). Cytosolic calcium changes are often detected as early events preceding the alteration of the endothelial barrier (EB) function. For this reason, great interest has been devoted in the last decades to unveil the molecular mechanisms underlying calcium fluxes and their functional relationship with vessel permeability. Beyond the dicotomic classification between store-dependent and independent calcium entry at the plasma membrane level, the search for the molecular components of the related calcium-permeable channels revealed a difficult task for intrinsic and technical limitations. The contribution of redundant channel-forming proteins including members of TRP superfamily and Orai1, together with the very complex intracellular modulatory pathways, displays a huge variability among tissues and along the vascular tree. Moreover, calcium-independent events could significantly concur to the regulation of vascular permeability in an intricate and fascinating multifactorial framework.
Collapse
Affiliation(s)
- Tullio Genova
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Deborah Gaglioti
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Kim SH, Hong JH, Yang WK, Geum JH, Kim HR, Choi SY, Kang YM, An HJ, Lee YC. Herbal Combinational Medication of Glycyrrhiza glabra, Agastache rugosa Containing Glycyrrhizic Acid, Tilianin Inhibits Neutrophilic Lung Inflammation by Affecting CXCL2, Interleukin-17/STAT3 Signal Pathways in a Murine Model of COPD. Nutrients 2020; 12:nu12040926. [PMID: 32230838 PMCID: PMC7231088 DOI: 10.3390/nu12040926] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by exposure to toxic particles, such as coal fly ash (CFA), diesel-exhaust particle (DEP), and cigarette smoke (CS), leading to chronic bronchitis, mucus production, and a subsequent lung dysfunction. This study, using a mouse model of COPD, aimed to evaluate the effect of herbal combinational medication of Glycyrrhiza glabra (GG), Agastache rugosa (AR) containing glycyrrhizic acid (GA), and tilianin (TN) as active ingredients. GA, a major active component of GG, possesses a range of pharmacological and biological activities including anti-inflammatory, anti-allergic, anti-oxidative. TN is a major flavonoid that is present in AR. It has been reported to have anti-inflammatory effects of potential utility as an anti-COPD agent. The COPD in the mice model was induced by a challenge with CFA and DEP. BALB/c mice received CFA and DEP alternately three times for 2 weeks to induce COPD. The herbal mixture of GG, AR, and TN significantly decreased the number of neutrophils in the lungs and bronchoalveolar lavage (BAL) fluid. It also significantly reduced the production of C-X-C motif chemokine ligand 2 (CXCL-2), IL-17A, CXCL-1, TNF-α, symmetric dimethylarginine (SDMA) in BALF and CXCL-2, IL-17A, CXCL-1, MUC5AC, transient receptor potential vanilloid-1 (TRPV1), IL-6, COX-2, NOS-II, and TNF-α mRNA expression in the lung tissue. Notably, a combination of GG and AR was more effective at regulating such therapeutic targets than GG or AR alone. The histolopathological lung injury was alleviated by treatment with the herbal mixture and their active ingredients (especially TN). In this study, the herbal combinational mixture more effectively inhibited neutrophilic airway inflammation by regulating the expression of inflammatory cytokines and CXCL-2 by blocking the IL-17/STAT3 pathway. Therefore, a herbal mixture of GG and AR may be a potential therapeutic agent to treat COPD.
Collapse
Affiliation(s)
- Seung-Hyung Kim
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Jung-Hee Hong
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju, Gangwon-do 26339, Korea;
| | - Won-Kyung Yang
- Institute of Traditional Medicine & Bioscience, Daejeon University, Daejeon 34520, Korea; (S.-H.K.); (W.-K.Y.)
| | - Jeong-Ho Geum
- COSMAX NBT, INC., Seoul 06132, Korea; (J.-H.G.); (S.-Y.C.)
| | | | - Su-Young Choi
- COSMAX NBT, INC., Seoul 06132, Korea; (J.-H.G.); (S.-Y.C.)
| | - Yun-Mi Kang
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju, Gangwon-do 26339, Korea; (Y.-M.K.); (H.-J.A.)
