1
|
Baer B, Putz ND, Riedmann K, Gonski S, Lin J, Ware LB, Toki S, Peebles RS, Cahill KN, Bastarache JA. Liraglutide pretreatment attenuates sepsis-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2023; 325:L368-L384. [PMID: 37489855 PMCID: PMC10639010 DOI: 10.1152/ajplung.00041.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 07/26/2023] Open
Abstract
There are no effective targeted therapies to treat acute respiratory distress syndrome (ARDS). Recently, the commonly used diabetes and obesity medications, glucagon-like peptide-1 (GLP-1) receptor agonists, have been found to have anti-inflammatory properties. We, therefore, hypothesized that liraglutide pretreatment would attenuate murine sepsis-induced acute lung injury (ALI). We used a two-hit model of ALI (sepsis+hyperoxia). Sepsis was induced by intraperitoneal injection of cecal slurry (CS; 2.4 mg/g) or 5% dextrose (control) followed by hyperoxia [HO; fraction of inspired oxygen ([Formula: see text]) = 0.95] or room air (control; [Formula: see text] = 0.21). Mice were pretreated twice daily with subcutaneous injections of liraglutide (0.1 mg/kg) or saline for 3 days before initiation of CS+HO. At 24-h post CS+HO, physiological dysfunction was measured by weight loss, severity of illness score, and survival. Animals were euthanized, and bronchoalveolar lavage (BAL) fluid, lung, and spleen tissues were collected. Bacterial burden was assessed in the lung and spleen. Lung inflammation was assessed by BAL inflammatory cell numbers, cytokine concentrations, lung tissue myeloperoxidase activity, and cytokine expression. Disruption of the alveolar-capillary barrier was measured by lung wet-to-dry weight ratios, BAL protein, and epithelial injury markers (receptor for advanced glycation end products and sulfated glycosaminoglycans). Histological evidence of lung injury was quantified using a five-point score with four parameters: inflammation, edema, septal thickening, and red blood cells (RBCs) in the alveolar space. Compared with saline treatment, liraglutide improved sepsis-induced physiological dysfunction and reduced lung inflammation, alveolar-capillary barrier disruption, and lung injury. GLP-1 receptor activation may hold promise as a novel treatment strategy for sepsis-induced ARDS. Additional studies are needed to better elucidate its mechanism of action.NEW & NOTEWORTHY In this study, pretreatment with liraglutide, a commonly used diabetes medication and glucagon-like peptide-1 (GLP-1) receptor agonist, attenuated sepsis-induced acute lung injury in a two-hit mouse model (sepsis + hyperoxia). Septic mice who received the drug were less sick, lived longer, and displayed reduced lung inflammation, edema, and injury. These therapeutic effects were not dependent on weight loss. GLP-1 receptor activation may hold promise as a new treatment strategy for sepsis-induced acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Brandon Baer
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Kyle Riedmann
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Samantha Gonski
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jason Lin
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Shinji Toki
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- United States Department of Veterans Affairs, Nashville, Tennessee, United States
| | - Katherine N Cahill
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
2
|
Guo J, Luo Y, Zuo J, Teng J, Shen B, Liu X. Echinacea Polyphenols Inhibit NLRP3-Dependent Pyroptosis, Apoptosis, and Necroptosis via Suppressing NO Production during Lipopolysaccharide-Induced Acute Lung Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7289-7298. [PMID: 37154470 DOI: 10.1021/acs.jafc.2c08382] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PANoptosis is an intricate programmed death pathway that involves the interaction between pyroptosis, apoptosis, and necroptosis. We systematically explored the protective effect of Echinacea polyphenols (EPP) against the lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the underlying mechanisms both in vitro and in vivo. We noted that EPP pretreatment could significantly alleviate LPS-induced lung tissue injury and pulmonary edema. EPP inhibited the PANoptosis by regulating the expression of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, gasdermin D, caspase-8, caspase-3, and mixed lineage kinase domain-like protein. Meanwhile, a comparative study of EPP and inducible nitric oxide synthase inhibitor S-methylisothiourea sulfate indicated that EPP may play a preprotective role in inhibiting PANoptosis via reducing the activity of inducible nitric oxide synthase and the production of nitric oxide (NO) during ALI. Our results clearly indicated that PANoptosis existed in LPS-induced ALI, and EPP pretreatment could provide obvious protective effects to LPS-induced ALI by inhibiting PANoptosis, which may be related to NO production.
Collapse
Affiliation(s)
- Jingjing Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Luo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingru Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang Teng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingyu Shen
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqiang Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
3
|
Nishida R, Suzuki D, Akimoto Y, Matsubara S, Hayakawa J, Ushiyama A, Sasa K, Miyamoto Y, Iijima T, Kamijo R. Exploring the pathophysiological mechanism of interstitial edema focusing on the role of macrophages and their interaction with the glycocalyx. J Oral Biosci 2023; 65:111-118. [PMID: 36640838 DOI: 10.1016/j.job.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Glycocalyx lines the vascular intraluminal space that regulates fluid movement between the intra- and extra-vascular compartments. The depletion of glycocalyx (GCX) is associated with leukocyte accumulation, possibly causing the endothelial cells to become hyperpermeable in various organs, including oral tissues. Whether neutrophils or macrophages are responsible for developing interstitial edema remains controversial. We explored the pathophysiological mechanism of interstitial edema by examining the role of reactive neutrophils and macrophages and their interactions with GCX. METHODS An anti-MHC class I antibody was administered intravenously to male BALB/c mice to induce pulmonary edema. Pulmonary edema was evaluated by measuring the lung wet-to-dry weight ratio. Changes in the GCX were evaluated by electron microscopy and measurements of the serum level of soluble syndecan-1. Heparin sulfate was administered to examine its protective effect on the GCX. The macrophages were depleted using clodronate to examine their role in developing edema. RESULTS The GCX degradation induced by the anti-MHC class I antibody was accompanied by increased serum syndecan-1 and heparan sulfate levels. Macrophage depletion inhibited the development of pulmonary edema, and the administration of supplemental heparin suppressed the edema. CONCLUSIONS We demonstrated that the degradation of the GCX induced by the anti-MHC class I antibody was suppressed by macrophage depletion. These results suggest that macrophages may play a key role in interstitial edema. Heparin inhibited both the degradation of the GCX and interstitial edema. This study's results may be extrapolated to develop an interventional strategy for inhibiting interstitial edema in various organs.