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju, Gangwon-do 26339, Korea; (Y.-M.K.); (H.-J.A.)
| | - Young-Cheol Lee
- Department of Herbology, College of Korean Medicine, Sangji University, 83 Sangjidae-gil, Wonju, Gangwon-do 26339, Korea;
- Correspondence: ; Tel.: +82-33-730-0672; Fax: +82-33-730-0653
| |
Collapse
|
13
|
Thakore P, Earley S. Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. Compr Physiol 2019; 9:1249-1277. [PMID: 31187891 DOI: 10.1002/cphy.c180034] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vascular endothelium is a broadly distributed and highly specialized organ. The endothelium has a number of functions including the control of blood vessels diameter through the production and release of potent vasoactive substances or direct electrical communication with underlying smooth muscle cells, regulates the permeability of the vascular barrier, stimulates the formation of new blood vessels, and influences inflammatory and thrombotic processes. Endothelial cells that make up the endothelium express a variety of cell-surface receptors and ion channels on the plasma membrane that are capable of detecting circulating hormones, neurotransmitters, oxygen tension, and shear stress across the vascular wall. Changes in these stimuli activate signaling cascades that initiate an appropriate physiological response. Increases in the global intracellular Ca2+ concentration and localized Ca2+ signals that occur within specialized subcellular microdomains are fundamentally important components of many signaling pathways in the endothelium. The transient receptor potential (TRP) channels are a superfamily of cation-permeable ion channels that act as a primary means of increasing cytosolic Ca2+ in endothelial cells. Consequently, TRP channels are vitally important for the major functions of the endothelium. In this review, we provide an in-depth discussion of Ca2+ -permeable TRP channels in the endothelium and their role in vascular regulation. © 2019 American Physiological Society. Compr Physiol 9:1249-1277, 2019.
Collapse
Affiliation(s)
- Pratish Thakore
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| | - Scott Earley
- Department of Pharmacology, Center for Cardiovascular Research, University of Nevada, Reno School of Medicine, Reno, Nevada, USA
| |
Collapse
|
14
|
In Reply. Anesthesiology 2018; 129:378-379. [DOI: 10.1097/aln.0000000000002294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Huang K, Ma K, Hung Y, Lo L, Lin K, Liu P, Hu M, Chueh S. A new copper ionophore DPMQ protects cells against ultraviolet B irradiation by inhibiting the TRPV1 channel. J Cell Physiol 2018; 233:9594-9610. [DOI: 10.1002/jcp.26861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Kuo‐Feng Huang
- Division of Plastic Surgery, Department of Surgery Chi Mei Medical Center Tainan Taiwan Republic of China
| | - Kuo‐Hsing Ma
- Department of Biology and Anatomy National Defense Medical Center Taipei Taiwan Republic of China
| | - Yu‐Chien Hung
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Liang‐Chuan Lo
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Kuo‐Chen Lin
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| | - Pei‐Shan Liu
- Department of Microbiology Soochow University Taipei Taiwan Republic of China
| | - Ming‐Kuan Hu
- Department of Medicinal Chemistry School of Pharmacy, National Defense Medical Center Taipei Taiwan Republic of China
| | - Sheau‐Huei Chueh
- Department of Biochemistry National Defense Medical Center Taipei Taiwan Republic of China
| |
Collapse
|
16
|
Li X, Xu Y, Cheng Y, Wang R. α7 Nicotinic acetylcholine receptor contributes to the alleviation of lung ischemia-reperfusion injury by transient receptor potential vanilloid type 1 stimulation. J Surg Res 2018; 230:164-174. [PMID: 30100034 DOI: 10.1016/j.jss.2018.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/06/2018] [Accepted: 05/23/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND Activation of transient receptor potential vanilloid type 1 (TRPV1) decreases lung ischemia-reperfusion injury (LIRI) in rabbits and rats. Stimulation of α7 nicotinic acetylcholine receptors (α7nAChRs) protects against lung injury. Here we examined whether α7nAChRs contribute to TRPV1-mediated protection against LIRI. METHODS Wild-type (WT) and TRPV1-knockout (KO) mice were subjected to 1-h lung ischemia by clamping left hilum, followed by 2-h reperfusion. WT or KO mice were pretreated with vehicle, TRPV1 agonist capsaicin, TRPV1 antagonist capsazepine, α7nAChR antagonist methyllycaconitine, or α7nAChR agonist PNU-282987. Arterial blood and lung tissues were obtained for blood gas, lung wet-to-dry weight ratio, interleukin (IL)1β, IL6, tumor necrosis factor-α (TNF-α), apoptosis-related proteins (caspases, Bax, Fas), and pathologic scoring. RESULTS Capsaicin pretreatment reduced wet-to-dry ratio, pathologic score, alveolar-arterial oxygen gradient (A-aDO2), and IL1β, IL6, and TNFα levels in WT mice, with no effects in KO mice. This reduction was reversed by TRPV1 blockade. Furthermore, α7nAChR blockade before capsaicin exacerbated LIRI as evidenced by enhanced alveolar-arterial oxygen gradient, pathologic score, and IL1β, IL6, and TNFα levels, while α7nAChR agonist pretreatment under TRPV1 blockade showed opposite changes. Capsaicin also decreased cleaved caspase-3, caspase-3/9, and Bax protein expression, effects abolished by TRPV1 blockade. Similarly, α7nAChR blockade diminished capsaicin-induced downregulation of apoptotic proteins, and α7nAChR activation decreased expression levels even under TRPV1 blockade. CONCLUSIONS TRPV1 activation alleviates LIRI, partially dependent on α7nAChR activity. The α7nAChR stimulation with or without existence of TRPV1 alleviates LIRI. Thus, α7nAChR is involved in the pathway of TRPV1-mediated protection against LIRI and the specific mechanism remains to be revealed.
Collapse
Affiliation(s)
- Xuehan Li
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yi Xu
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Cheng
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Rurong Wang
- Department of Anesthesiology, and Laboratory of Anesthesia and Intensive Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
17
|
Friedman JR, Nolan NA, Brown KC, Miles SL, Akers AT, Colclough KW, Seidler JM, Rimoldi JM, Valentovic MA, Dasgupta P. Anticancer Activity of Natural and Synthetic Capsaicin Analogs. J Pharmacol Exp Ther 2018; 364:462-473. [PMID: 29246887 PMCID: PMC5803642 DOI: 10.1124/jpet.117.243691] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
The nutritional compound capsaicin is the major spicy ingredient of chili peppers. Although traditionally associated with analgesic activity, recent studies have shown that capsaicin has profound antineoplastic effects in several types of human cancers. However, the applications of capsaicin as a clinically viable drug are limited by its unpleasant side effects, such as gastric irritation, stomach cramps, and burning sensation. This has led to extensive research focused on the identification and rational design of second-generation capsaicin analogs, which possess greater bioactivity than capsaicin. A majority of these natural capsaicinoids and synthetic capsaicin analogs have been studied for their pain-relieving activity. Only a few of these capsaicin analogs have been investigated for their anticancer activity in cell culture and animal models. The present review summarizes the current knowledge of the growth-inhibitory activity of natural capsaicinoids and synthetic capsaicin analogs. Future studies that examine the anticancer activity of a greater number of capsaicin analogs represent novel strategies in the treatment of human cancers.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kathleen C Brown
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Sarah L Miles
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Austin T Akers
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kate W Colclough
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Jessica M Seidler
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - John M Rimoldi
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| |
Collapse
|
18
|
Takata N, Ohshima Y, Suzuki-Karasaki M, Yoshida Y, Tokuhashi Y, Suzuki-Karasaki Y. Mitochondrial Ca2+ removal amplifies TRAIL cytotoxicity toward apoptosis-resistant tumor cells via promotion of multiple cell death modalities. Int J Oncol 2017; 51:193-203. [PMID: 28560396 DOI: 10.3892/ijo.2017.4020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Ca2+ has emerged as a new target for cancer treatment since tumor-specific traits in Ca2+ dynamics contributes to tumorigenesis, malignant phenotypes, drug resistance, and survival in different tumor types. However, Ca2+ has a dual (pro-death and pro-survival) function in tumor cells depending on the experimental conditions. Therefore, it is necessary to minimize the onset of the pro-survival Ca2+ signals caused by the therapy. For this purpose, a better understanding of pro-survival Ca2+ pathways in cancer cells is critical. Here we report that Ca2+ protects malignant melanoma (MM) and osteosarcoma (OS) cells from tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) cytotoxicity. Simultaneous measurements using the site-specific Ca2+ probes showed that acute TRAIL treatment rapidly and dose-dependently increased the cytosolic Ca2+ concentration ([Ca2+]cyt) and mitochondrial Ca2+ concentration ([Ca2+]mit) Pharmacological analyses revealed that the [Ca2+]mit remodeling was under control of mitochondrial Ca2+ uniporter (MCU), mitochondrial permeability transition pore (MPTP), and a Ca2+ transport pathway sensitive to capsazepine and AMG9810. Ca2+ chelators and the MCU inhibitor ruthenium 360, an MPTP opener atractyloside, capsazepine, and AMG9810 all decreased [Ca2+]mit and sensitized these tumor cells to TRAIL cytotoxicity. The Ca2+ modulation enhanced both apoptotic and non-apoptotic cell death. Although the [Ca2+]mit reduction potentiated TRAIL-induced caspase-3/7 activation and cell membrane damage within 24 h, this potentiation of cell death became pronounced at 72 h, and not blocked by caspase inhibition. Our findings suggest that in MM and OS cells mitochondrial Ca2+ removal can promote apoptosis and non-apoptotic cell death induction by TRAIL. Therefore, mitochondrial Ca2+ removal can be exploited to overcome the resistance of these cancers to TRAIL.