Collapse
Affiliation(s)
- Rie Nishida
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan; Department of Perioperative Medicine, Division of Anesthesiology, Showa University Dental Hospital, Tokyo, Japan
| | - Dai Suzuki
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy and Laboratory for Electron Microscopy, Kyorin University School of Medicine, Tokyo, Japan
| | - Sachie Matsubara
- Department of Anatomy and Laboratory for Electron Microscopy, Kyorin University School of Medicine, Tokyo, Japan
| | - Junri Hayakawa
- Department of Anatomy and Laboratory for Electron Microscopy, Kyorin University School of Medicine, Tokyo, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan
| | - Kiyohito Sasa
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Yoichi Miyamoto
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| | - Takehiko Iijima
- Department of Perioperative Medicine, Division of Anesthesiology, Showa University Dental Hospital, Tokyo, Japan.
| | - Ryutaro Kamijo
- Department of Biochemistry, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|
4
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Li T, Geng Z, Zhang J, Xu L, Zhu X. BP5 alleviates endotoxemia-induced acute lung injury by activating Nrf2 via dual regulation of the Keap1-Nrf2 interaction and the Akt (Ser473)/GSK3β (Ser9)/Fyn pathway. Free Radic Biol Med 2022; 193:304-318. [PMID: 36272670 DOI: 10.1016/j.freeradbiomed.2022.10.299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation play a crucial role in the pathogenesis of acute lung injury (ALI). Previously, pentapeptide bursopentin (BP5, Cys-Lys-Arg-Val-Tyr) was reported to possess significant antioxidant activity and inhibit lipopolysaccharides (LPS)-induced NF-κB activation in vitro, whereas little is known about its effects in vivo. In this study, we explored the effects of BP5 on endotoxemia-induced ALI in mice and the underlying molecular mechanisms. Our studies revealed that BP5 markedly improved survival and effectively alleviated lung injury by reducing overoxidation and excessive inflammatory response in endotoxemia mice. In LPS-stimulated mouse primary macrophages and RAW 264.7 cells, BP5 also exhibited antioxidant and anti-inflammatory properties by enhancing Nrf2 activation. Importantly, these beneficial effects were abolished by Nrf2 knockdown. To further elucidate the underlying mechanisms, we performed localized surface plasmon resonance (LSPR) assays, molecular docking, together with cell-based studies, and found that BP5 inhibited the Keap1-Nrf2 interaction to promote Nrf2 nuclear translocation and activation. Moreover, BP5-induced Nrf2 activation was shown to be accompanied by an increase in the phosphorylation of Akt (at Ser473) and GSK3β (at Ser9), and a decrease in Fyn nuclear accumulation both in vitro and in vivo. Pharmacologically inhibiting phosphorylation of Akt and GSK3β obviously enhanced Fyn nuclear accumulation in RAW 264.7 cells, which partially attenuated the promoting effect of BP5 on Nrf2 nuclear accumulation and activation. Furthermore, In Nrf2-/- mice, the protective effects of BP5 on the endotoxemia-induced ALI in WT mice were largely vanished. Our findings indicated that BP5 effectively protected endotoxemia-induced ALI against oxidative stress and inflammatory response, which are largely dependent on activation of the Nrf2 pathway. Underlying mechanisms include dual regulation of the Keap-Nrf2 interaction and the Akt (Ser473)/GSK3β (Ser9)/Fyn pathway.
Collapse
Affiliation(s)
- Tianxiang Li
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, South-east University, Nanjing, China.
| | - Zhirong Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Ju Zhang
- Wuhan Yangene Biological Technology Co, LTD, Yuechuang Center of HuaZhong Agricultural University, Wuhan, China.
| | - Lu Xu
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, South-east University, Nanjing, China.
| | - Xiaoli Zhu
- Department of Pulmonary Medicine, Zhongda Hospital, School of Medicine, South-east University, Nanjing, China.
| |
Collapse
|
6
|
Chen Q, Qin Z, Sun Y, Liu X, Pac Soo A, Chang E, Sun Q, Yi B, Wang DX, Zhao H, Ma D, Gu J. Dexmedetomidine Activates Akt, STAT6 and IRF4 Modulating Cytoprotection and Macrophage Anti-Inflammatory Phenotype Against Acute Lung Injury in vivo and in vitro. J Inflamm Res 2022; 15:2707-2720. [PMID: 35502244 PMCID: PMC9056075 DOI: 10.2147/jir.s357012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/13/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose This study aims to investigate the cytoprotective and anti-inflammatory effects of an α2-adrenoreceptor (α2-AR) agonist, dexmedetomidine (Dex), on lipopolysaccharides (LPS)-induced acute lung injury and underlying mechanisms with focus on alveolar macrophage polarization modulation. Methods C57BL/6 mice were intraperitoneally injected LPS (10 mg/kg) with or without Dex (25 µg/kg) and/or α2-AR antagonist atipamezole (Atip, 500 µg/kg). Lung tissues were then analysed to determine injuries. In vitro, human pulmonary epithelial cells (A549) and mice alveolar macrophages (MH-S) were exposed to LPS (10 ng/mL) with or without different concentrations of Dex (0.1–100 nM). Alveolar macrophage polarization, NLRP3 inflammasome activation and inflammatory responses were determined. PTEN/Akt signaling and its downstream transcriptional factors as targets for macrophage polarization were assessed. Results Dex treatment significantly reduced pro-inflammatory M1 macrophage polarization and NLRP3 inflammasome activation in the lungs relative to the mice treated with LPS. The similar pattern reduction of NLRP3 inflammasome activation by Dex was also found in A549 cells. Atip partly reversed the anti-inflammatory effects of Dex. In cultured alveolar macrophages, Dex reduced LPS-mediated expression of IL-1, −6 and TNF-α receptors while promoting alveolar macrophages differentiation towards a M2 anti-inflammatory phenotype. Additionally, LPS increased Akt signaling activation in a time-dependent manner, which was further activated by Dex via inhibiting phosphatase and tensin homolog (PTEN). The action of Dex on Akt signaling shifted alveolar macrophages from M1 to M2 phenotype through increasing STAT6 and IRF4 transcriptional factors. Conclusion Dex protected against LPS-induced lung injury and suppressed LPS-induced pulmonary inflammatory responses by attenuating the NLRP3 inflammasome activation and promoting anti-inflammatory M2 macrophage polarization.