Collapse
Affiliation(s)
- Natsuhiko Takata
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yohei Ohshima
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Miki Suzuki-Karasaki
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yukihiro Yoshida
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Yasuaki Tokuhashi
- Department of Orthopedic Surgery, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | | |
Collapse
|
19
|
Khan MM, Yang WL, Brenner M, Bolognese AC, Wang P. Cold-inducible RNA-binding protein (CIRP) causes sepsis-associated acute lung injury via induction of endoplasmic reticulum stress. Sci Rep 2017; 7:41363. [PMID: 28128330 PMCID: PMC5269663 DOI: 10.1038/srep41363] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Cold-inducible RNA-binding protein (CIRP), released into the circulation during sepsis, causes lung injury via an as yet unknown mechanism. Since endoplasmic reticulum (ER) stress is associated with acute lung injury (ALI), we hypothesized that CIRP causes ALI via induction of ER stress. To test this hypothesis, we studied the lungs of wild-type (WT) and CIRP knockout (KO) mice at 20 h after induction of sepsis by cecal ligation and puncture (CLP). WT mice had significantly more severe ALI than CIRP KO mice. Lung ER stress markers (BiP, pIRE1α, sXBP1, CHOP, cleaved caspase-12) were increased in septic WT mice, but not in septic CIRP KO mice. Effector pathways downstream from ER stress – apoptosis, NF-κB (p65), proinflammatory cytokines (IL-6, IL-1β), neutrophil chemoattractants (MIP-2, KC), neutrophil infiltration (MPO activity), lipid peroxidation (4-HNE), and nitric oxide (iNOS) – were significantly increased in WT mice, but only mildly elevated in CIRP KO mice. ER stress markers were increased in the lungs of healthy WT mice treated with recombinant murine CIRP, but not in the lungs of TLR4 KO mice. This suggests CIRP directly induces ER stress via TLR4 activation. In summary, CIRP induces lung ER stress and downstream responses to cause sepsis-associated ALI.
Collapse
Affiliation(s)
- Mohammad Moshahid Khan
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Weng-Lang Yang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Max Brenner
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Alexandra Cerutti Bolognese
- Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| | - Ping Wang
- Center for Immunology and Inflammation, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.,Department of Surgery, Hofstra Northwell School of Medicine, Manhasset, NY 11030, USA.,Elmezzi Graduate School of Molecular Medicine, Manhasset, NY 11030, USA
| |
Collapse
|
20
|
Liu Z, Yu T, Yang H, Tian X, Feng L. WITHDRAWN: Decreased level of endogenous ghrelin is involved in the progression of lung injury induced by oleic acid. Life Sci 2016:S0024-3205(16)30675-0. [PMID: 27894854 DOI: 10.1016/j.lfs.2016.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 11/15/2016] [Accepted: 11/24/2016] [Indexed: 01/18/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Zhijun Liu
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China.
| | - Ting Yu
- Department of Ultrasound, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Haitao Yang
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Xiuli Tian
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| | - Linlin Feng
- Department of Respiration, Liaocheng People's Hospital, Liaocheng 252000, China
| |
Collapse
|
21
|
Deering-Rice CE, Stockmann C, Romero EG, Lu Z, Shapiro D, Stone BL, Fassl B, Nkoy F, Uchida DA, Ward RM, Veranth JM, Reilly CA. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma. J Biol Chem 2016; 291:24866-24879. [PMID: 27758864 DOI: 10.1074/jbc.m116.746156] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/29/2016] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control.
Collapse
Affiliation(s)
- Cassandra E Deering-Rice
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Chris Stockmann
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Erin G Romero
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Zhenyu Lu
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Darien Shapiro
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Bryan L Stone
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Bernhard Fassl
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Flory Nkoy
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Derek A Uchida
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Robert M Ward
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - John M Veranth
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| | - Christopher A Reilly
- From the Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112 and
| |
Collapse
|
22
|
Virk H, Arthur G, Bradding P. Mast cells and their activation in lung disease. Transl Res 2016; 174:60-76. [PMID: 26845625 DOI: 10.1016/j.trsl.2016.01.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 01/07/2016] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
Mast cells and their activation contribute to lung health via innate and adaptive immune responses to respiratory pathogens. They are also involved in the normal response to tissue injury. However, mast cells are involved in disease processes characterized by inflammation and remodeling of tissue structure. In these diseases mast cells are often inappropriately and chronically activated. There is evidence for activation of mast cells contributing to the pathophysiology of asthma, pulmonary fibrosis, and pulmonary hypertension. They may also play a role in chronic obstructive pulmonary disease, acute respiratory distress syndrome, and lung cancer. The diverse mechanisms through which mast cells sense and interact with the external and internal microenvironment account for their role in these diseases. Newly discovered mechanisms of redistribution and interaction between mast cells, airway structural cells, and other inflammatory cells may offer novel therapeutic targets in these disease processes.
Collapse
Affiliation(s)
- Harvinder Virk
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Greer Arthur
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom
| | - Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute of Lung Health, University of Leicester, Leicester, United Kingdom.
| |
Collapse
|
23
|
Sukumaran P, Schaar A, Sun Y, Singh BB. Functional role of TRP channels in modulating ER stress and Autophagy. Cell Calcium 2016; 60:123-32. [PMID: 26995055 DOI: 10.1016/j.ceca.2016.02.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 02/07/2023]
Abstract
Intracellular calcium (Ca(2+)) levels play a vital role in regulating cellular fate. The coordination and interrelation among the cellular organelles, mainly the intracellular Ca(2+) stores in endoplasmic reticulum (ER), are crucial in maintaining cytosolic Ca(2+) levels and in general cellular homeostasis. Moreover, maintaining Ca(2+) homeostasis is essential for regulating diverse and sometimes opposing processes such as cell survival and cell death in disease conditions such as, neurodegeneration, cancer and aging. Ca(2+) is able to regulate opposing functions by either regulating the cellular "self-eating" phenomenon of autophagy to promote cell survival or by regulating the programmed cell death process of apoptosis. Autophagy is also important for cell survival especially after induction of ER stress and association between ER stress and autophagy may have relevance to numerous diseases. Moreover, a multitude of evidence is emerging that the functional regulation of TRP channels, their unique localization, and their interaction with other Ca(2+)-sensing elements define these diverse regulatory pathways. It is this unique function which allows individual TRP channels to contribute differently in the regulation of cell fate and, in turn, determines the precise effect of modulating Ca(2+) signaling via the particular channel. Thus, in this review we have focused on the aspects of TRP channel localization and function (Ca(2+) signaling) that affects the ER stress and autophagic process.
Collapse
Affiliation(s)
- Pramod Sukumaran
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, United States
| | - Anne Schaar
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, United States
| | - Yuyang Sun
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, United States
| | - Brij B Singh
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, United States.
| |
Collapse
|
24
|
Li C, Bo L, Liu Q, Liu W, Chen X, Xu D, Jin F. Activation of TRPV1-dependent calcium oscillation exacerbates seawater inhalation-induced acute lung injury. Mol Med Rep 2016; 13:1989-98. [PMID: 26796050 PMCID: PMC4768953 DOI: 10.3892/mmr.2016.4804] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
Calcium is an important second messenger and it is widely recognized that acute lung injury (ALI) is often caused by oscillations of cytosolic free Ca2+. Previous studies have indicated that the activation of transient receptor potential-vanilloid (TRPV) channels and subsequent Ca2+ entry initiates an acute calcium-dependent permeability increase during ALI. However, whether seawater exposure induces such an effect through the activation of TRPV channels remains unknown. In the current study, the effect of calcium, a component of seawater, on the inflammatory reactions that occur during seawater drowning-induced ALI, was examined. The results demonstrated that a high concentration of calcium ions in seawater increased lung tissue myeloperoxidase activity and the secretion of inflammatory mediators, such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β and IL-6. Further study demonstrated that the seawater challenge elevated cytosolic Ca2+ concentration, indicated by [Ca2+]c, by inducing calcium influx from the extracellular medium via TRPV1 channels. The elevated [Ca2+c] may have resulted in the increased release of TNF-α and IL-1β via increased phosphorylation of nuclear factor-κB (NF-κB). It was concluded that a high concentration of calcium in seawater exacerbated lung injury, and TRPV1 channels were notable mediators of the calcium increase initiated by the seawater challenge. Calcium influx through TRPV1 may have led to greater phosphorylation of NF-κB and increased release of TNF-α and IL-1β.
Collapse
Affiliation(s)
- Congcong Li
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Liyan Bo
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Qingqing Liu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Wei Liu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiangjun Chen
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Dunquan Xu
- Department of Pathology and Pathophysiology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
25
|
Zholos AV. TRP Channels in Respiratory Pathophysiology: the Role of Oxidative, Chemical Irritant and Temperature Stimuli. Curr Neuropharmacol 2015; 13:279-91. [PMID: 26411771 PMCID: PMC4598440 DOI: 10.2174/1570159x13666150331223118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/09/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022] Open
Abstract
There is rapidly growing evidence indicating multiple and important roles of Ca(2+)- permeable cation TRP channels in the airways, both under normal and disease conditions. The aim of this review was to summarize the current knowledge of TRP channels in sensing oxidative, chemical irritant and temperature stimuli by discussing expression and function of several TRP channels in relevant cell types within the respiratory tract, ranging from sensory neurons to airway smooth muscle and epithelial cells. Several of these channels, such as TRPM2, TRPM8, TRPA1 and TRPV1, are discussed in much detail to show that they perform diverse, and often overlapping or contributory, roles in airway hyperreactivity, inflammation, asthma, chronic obstructive pulmonary disease and other respiratory disorders. These include TRPM2 involvement in the disruption of the bronchial epithelial tight junctions during oxidative stress, important roles of TRPA1 and TRPV1 channels in airway inflammation, hyperresponsiveness, chronic cough, and hyperplasia of airway smooth muscles, as well as TRPM8 role in COPD and mucus hypersecretion. Thus, there is increasing evidence that TRP channels not only function as an integral part of the important endogenous protective mechanisms of the respiratory tract capable of detecting and ensuring proper physiological responses to various oxidative, chemical irritant and temperature stimuli, but that altered expression, activation and regulation of these channels may also contribute to the pathogenesis of respiratory diseases.