Collapse
Affiliation(s)
- Qian Chen
- Department of Anaesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Zhigang Qin
- Department of Anaesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Yibing Sun
- Department of Anaesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, People’s Republic of China
| | - Xiangfeng Liu
- Department of Anaesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Aurelie Pac Soo
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Enqiang Chang
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Bin Yi
- Department of Anaesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
| | - Dong-Xin Wang
- Department of Anaesthesiology and Critical Care Medicine, Peking University First Hospital, Beijing, People’s Republic of China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea & Westminster Hospital, London, UK
- Daqing Ma, Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, UK, Tel +44 020 3315 8495, Fax +44 020 3315 5109, Email
| | - Jianteng Gu
- Department of Anaesthesiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, People’s Republic of China
- Correspondence: Jianteng Gu, Department of Anaesthesiology, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Road, Chongqing, People’s Republic of China, Tel +86 23 68765366, Fax +86 2365463270, Email
| |
Collapse
|
7
|
Bastarache JA, Smith K, Jesse JJ, Putz ND, Meegan JE, Bogart AM, Schaaf K, Ghosh S, Shaver CM, Ware LB. A two-hit model of sepsis plus hyperoxia causes lung permeability and inflammation. Am J Physiol Lung Cell Mol Physiol 2022; 322:L273-L282. [PMID: 34936510 PMCID: PMC11684993 DOI: 10.1152/ajplung.00227.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Mouse models of acute lung injury (ALI) have been instrumental for studies of the biological underpinnings of lung inflammation and permeability, but murine models of sepsis generate minimal lung injury. Our goal was to create a murine sepsis model of ALI that reflects the inflammation, lung edema, histological abnormalities, and physiological dysfunction that characterize ALI. Using a cecal slurry (CS) model of polymicrobial abdominal sepsis and exposure to hyperoxia (95%), we systematically varied the timing and dose of the CS injection, fluids and antibiotics, and dose of hyperoxia. We found that CS alone had a high mortality rate that was improved with the addition of antibiotics and fluids. Despite this, we did not see evidence of ALI as measured by bronchoalveolar lavage (BAL) cell count, total protein, C-X-C motif chemokine ligand 1 (CXCL-1) or by lung wet:dry weight ratio. Addition of hyperoxia [95% fraction of inspired oxygen ([Formula: see text])] to CS immediately after CS injection increased BAL cell counts, CXCL-1, and lung wet:dry weight ratio but was associated with 40% mortality. Splitting the hyperoxia treatment into two 12-h exposures (0-12 h and 24-36 h) after CS injection increased survival to 75% and caused significant lung injury compared with CS alone as measured by increased BAL total cell count (92,500 vs. 240,000, P = 0.0004), BAL protein (71 vs. 103 µg/mL, P = 0.0030), and lung wet:dry weight ratio (4.5 vs. 5.5, P = 0.0005), and compared with sham as measured by increased BAL CXCL-1 (20 vs. 2,372 pg/mL, P < 0.0001) and histological lung injury score (1.9 vs. 4.2, P = 0.0077). In addition, our final model showed evidence of lung epithelial [increased BAL and plasma receptor for advanced glycation end products (RAGE)] and endothelial (increased Syndecan-1 and sulfated glycosaminoglycans) injury. In conclusion, we have developed a clinically relevant mouse model of sepsis-induced ALI using intraperitoneal injection of CS, antibiotics and fluids, and hyperoxia. This clinically relevant model can be used for future studies of sepsis-induced ALI.
Collapse
Affiliation(s)
- Julie A Bastarache
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kyle Smith
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jordan J Jesse
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nathan D Putz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jamie E Meegan
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Avery M Bogart
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Kaitlyn Schaaf
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Ciara M Shaver
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Xu J, Wang L, Yang Q, Ma Q, Zhou Y, Cai Y, Mao X, Da Q, Lu T, Su Y, Bagi Z, Lucas R, Liu Z, Hong M, Ouyang K, Huo Y. Deficiency of Myeloid Pfkfb3 Protects Mice From Lung Edema and Cardiac Dysfunction in LPS-Induced Endotoxemia. Front Cardiovasc Med 2021; 8:745810. [PMID: 34660743 PMCID: PMC8511447 DOI: 10.3389/fcvm.2021.745810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022] Open
Abstract
Sepsis, a pathology resulting from excessive inflammatory response that leads to multiple organ failure, is a major cause of mortality in intensive care units. Macrophages play an important role in the pathophysiology of sepsis. Accumulating evidence has suggested an upregulated rate of aerobic glycolysis as a key common feature of activated proinflammatory macrophages. Here, we identified a crucial role of myeloid 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3), a glycolytic activator in lipopolysaccharide (LPS)-induced endotoxemia in mice. Pfkfb3 expression is substantially increased in bone marrow derived macrophages (BMDMs) treated with LPS in vitro and in lung macrophages of mice challenged with LPS in vivo. Myeloid-specific knockout of Pfkfb3 in mice protects against LPS-induced lung edema, cardiac dysfunction and hypotension, which were associated with decreased expression of interleukin 1 beta (Il1b), interleukin 6 (Il6) and nitric oxide synthase 2 (Nos2), as well as reduced infiltration of neutrophils and macrophages in lung tissue. Pfkfb3 ablation in cultured macrophages attenuated LPS-induced glycolytic flux, resulting in a decrease in proinflammatory gene expression. Mechanistically, Pfkfb3 ablation or inhibition with a Pfkfb3 inhibitor AZ26 suppresses LPS-induced proinflammatory gene expression via the NF-κB signaling pathway. In summary, our study reveals the critical role of Pfkfb3 in LPS-induced sepsis via reprogramming macrophage metabolism and regulating proinflammatory gene expression. Therefore, PFKFB3 is a potential target for the prevention and treatment of inflammatory diseases such as sepsis.
Collapse
Affiliation(s)
- Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lina Wang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qiuhua Yang
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qian Ma
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yaqi Zhou
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yongfeng Cai
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Xiaoxiao Mao
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Qingen Da
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tammy Lu
- Oxford College, Emory University, Oxford, GA, United States
| | - Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zsolt Bagi
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Rudolf Lucas
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Zhiping Liu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Kunfu Ouyang
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Huo
- Department of Cellular Biology and Anatomy, Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
9
|
Deficiency of the novel high mobility group protein HMGXB4 protects against systemic inflammation-induced endotoxemia in mice. Proc Natl Acad Sci U S A 2021; 118:2021862118. [PMID: 33563757 DOI: 10.1073/pnas.2021862118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a major cause of mortality in intensive care units, which results from a severely dysregulated inflammatory response that ultimately leads to organ failure. While antibiotics can help in the early stages, effective strategies to curtail inflammation remain limited. The high mobility group (HMG) proteins are chromosomal proteins with important roles in regulating gene transcription. While HMGB1 has been shown to play a role in sepsis, the role of other family members including HMGXB4 remains unknown. We found that expression of HMGXB4 is strongly induced in response to lipopolysaccharide (LPS)-elicited inflammation in murine peritoneal macrophages. Genetic deletion of Hmgxb4 protected against LPS-induced lung injury and lethality and cecal ligation and puncture (CLP)-induced lethality in mice, and attenuated LPS-induced proinflammatory gene expression in cultured macrophages. By integrating genome-wide transcriptome profiling and a publicly available ChIP-seq dataset, we identified HMGXB4 as a transcriptional activator that regulates the expression of the proinflammatory gene, Nos2 (inducible nitric oxide synthase 2) by binding to its promoter region, leading to NOS2 induction and excessive NO production and tissue damage. Similar to Hmgxb4 ablation in mice, administration of a pharmacological inhibitor of NOS2 robustly decreased LPS-induced pulmonary vascular permeability and lethality in mice. Additionally, we identified the cell adhesion molecule, ICAM1, as a target of HMGXB4 in endothelial cells that facilitates inflammation by promoting monocyte attachment. In summary, our study reveals a critical role of HMGXB4 in exacerbating endotoxemia via transcriptional induction of Nos2 and Icam1 gene expression and thus targeting HMGXB4 may be an effective therapeutic strategy for the treatment of sepsis.