Collapse
Affiliation(s)
- Alexander V Zholos
- Department of Biophysics, Educational and Scientific Centre "Institute of Biology", Taras Shevchenko Kiev National University, 2 Academician Glushkov Avenue, Kiev 03022, Ukraine.
| |
Collapse
|
26
|
Morty RE, Kuebler WM. TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L817-21. [PMID: 25281637 DOI: 10.1152/ajplung.00254.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential (TRP) channels are emerging as important players and drug targets in respiratory disease. Amongst the vanilloid-type TRP channels (which includes the six members of the TRPV family), target diseases include cough, asthma, cancer, and more recently, pulmonary edema associated with acute respiratory distress syndrome. Here, we critically evaluate a recent report that addresses TRPV4 as a candidate target for the management of acute lung injury that develops as a consequence of aspiration of gastric contents, or acute chlorine gas exposure. By use of two new TRPV4 inhibitors (GSK2220691 or GSK2337429A) and a trpv4(-/-) mouse strain, TRPV4 was implicated as a key mediator of pulmonary inflammation after direct chemical insult. Additionally, applied therapeutically, TRPV4 inhibitors exhibited vasculoprotective effects after chlorine gas exposure, inhibiting vascular leakage, and improving blood oxygenation. These observations underscore TRPV4 channels as candidate therapeutic targets in the management of lung injury, with the added need to balance these against the potential drawbacks of TRPV4 inhibition, such as the danger of limiting the immune response in settings of pathogen-provoked injury.
Collapse
Affiliation(s)
- Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), Giessen, Germany;
| | - Wolfgang M Kuebler
- Institute of Physiology, Charité Universitätsmedizin Berlin, Germany; Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and The Keenan Research Center for Biomedical Science of St. Michael's, Toronto, Ontario, Canada
| |
Collapse
|
27
|
|
28
|
Villalta PC, Townsley MI. Transient receptor potential channels and regulation of lung endothelial permeability. Pulm Circ 2014; 3:802-15. [PMID: 25006396 DOI: 10.1086/674765] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/22/2013] [Indexed: 12/19/2022] Open
Abstract
This review highlights our current knowledge regarding expression of transient receptor potential (TRP) cation channels in lung endothelium and evidence for their involvement in regulation of lung endothelial permeability. Six mammalian TRP families have been identified and organized on the basis of sequence homology: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPML (mucolipin), TRPP (polycystin), and TRPA (ankyrin). To date, only TRPC1/4, TRPC6, TRPV4, and TRPM2 have been extensively studied in lung endothelium. Calcium influx through each of these channels has been documented to increase lung endothelial permeability, although their channel-gating mechanisms, downstream signaling mechanisms, and impact on endothelial structure and barrier integrity differ. While other members of the TRPC, TRPV, and TRPM families may be expressed in lung endothelium, we have little or no evidence linking these to regulation of lung endothelial permeability. Further, neither the expression nor functional role(s) of any TRPML, TRPP, and TRPA family members has been studied in lung endothelium. In addition to this assessment organized by TRP channel family, we also discuss TRP channels and lung endothelial permeability from the perspective of lung endothelial heterogeneity, using outcomes of studies focused on TRPC1/4 and TRPV4 channels. The diversity within the TRP channel family and the relative paucity of information regarding roles of a number of these channels in lung endothelium make this field ripe for continued investigation.
Collapse
Affiliation(s)
- Patricia C Villalta
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary I Townsley
- Departments of Physiology and Medicine, Center for Lung Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
29
|
Prakash YS. Airway smooth muscle in airway reactivity and remodeling: what have we learned? Am J Physiol Lung Cell Mol Physiol 2013; 305:L912-33. [PMID: 24142517 PMCID: PMC3882535 DOI: 10.1152/ajplung.00259.2013] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 10/12/2013] [Indexed: 12/12/2022] Open
Abstract
It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca(2+)]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM "activity" result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis.