Collapse
|
10
|
Regulatory role of Gpr84 in the switch of alveolar macrophages from CD11b lo to CD11b hi status during lung injury process. Mucosal Immunol 2020; 13:892-907. [PMID: 32719411 DOI: 10.1038/s41385-020-0321-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a kind of comprehensive disease with excessive inflammation and high clinical mortality. Multiple immune cells are involved in the ARDS process. Amongst these populations, lung-resident alveolar macrophages (AMs) are known to participate in the regulation of ARDS. GPR84, a metabolite-sensing GPCR sensing medium-chain fatty acids (MCFAs), is highly expressed in LPS-challenged macrophages and considered as a pro-inflammatory receptor. In this study, it was hypothesized that Gpr84 may be involved in pulmonary homeostasis via its regulatory effect on the switch of AM status. In LPS-induced ALI mouse model, we identified the internal LPS-induced switch of AMs from CD11blo to more inflamed CD11bhi status, which is deeply related to the exacerbated imbalance of homeostasis in the lung injury process. Gpr84 was highly expressed in ALI lung tissues and involved in cytokine release, phagocytosis and status switch of AMs through positive regulatory crosstalk with TLR4-related pathways via CD14 and LBP, which relied on Akt, Erk1/2, and STAT3. If conserved in humans, GPR84 may represent a potential therapeutic target for ARDS.
Collapse
|
11
|
Kumar V. Pulmonary Innate Immune Response Determines the Outcome of Inflammation During Pneumonia and Sepsis-Associated Acute Lung Injury. Front Immunol 2020; 11:1722. [PMID: 32849610 PMCID: PMC7417316 DOI: 10.3389/fimmu.2020.01722] [Citation(s) in RCA: 390] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
The lung is a primary organ for gas exchange in mammals that represents the largest epithelial surface in direct contact with the external environment. It also serves as a crucial immune organ, which harbors both innate and adaptive immune cells to induce a potent immune response. Due to its direct contact with the outer environment, the lung serves as a primary target organ for many airborne pathogens, toxicants (aerosols), and allergens causing pneumonia, acute respiratory distress syndrome (ARDS), and acute lung injury or inflammation (ALI). The current review describes the immunological mechanisms responsible for bacterial pneumonia and sepsis-induced ALI. It highlights the immunological differences for the severity of bacterial sepsis-induced ALI as compared to the pneumonia-associated ALI. The immune-based differences between the Gram-positive and Gram-negative bacteria-induced pneumonia show different mechanisms to induce ALI. The role of pulmonary epithelial cells (PECs), alveolar macrophages (AMs), innate lymphoid cells (ILCs), and different pattern-recognition receptors (PRRs, including Toll-like receptors (TLRs) and inflammasome proteins) in neutrophil infiltration and ALI induction have been described during pneumonia and sepsis-induced ALI. Also, the resolution of inflammation is frequently observed during ALI associated with pneumonia, whereas sepsis-associated ALI lacks it. Hence, the review mainly describes the different immune mechanisms responsible for pneumonia and sepsis-induced ALI. The differences in immune response depending on the causal pathogen (Gram-positive or Gram-negative bacteria) associated pneumonia or sepsis-induced ALI should be taken in mind specific immune-based therapeutics.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, Faculty of Medicine, School of Clinical Medicine, Mater Research, University of Queensland, Brisbane, QLD, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Anti-Inflammatory Activity of Diterpenoids from Celastrus orbiculatus in Lipopolysaccharide-Stimulated RAW264.7 Cells. J Immunol Res 2020; 2020:7207354. [PMID: 32802895 PMCID: PMC7414338 DOI: 10.1155/2020/7207354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022] Open
Abstract
Celastrus orbiculatus Thunb has been known as an ethnopharmacological medicinal plant for antitumor, anti-inflammatory, and analgesic effects. Although various pharmacological studies of C. orbiculatus extract has been reported, an anti-inflammatory mechanism study of their phytochemical constituents has not been fully elucidated. In this study, compounds 1-17, including undescribed podocarpane-type trinorditerpenoid (3), were purified from C. orbiculatus and their chemical structure were determined by high-resolution electrospray ionization mass (HRESIMS) and nuclear magnetic resonance (NMR) spectroscopic data. To investigate the anti-inflammatory activity of compounds 1-17, nitric oxide (NO) secretion was evaluated in LPS-treated murine macrophages, RAW264.7 cells. Among compounds 1-17, deoxynimbidiol (1) and new trinorditerpenoid (3) showed the most potent inhibitory effects (IC50: 4.9 and 12.6 μM, respectively) on lipopolysaccharide- (LPS-) stimulated NO releases as well as proinflammatory mediators, such as inducible nitric oxide (iNOS), cyclooxygenase- (COX-) 2, interleukin- (IL-) 1β, IL-6, and tumor necrosis factor- (TNF-) α. Its inhibitory activity of proinflammatory mediators is contributed by suppressing the activation of nuclear transcription factor- (NF-) κB and mitogen-activated protein kinase (MAPK) signaling cascades including p65, inhibition of NF-κB (IκB), extracellular signal-regulated kinase (ERK), c-Jun NH2-terminal kinase (JNK), and p38. Therefore, these results demonstrated that diterpenoids 1 and 3 obtained from C. orbiculatus may be considered a potential candidate for the treatment of inflammatory diseases.
Collapse
|
13
|
Ramirez DC, Gomez Mejiba SE. Pulmonary Neutrophilic Inflammation and Noncommunicable Diseases: Pathophysiology, Redox Mechanisms, Biomarkers, and Therapeutics. Antioxid Redox Signal 2020; 33:211-227. [PMID: 32319787 DOI: 10.1089/ars.2020.8098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Pulmonary neurophilic inflammation (PNI) is the homing and activation of neutrophil with damage to the microvasculature. This process is involved in pulmonary damage in patients exposed to airborne pollutants (exogenous stressors) and also to systemic inflammation/oxidative stress (endogenous stressors) associated with noncommunicable diseases (NCDs). Recent Advances: PNI is an important trigger of the early onset and progression of NCD in susceptible patients exposed to airborne pollutants. Irritation of the lung microvasculature by exogenous and endogenous stressors causes PNI. Circulating endogenous stressors in NCD can cause PNI. Critical Issues: Air pollution-triggered PNI causes increased circulating endogenous stressors that can trigger NCD in susceptible patients. Systemic inflammation/oxidative stress associated with NCD can cause PNI. Inflammation/end-oxidation products of macromolecules are also potential biomarkers and therapeutic targets for NCD-triggered PNI- and PNI-triggered NCD. Future Directions: Understanding the molecular mechanism of PNI triggered by exogenous or endogenous stressors will help explain the early onset of NCD in susceptible patients exposed to air pollution. It can also help undercover biomarkers and mechanism-based therapeutic targets in air pollutant-triggered PNI, PNI-triggered NCD, and NCD-triggered PNI.