Collapse
Affiliation(s)
- Y S Prakash
- Dept. of Anesthesiology, Mayo Clinic, 4-184 W Jos SMH, 200 First St. SW, Rochester, MN 55905.
| |
Collapse
|
30
|
Herold S, Gabrielli NM, Vadász I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2013; 305:L665-81. [PMID: 24039257 DOI: 10.1152/ajplung.00232.2013] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review we summarize recent major advances in our understanding on the molecular mechanisms, mediators, and biomarkers of acute lung injury (ALI) and alveolar-capillary barrier dysfunction, highlighting the role of immune cells, inflammatory and noninflammatory signaling events, mechanical noxae, and the affected cellular and molecular entities and functions. Furthermore, we address novel aspects of resolution and repair of ALI, as well as putative candidates for treatment of ALI, including pharmacological and cellular therapeutic means.
Collapse
Affiliation(s)
- Susanne Herold
- Dept. of Internal Medicine, Justus Liebig Univ., Universities of Giessen and Marburg Lung Center, Klinikstrasse 33, 35392 Giessen, Germany.
| | | | | |
Collapse
|
31
|
Leonelli M, Martins DO, Britto LRG. Retinal cell death induced by TRPV1 activation involves NMDA signaling and upregulation of nitric oxide synthases. Cell Mol Neurobiol 2013; 33:379-92. [PMID: 23324998 DOI: 10.1007/s10571-012-9904-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/29/2012] [Indexed: 01/23/2023]
Abstract
The activation of the transient receptor potential vanilloid type 1 channel (TRPV1) has been correlated with oxidative and nitrosative stress and cell death in the nervous system. Our previous results indicate that TRPV1 activation in the adult retina can lead to constitutive and inducible nitric oxide synthase-dependent protein nitration and apoptosis. In this report, we have investigated the potential effects of TRPV1 channel activation on nitric oxide synthase (NOS) expression and function, and the putative participation of ionotropic glutamate receptors in retinal TRPV1-induced protein nitration, lipid peroxidation, and DNA fragmentation. Intravitreal injections of the classical TRPV1 agonist capsaicin up-regulated the protein expression of the inducible and endothelial NOS isoforms. Using 4,5-diaminofluorescein diacetate for nitric oxide (NO) imaging, we found that capsaicin also increased the production of NO in retinal blood vessels. Processes and perikarya of TRPV1-expressing neurons in the inner nuclear layer of the retina were found in the vicinity of nNOS-positive neurons, but those two proteins did not colocalize. Retinal explants exposed to capsaicin presented high protein nitration, lipid peroxidation, and cell death, which were observed in the inner nuclear and plexiform layers and in ganglion cells. This effect was partially blocked by AP-5, a NMDA glutamate receptor antagonist, but not by CNQX, an AMPA/kainate receptor antagonist. These data support a potential role for TRPV1 channels in physiopathological retinal processes mediated by NO, which at least in part involve glutamate release.
Collapse
Affiliation(s)
- Mauro Leonelli
- Laboratory of Cellular Neurobiology, Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil.
| | | | | |
Collapse
|
32
|
Fariss MW, Gilmour MI, Reilly CA, Liedtke W, Ghio AJ. Emerging mechanistic targets in lung injury induced by combustion-generated particles. Toxicol Sci 2013; 132:253-67. [PMID: 23322347 PMCID: PMC4447844 DOI: 10.1093/toxsci/kft001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/21/2012] [Indexed: 12/25/2022] Open
Abstract
The mechanism for biological effect following exposure to combustion-generated particles is incompletely defined. The identification of pathways regulating the acute toxicological effects of these particles provides specific targets for therapeutic manipulation in an attempt to impact disease following exposures. Transient receptor potential (TRP) cation channels were identified as "particle sensors" in that their activation was coupled with the initiation of protective responses limiting airway deposition and inflammatory responses, which promote degradation and clearance of the particles. TRPA1, V1, V4, and M8 have a capacity to mediate adverse effects after exposure to combustion-generated particulate matter (PM); relative contributions of each depend upon particle composition, dose, and deposition. Exposure of human bronchial epithelial cells to an organic extract of diesel exhaust particle was followed by TRPV4 mediating Ca(++) influx, increased RAS expression, mitogen-activated protein kinase signaling, and matrix metalloproteinase-1 activation. These novel pathways of biological effect can be targeted by compounds that specifically inhibit critical signaling reactions. In addition to TRPs and calcium biochemistry, humic-like substances (HLS) and cell/tissue iron equilibrium were identified as potential mechanistic targets in lung injury after particle exposure. In respiratory epithelial cells, iron sequestration by HLS in wood smoke particle (WSP) was associated with oxidant generation, cell signaling, transcription factor activation, and release of inflammatory mediators. Similar to WSP, cytotoxic insoluble nanosized spherical particles composed of HLS were isolated from cigarette smoke condensate. Therapies that promote bioelimination of HLS and prevent the disruption of iron homeostasis could function to reduce the harmful effects of combustion-generated PM exposure.