Collapse
Affiliation(s)
- Dario C Ramirez
- Laboratory of Experimental and Translational Medicine, IMIBIO-SL, CCT-San Luis, CONICET, School of Chemistry, Biochemistry and Pharmacy, National University of San Luis, San Luis, Argentina
| | - Sandra E Gomez Mejiba
- Laboratory of Experimental Therapeutics and Nutrition, IMIBIO-SL, CCT-San Luis, CONICET, School of Health Sciences, National University of San Luis, San Luis, Argentina
| |
Collapse
|
14
|
Park KH, Chung EY, Choi YN, Jang HY, Kim JS, Kim GB. Oral administration of Ulmus davidiana extract suppresses interleukin-1β expression in LPS-induced immune responses and lung injury. Genes Genomics 2019; 42:87-95. [PMID: 31736005 DOI: 10.1007/s13258-019-00883-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/28/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ulmus davidiana (UD) is a traditional Korean herb medicine that is used to treat inflammatory disorders. UD has been shown to modulate a number of inflammatory processes in vitro or in vivo studies. However, the molecular mechanisms of UD on lipopolysaccharide (LPS)-induced acute lung injury remain to be understood. OBJECTIVE The primary objective of this study is to determine the effect of UD bark water extract on LPS-induced immune responses and lung injury using both in vitro and in vivo models. METHODS RAW 264.7 cells and a rat model of acute lung injury (ALI) were used to study the effects of UD on several parameters. Nitrite level, lactate dehydrogenase (LDH) level, and superoxide dismutase (SOD) activities were measured. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and plasma transaminase activities in blood were also determined. Pathological investigations were also performed. RESULTS LPS infusion resulted in elevated IL-1β mRNA expression, nitrite levels, TNF-α expression, and IL-1β expression in RAW 264.7 cells. LPS infusion also increased levels of nitrite/nitrate, total protein, LDH, and TNF-α in bronchoalveolar lavage fluid, but reduced SOD levels in ex vivo and in vivo models. UD administration ameliorated all these inflammatory markers. In particular, treatment with UD reduced LPS-induced nitrite production in RAW 264.7 cells in a dose-dependent manner. UD treatment also counteracted the LPS-induced increase in alanine aminotransferase (ALT) and aspartate transaminase (AST) activity in rat plasma, leading to a significant reduction in ALT and AST activity. CONCLUSIONS The results revealed that UD treatment reduces LPS-induced nitrite production, IL-1β mRNA expression, and TNF-α expression. In addition, LPS-induced decrease in SOD level is significantly elevated by UD administration. These results indicate that UD extract merits consideration as a potential drug for treating and/or preventing ALI.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Department of Oriental Pharmaceutical Development, Nambu University, Gwangju, 62271, Republic of Korea.,Department of Emergency Medical Rescue, Nambu University, Gwangju, 62271, Republic of Korea
| | - Eun-Yong Chung
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary's Hospital, Catholic University of Korea, Bucheon, 14647, Republic of Korea
| | - Yu-Na Choi
- Department of Anesthesiology and Pain Medicine, Bucheon St. Mary's Hospital, Catholic University of Korea, Bucheon, 14647, Republic of Korea
| | - Hye-Yeon Jang
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Chonbuk National University Medical School, Jeonju, 54907, Republic of Korea.
| | - Gi-Beum Kim
- Eouidang Agricultural Company, Wanju, 55360, Republic of Korea.
| |
Collapse
|
15
|
Jiang L, Jiang Q, Yang S, Huang S, Han X, Duan J, Pan S, Zhao M, Guo S. GYY4137 attenuates LPS-induced acute lung injury via heme oxygenase-1 modulation. Pulm Pharmacol Ther 2018; 54:77-86. [PMID: 30605726 DOI: 10.1016/j.pupt.2018.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 12/16/2018] [Accepted: 12/30/2018] [Indexed: 12/16/2022]
Abstract
GYY4137, a slow-releasing hydrogen sulfide (H2S) donor, has been reported to exert anti-inflammatory activity and protect against sepsis. Heme oxygenase-1 (HO-1) is an important anti-inflammatory heat shock protein and plays a similar effect on sepsis. This study investigated the role of GYY4137 in acute lung injury (ALI) via HO-1 regulation. Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide (LPS) and the mechanism of anti-inflammatory effects of GYY4137 was investigated in mice and RAW264.7 cells. GYY4137 reduced the LPS-mediated pulmonary injury and neutrophil infiltration, and inhibited the LPS-induced production of proinflammatory cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Moreover, GYY4137 suppressed the LPS-evoked NF-κB activation in RAW264.7 cells. GYY4137, not time-expired GYY4137 significantly induced HO-1 expression compared with the LPS group. The beneficial effects of GYY4137 above were reversed by the HO-1 inhibitor tin protoporphyrin (SnPP). These results suggest an anti-inflammatory effect and a therapeutic role of GYY4137 in LPS-induced ALI via HO-1 regulation.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- School of Statistics, Beijing Normal University, Beijing, China
| | - Songlin Yang
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shicong Huang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoli Han
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Duan
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shangha Pan
- The Key Hepatosplenic Surgery Laboratory, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingyan Zhao
- Department of ICU, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Shuliang Guo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Rungsung S, Singh TU, Rabha DJ, Kumar T, Cholenahalli Lingaraju M, Parida S, Paul A, Sahoo M, Kumar D. Luteolin attenuates acute lung injury in experimental mouse model of sepsis. Cytokine 2018; 110:333-343. [DOI: 10.1016/j.cyto.2018.03.042] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/24/2018] [Accepted: 03/30/2018] [Indexed: 12/30/2022]
|
17
|
Wang L, Mehta S, Ahmed Y, Wallace S, Pape MC, Gill SE. Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils. Front Immunol 2018; 9:1743. [PMID: 30116240 PMCID: PMC6082932 DOI: 10.3389/fimmu.2018.01743] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 07/16/2018] [Indexed: 01/06/2023] Open
Abstract
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. Thus, we hypothesize that human PMVEC apoptosis is required for loss of PMVEC barrier function under septic conditions in vitro. To assess this hypothesis, human PMVECs cultured alone or in coculture with PMN were stimulated with PBS or cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) in the absence or presence of a pan-caspase inhibitor, Q-VD, or specific caspase inhibitors. PMVEC barrier function was assessed by transendothelial electrical resistance (TEER), as well as fluoroisothiocyanate-labeled dextran and Evans blue-labeled albumin flux across PMVEC monolayers. PMVEC apoptosis was identified by (1) loss of cell membrane polarity (Annexin V), (2) caspase activation (FLICA), and (3) DNA fragmentation [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)]. Septic stimulation of human PMVECs cultured alone resulted in loss of barrier function (decreased TEER and increased macromolecular flux) associated with increased apoptosis (increased Annexin V, FLICA, and TUNEL staining). In addition, treatment of septic PMVEC cultured alone with Q-VD decreased PMVEC apoptosis and prevented septic PMVEC barrier dysfunction. In septic PMN-PMVEC cocultures, there was greater trans-PMVEC macromolecular flux (both dextran and albumin) vs. PMVEC cultured alone. PMN presence also augmented septic PMVEC caspase activation (FLICA staining) vs. PMVEC cultured alone but did not affect septic PMVEC apoptosis. Importantly, pan-caspase inhibition (Q-VD treatment) completely attenuated septic PMN-dependent PMVEC barrier dysfunction. Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
Collapse
Affiliation(s)
- Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada
| | - Yousuf Ahmed
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Shelby Wallace
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | - M Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Medicine, Western University, London, ON, Canada.,Division of Respirology, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Western University, London, ON, Canada
| |
Collapse
|
18
|
Alternative and Natural Therapies for Acute Lung Injury and Acute Respiratory Distress Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2476824. [PMID: 29862257 PMCID: PMC5976962 DOI: 10.1155/2018/2476824] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 04/08/2018] [Indexed: 01/17/2023]
Abstract
Introduction Acute respiratory distress syndrome (ARDS) is a complex clinical syndrome characterized by acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure and death. Current best practice for ARDS involves “lung-protective ventilation,” which entails low tidal volumes and limiting the plateau pressures in mechanically ventilated patients. Although considerable progress has been made in understanding the pathogenesis of ARDS, little progress has been made in the development of specific therapies to combat injury and inflammation. Areas Covered In recent years, several natural products have been studied in experimental models and have been shown to inhibit multiple inflammatory pathways associated with acute lung injury and ARDS at a molecular level. Because of the pleiotropic effects of these agents, many of them also activate antioxidant pathways through nuclear factor erythroid-related factor 2, thereby targeting multiple pathways. Several of these agents are prescribed for treatment of inflammatory conditions in the Asian subcontinent and have shown to be relatively safe. Expert Commentary Here we review natural remedies shown to attenuate lung injury and inflammation in experimental models. Translational human studies in patients with ARDS may facilitate treatment of this devastating disease.
Collapse
|
19
|
Loeser K, Seemann S, König S, Lenhardt I, Abdel-Tawab M, Koeberle A, Werz O, Lupp A. Protective Effect of Casperome ®, an Orally Bioavailable Frankincense Extract, on Lipopolysaccharide- Induced Systemic Inflammation in Mice. Front Pharmacol 2018; 9:387. [PMID: 29731716 PMCID: PMC5921439 DOI: 10.3389/fphar.2018.00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Introduction: Despite recent advances in critical care, sepsis remains a crucial cause of morbidity and mortality in intensive care units. Therefore, the identification of new therapeutic strategies is of great importance. Since ancient times, frankincense is used in traditional medicine for the treatment of chronic inflammatory disorders such as rheumatoid arthritis. Thus, the present study intends to evaluate if Casperome® (Casp), an orally bioavailable soy lecithin-based formulation of standardized frankincense extract, is able to ameliorate systemic effects and organ damages induced by severe systemic inflammation using a murine model of sepsis, i.e., intraperitoneal administration of lipopolysaccharides (LPS). Methods: Male 60-day-old mice were assigned to six treatment groups: (1) control, (2) LPS, (3) soy lecithin (blank lecithin without frankincense extract), (4) Casp, (5) soy lecithin plus LPS, or (6) Casp plus LPS. Soy lecithin and Casp were given 3 h prior to LPS treatment; 24 h after LPS administration, animals were sacrificed and health status and serum cytokine levels were evaluated. Additionally, parameters representing liver damage or liver function and indicating oxidative stress in different organs were determined. Furthermore, markers for apoptosis and immune cell redistribution were assessed by immunohistochemistry in liver and spleen. Results: LPS treatment caused a decrease in body temperature, blood glucose levels, liver glycogen content, and biotransformation capacity along with an increase in serum cytokine levels and oxidative stress in various organs. Additionally, apoptotic processes were increased in spleen besides a pronounced immune cell infiltration in both liver and spleen. Pretreatment with Casp significantly improved health status, blood glucose values, and body temperature of the animals, while serum levels of pro-inflammatory cytokines and oxidative stress in all organs tested were significantly diminished. Finally, apoptotic processes in spleen, liver glycogen loss, and immune cell infiltration in liver and spleen were distinctly reduced. Casp also appears to induce various cytochromeP450 isoforms, thus causing re-establishment of liver biotransformation capacity in LPS-treated mice. Conclusion: Casp displayed anti-inflammatory, anti-oxidative, and hepatoprotective effects. Thus, orally bioavailable frankincense extracts may serve as a new supportive treatment option in acute systemic inflammation and accompanied liver dysfunction.
Collapse
Affiliation(s)
- Konstantin Loeser
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany.,Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Semjon Seemann
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | - Stefanie König
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Isabell Lenhardt
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| | | | - Andreas Koeberle
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Chair of Pharmaceutical Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Amelie Lupp
- Institute of Pharmacology and Toxicology, Jena University Hospital, Jena, Germany
| |
Collapse
|
20
|
Jia L, Wang Y, Wang Y, Ma Y, Shen J, Fu Z, Wu Y, Su S, Zhang Y, Cai Z, Wang J, Xiang M. Heme Oxygenase-1 in Macrophages Drives Septic Cardiac Dysfunction via Suppressing Lysosomal Degradation of Inducible Nitric Oxide Synthase. Circ Res 2018; 122:1532-1544. [PMID: 29669713 DOI: 10.1161/circresaha.118.312910] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/02/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
RATIONALE To date, our understanding of the role of HO-1 (heme oxygenase-1) in inflammatory diseases has mostly been limited to its catalytic function and the potential for its heme-related catabolic products to suppress inflammation and oxidative stress. Whether and how HO-1 in macrophages plays a role in the development of septic cardiac dysfunction has never been explored. OBJECTIVE Here, we investigated the role of macrophage-derived HO-1 in septic cardiac dysfunction. METHODS AND RESULTS Intraperitoneal injection of lipopolysaccharide significantly activated HO-1 expression in cardiac infiltrated macrophages. Surprisingly, we found that myeloid conditional HO-1 deletion in mice evoked resistance to lipopolysaccharide-triggered septic cardiac dysfunction and lethality in vivo, which was accompanied by reduced cardiomyocyte apoptosis in the septic hearts and decreased peroxynitrite production and iNOS (inducible NO synthase) in the cardiac infiltrated macrophages, whereas proinflammatory cytokine production and macrophage infiltration were unaltered. We further demonstrated that HO-1 suppression abolished the lipopolysaccharide-induced iNOS protein rather than mRNA expression in macrophages. Moreover, we confirmed that the inhibition of HO-1 promoted iNOS degradation through a lysosomal rather than proteasomal pathway in macrophages. Suppression of the lysosomal degradation of iNOS by bafilomycin A1 drove septic cardiac dysfunction in myeloid HO-1-deficient mice. Mechanistically, we demonstrated that HO-1 interacted with iNOS at the flavin mononucleotide domain, which further prevented iNOS conjugation with LC3 (light chain 3) and subsequent lysosomal degradation in macrophages. These effects were independent of HO-1's catabolic products: ferrous ion, carbon monoxide, and bilirubin. CONCLUSIONS Our results indicate that HO-1 in macrophages drives septic cardiac dysfunction. The mechanistic insights provide potential therapeutic targets to treat septic cardiac dysfunction.