Collapse
Affiliation(s)
| | - M. Ian Gilmour
- †U.S. Environmental Protection Agency, Durham, North Carolina
| | - Christopher A. Reilly
- ‡Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah; and
| | - Wolfgang Liedtke
- §Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew J. Ghio
- †U.S. Environmental Protection Agency, Durham, North Carolina
| |
Collapse
|
33
|
Rehman R, Bhat YA, Panda L, Mabalirajan U. TRPV1 inhibition attenuates IL-13 mediated asthma features in mice by reducing airway epithelial injury. Int Immunopharmacol 2013; 15:597-605. [PMID: 23453702 DOI: 10.1016/j.intimp.2013.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 12/19/2022]
Abstract
Even though neurogenic axis is well known in asthma pathogenesis much attention had not been given on this aspect. Recent studies have reported the importance of TRP channels, calcium-permeable ion channels and key molecules in neurogenic axis, in asthma therapeutics. The role of TRPV1 channels has been underestimated in chronic respiratory diseases as TRPV1 knockout mice of C57BL/6 strains did not attenuate the features of these diseases. However, this could be due to strain differences in the distribution of airway capsaicin receptors. Here, we show that TRPV1 inhibition attenuates IL-13 induced asthma features by reducing airway epithelial injury in BALB/c mice. We found that IL-13 increased not only the lung TRPV1 levels but also TRPV1 expression in bronchial epithelia in BALB/c rather than in C57BL/6 mice. TRPV1 knockdown attenuated airway hyperresponsiveness, airway inflammation, goblet cell metaplasia and subepithelial fibrosis induced by IL-13 in BALB/c mice. Further, TRPV1 siRNA treatment reduced not only the cytosolic calpain and mitochondrial calpain 10 activities in the lung but also bronchial epithelial apoptosis indicating that TRPV1 siRNA might have corrected the intracellular and intramitochondrial calcium overload and its consequent apoptosis. Knockdown of IL-13 in allergen induced asthmatic mice reduced TRPV1, cytochrome c, and activities of calpain and caspase 3 in lung cytosol. Thus, these findings suggest that induction of TRPV1 with IL-13 in bronchial epithelia could lead to epithelial injury in in vivo condition. Since TRPV1 expression is correlated with human asthma severity, TRPV1 inhibition could be beneficial in attenuating airway epithelial injury and asthma features.
Collapse
Affiliation(s)
- Rakhshinda Rehman
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | | | | | | |
Collapse
|
34
|
Reilly CA. Cytochrome P450-Dependent Modification of Capsaicinoids: Pharmacological Inactivation and Bioactivation Mechanisms. ROLE OF CAPSAICIN IN OXIDATIVE STRESS AND CANCER 2013:107-129. [DOI: 10.1007/978-94-007-6317-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
35
|
Deering-Rice CE, Johansen ME, Roberts JK, Thomas KC, Romero EG, Lee J, Yost GS, Veranth JM, Reilly CA. Transient receptor potential vanilloid-1 (TRPV1) is a mediator of lung toxicity for coal fly ash particulate material. Mol Pharmacol 2011; 81:411-9. [PMID: 22155782 DOI: 10.1124/mol.111.076067] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Environmental particulate matter (PM) pollutants adversely affect human health, but the molecular basis is poorly understood. The ion channel transient receptor potential vanilloid-1 (TRPV1) has been implicated as a sensor for environmental PM and a mediator of adverse events in the respiratory tract. The objectives of this study were to determine whether TRPV1 can distinguish chemically and physically unique PM that represents important sources of air pollution; to elucidate the molecular basis of TRPV1 activation by PM; and to ascertain the contributions of TRPV1 to human lung cell and mouse lung tissue responses exposed to an insoluble PM agonist, coal fly ash (CFA1). The major findings of this study are that TRPV1 is activated by some, but not all of the prototype PM materials evaluated, with rank-ordered responses of CFA1 > diesel exhaust PM > crystalline silica; TRP melastatin-8 is also robustly activated by CFA1, whereas other TRP channels expressed by airway sensory neurons and lung epithelial cells that may also be activated by CFA1, including TRPs ankyrin 1 (A1), canonical 4α (C4α), M2, V2, V3, and V4, were either slightly (TRPA1) or not activated by CFA1; activation of TRPV1 by CFA1 occurs via cell surface interactions between the solid components of CFA1 and specific amino acid residues of TRPV1 that are localized in the putative pore-loop region; and activation of TRPV1 by CFA1 is not exclusive in mouse lungs but represents a pathway by which CFA1 affects the expression of selected genes in lung epithelial cells and airway tissue.
Collapse
|