Collapse
Affiliation(s)
- Liangliang Jia
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yidong Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuankun Ma
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Shen
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zurong Fu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Wu
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng'an Su
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhao Zhang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhejun Cai
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian'an Wang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meixiang Xiang
- From the Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Inhibition of Murine Pulmonary Microvascular Endothelial Cell Apoptosis Promotes Recovery of Barrier Function under Septic Conditions. Mediators Inflamm 2017; 2017:3415380. [PMID: 28250575 PMCID: PMC5303866 DOI: 10.1155/2017/3415380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 12/13/2022] Open
Abstract
Sepsis is characterized by injury of the pulmonary microvasculature and the pulmonary microvascular endothelial cells (PMVEC), leading to barrier dysfunction and acute respiratory distress syndrome (ARDS). Our recent work identified a strong correlation between PMVEC apoptosis and microvascular leak in septic mice in vivo, but the specific role of apoptosis in septic PMVEC barrier dysfunction remains unclear. Thus, we hypothesize that PMVEC apoptosis is likely required for PMVEC barrier dysfunction under septic conditions in vitro. Septic stimulation (mixture of tumour necrosis factor α, interleukin 1β, and interferon γ [cytomix]) of isolated murine PMVEC resulted in a significant loss of barrier function as early as 4 h after stimulation, which persisted until 24 h. PMVEC apoptosis, as reflected by caspase activation, DNA fragmentation, and loss of membrane polarity, was first apparent at 8 h after cytomix. Pretreatment of PMVEC with the pan-caspase inhibitor Q-VD significantly decreased septic PMVEC apoptosis and was associated with reestablishment of PMVEC barrier function at 16 and 24 h after stimulation but had no effect on septic PMVEC barrier dysfunction over the first 8 h. Collectively, our data suggest that early septic murine PMVEC barrier dysfunction driven by proinflammatory cytokines is not mediated through apoptosis, but PMVEC apoptosis contributes to late septic PMVEC barrier dysfunction.
Collapse
|
22
|
Bittencourt-Mernak MI, Pinheiro NM, Santana FPR, Guerreiro MP, Saraiva-Romanholo BM, Grecco SS, Caperuto LC, Felizardo RJF, Câmara NOS, Tibério IFLC, Martins MA, Lago JHG, Prado CM. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L217-L230. [PMID: 27881407 DOI: 10.1152/ajplung.00444.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/27/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023] Open
Abstract
Sakuranetin is the main isolate flavonoid from Baccharis retusa (Asteraceae) leaves and exhibits anti-inflammatory and antioxidative activities. Acute respiratory distress syndrome is an acute failure of the respiratory system for which effective treatment is urgently necessary. This study investigated the preventive and therapeutic effects of sakuranetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Animals were treated with intranasal sakuranetin 30 min before or 6 h after instillation of LPS. Twenty-four hours after ALI was induced, lung function, inflammation, macrophages population markers, collagen fiber deposition, the extent of oxidative stress, and the expression of matrix metalloprotease-9 (MMP-9), tissue inhibitor of MMP-9 (TIMP-1) and NF-κB were evaluated. The animals began to show lung alterations 6 h after LPS instillation, and these changes persisted until 24 h after LPS administration. Preventive and therapeutic treatment with sakuranetin reduced the neutrophils in the peripheral blood and in the bronchial alveolar lavage. Sakuranetin treatment also reduced macrophage populations, particularly that of M1-like macrophages. In addition, sakurnaetin treatment reduced keratinocyte-derived chemokines (IL-8 homolog) and NF-κB levels, collagen fiber formation, MMM-9 and TIMP-1-positive cells, and oxidative stress in lung tissues compared with LPS animals treated with vehicle. Finally, sakuranetin treatment also reduced total protein, and the levels of TNF-α and IL-1β in the lung. This study shows that sakuranetin prevented and reduced pulmonary inflammation induced by LPS. Because sakuranetin modulates oxidative stress, the NF-κB pathway, and lung function, it may constitute a novel therapeutic candidate to prevent and treat ALI.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Marina P Guerreiro
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil
| | - Beatriz M Saraiva-Romanholo
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,University City of São Paulo (UNICID), São Paulo, Brazil.,Institute of Medical Assistance to the State Public Servant of São Paulo (IAMSPE), São Paulo, Brazil
| | - Simone S Grecco
- Earth and Exact Science, Federal University of Brazil, São Paulo, Brazil
| | - Luciana C Caperuto
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil
| | - Raphael J F Felizardo
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil.,Immunology Department, Biological Science Institute, University of São Paulo, São Paulo, Brazil; and
| | | | - Mílton A Martins
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Carla M Prado
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil; .,Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Bioscience Department, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
23
|
Lee JW, Park JW, Shin NR, Park SY, Kwon OK, Park HA, Lim Y, Ryu HW, Yuk HJ, Kim JH, Oh SR, Ahn KS. Picrasma quassiodes (D. Don) Benn. attenuates lipopolysaccharide (LPS)-induced acute lung injury. Int J Mol Med 2016; 38:834-44. [PMID: 27431288 DOI: 10.3892/ijmm.2016.2669] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 06/15/2016] [Indexed: 12/28/2022] Open
Abstract
Picrasma quassiodes (D.Don) Benn. (PQ) is a medicinal herb belonging to the family Simaroubaceae and is used as a traditional herbal remedy for various diseases. In this study, we evaluated the effects of PQ on airway inflammation using a mouse model of lipopolysaccharide (LPS)-induced acute lung injury (ALI) and LPS-stimulated raw 264.7 cells. ALI was induced in C57BL/6 mice by the intranasal administration of LPS, and PQ was administered orally 3 days prior to exposure to LPS. Treatment with PQ significantly attenuated the infiltration of inflammatory cells in the bronchoalveolar lavage fluid (BALF). PQ also decreased the production of reactive oxygen species (ROS) and pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in BALF. In addition, PQ inhibited airway inflammation by reducing the expression of inducible nitric oxide synthase (iNOS) and by increasing the expression of heme oxygenase-1 (HO-1) in the lungs. Furthermore, we demonstrated that PQ blocked the activation of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the lungs of mice with LPS-induced ALI. In the LPS-stimulated RAW 264.7 cells, PQ inhibited the release of pro-inflammatory cytokines and increased the mRNA expression of monocyte chemoattractant protein-1 (MCP-1). Treatment with PQ decreased the translocation of nuclear factor (NF)-κB to the nucleus, and increased the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and the expression of HO-1. PQ also inhibited the activation of p38 in the LPS-stimulated RAW 264.7 cells. Taken together, our findings demonstrate that PQ exerts anti-inflammatory effects against LPS-induced ALI, and that these effects are associated with the modulation of iNOS, HO-1, NF-κB and MAPK signaling. Therefore, we suggest that PQ has therapeutic potential for use in the treatment of ALI.
Collapse
Affiliation(s)
- Jae-Won Lee
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ji-Won Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Na-Rae Shin
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - So-Yeon Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Ok-Kyoung Kwon
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyun Ah Park
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Yourim Lim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Hyung Won Ryu
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Heung Joo Yuk
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Jung Hee Kim
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Sei-Ryang Oh
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| | - Kyung-Seop Ahn
- Natural Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungju-si, Chungbuk 363‑883, Republic of Korea
| |
Collapse
|
24
|
Classically Activated Macrophages Protect against Lipopolysaccharide-induced Acute Lung Injury by Expressing Amphiregulin in Mice. Anesthesiology 2016; 124:1086-99. [PMID: 26808632 DOI: 10.1097/aln.0000000000001026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Alveolar macrophages (AMs) activated into M1 phenotype are involved in the development of lipopolysaccharide-induced acute lung injury (ALI). However, whether AMs express amphiregulin and what roles amphiregulin plays in lipopolysaccharide-induced ALI remain poorly understood. METHODS Acute lung injury was induced by intratracheal instillation of lipopolysaccharide in male C57BL/6 mice. Lung injury scores, level of protein, and level of neutrophils in bronchial alveolar lavage fluid of lipopolysaccharide-induced ALI mice were compared with those in mice challenged with recombinant exogenous amphiregulin and antiamphiregulin antibody. Amphiregulin expression in macrophages and neutrophils in bronchial alveolar lavage fluid of lipopolysaccharide-induced ALI mice was determined by using immunofluorescence technique and further detected in M0, M1, and M2 phenotypes of both peritoneal macrophages and AMs. The effect of amphiregulin on apoptosis of MLE12 cells and activation of epithelial growth factor receptor-AKT pathway were, respectively, examined by using flow cytometry and western blotting. RESULTS Alveolar macrophages were found to highly express amphiregulin in ALI mice. Amphiregulin neutralization aggravated, whereas recombinant exogenous amphiregulin attenuated lipopolysaccharide-induced ALI in mice (n = 6). In cultured AMs and peritoneal macrophages, amphiregulin was mainly generated by M1, rather than M0 or M2 phenotype (n = 5). Apoptosis ratio of lipopolysaccharide-challenged MLE12 cells was significantly reduced by recombinant exogenous amphiregulin from 16.60 ± 1.82 to 9.47 ± 1.67% (n = 5) but significantly increased from 17.45 ± 1.13 to 21.67 ± 1.10% (n = 5) after stimulation with supernatant of M1-polarized AM media conditioned with amphiregulin-neutrolizing antibody. Western blotting revealed that amphiregulin activated epithelial growth factor receptor and AKT in the lung tissues and MLE12 cells (n = 5). CONCLUSIONS Different from the common notion that classically activated AMs have just a detrimental effect on the lung tissues, the results of this study showed that classically activated AMs also exerted a protective effect on the lung tissues by producing high-level amphiregulin in lipopolysaccharide-induced ALI.
Collapse
|
25
|
B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Sci Rep 2016; 6:31284. [PMID: 27515382 PMCID: PMC4981866 DOI: 10.1038/srep31284] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/15/2016] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are characterized by an excessive inflammatory response within the lungs and severely impaired gas exchange resulting from alveolar-capillary barrier disruption and pulmonary edema. The costimulatory protein B7H3 functions as both a costimulator and coinhibitor to regulate the adaptive and innate immune response, thus participating in the development of microbial sepsis and pneumococcal meningitis. However, it is unclear whether B7H3 exerts a beneficial or detrimental role during ALI. In the present study we examined the impact of B7H3 on pulmonary inflammatory response, polymorphonuclear neutrophil (PMN) influx, and lung tissue damage in a murine model of lipopolysaccharide (LPS)-induced direct ALI. Treatment with B7H3 protected mice against LPS-induced ALI, with significantly attenuated pulmonary PMN infiltration, decreased lung myeloperoxidase (MPO) activity, reduced bronchoalveolar lavage fluid (BALF) protein content, and ameliorated lung pathological changes. In addition, B7H3 significantly diminished LPS-stimulated PMN chemoattractant CXCL2 production by inhibiting NF-κB p65 phosphorylation, and substantially attenuated LPS-induced PMN chemotaxis and transendothelial migration by down-regulating CXCR2 and Mac-1 expression. These results demonstrate that B7H3 substantially ameliorates LPS-induced ALI and this protection afforded by B7H3 is predominantly associated with its inhibitory effect on pulmonary PMN migration and infiltration.
Collapse
|
26
|
Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling. Inflammation 2016; 38:1406-14. [PMID: 25616905 PMCID: PMC7102291 DOI: 10.1007/s10753-015-0115-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Collapse
|
27
|
Arpino V, Mehta S, Wang L, Bird R, Rohan M, Pape C, Gill SE. Tissue inhibitor of metalloproteinases 3-dependent microvascular endothelial cell barrier function is disrupted under septic conditions. Am J Physiol Heart Circ Physiol 2016; 310:H1455-67. [PMID: 26993226 DOI: 10.1152/ajpheart.00796.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022]
Abstract
Sepsis is associated with dysfunction of microvascular endothelial cells (MVEC) leading to tissue edema and multiple organ dysfunction. Metalloproteinases can regulate MVEC function through processing of cell surface proteins, and tissue inhibitor of metalloproteinases 3 (TIMP3) regulates metalloproteinase activity in the lung following injury. We hypothesize that TIMP3 promotes normal pulmonary MVEC barrier function through inhibition of metalloproteinase activity. Naive Timp3(-/-) mice had significantly higher basal pulmonary microvascular Evans blue (EB) dye-labeled albumin leak vs. wild-type (WT) mice. Additionally, cecal-ligation/perforation (CLP)-induced sepsis significantly increased pulmonary microvascular EB-labeled albumin leak in WT but not Timp3(-/-) mice. Similarly, PBS-treated isolated MVEC monolayers from Timp3(-/-) mice displayed permeability barrier dysfunction vs. WT MVEC, evidenced by lower transendothelial electrical resistance and greater trans-MVEC flux of fluorescein-dextran and EB-albumin. Cytomix (equimolar interferon γ, tumor necrosis factor α, and interleukin 1β) treatment of WT MVEC induced significant barrier dysfunction (by all three methods), and was associated with a time-dependent decrease in TIMP3 mRNA and protein levels. Additionally, basal Timp3(-/-) MVEC barrier dysfunction was associated with disrupted MVEC surface VE-cadherin localization, and both barrier dysfunction and VE-cadherin localization were rescued by treatment with GM6001, a synthetic metalloproteinase inhibitor. TIMP3 promotes normal MVEC barrier function, at least partially, through inhibition of metalloproteinase-dependent disruption of adherens junctions, and septic downregulation of TIMP3 may contribute to septic MVEC barrier dysfunction.
Collapse
Affiliation(s)
- Valerie Arpino
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Lefeng Wang
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Ryan Bird
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada
| | - Cynthia Pape
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and
| | - Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada; Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; and Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
28
|
Lauer S, Fischer LG, Van Aken HK, Nofer JR, Freise H. Gadolinium chloride modulates bradykinin-induced pulmonary vasoconstriction and hypoxic pulmonary vasoconstriction during polymicrobial abdominal sepsis in rats. Exp Lung Res 2016; 41:270-82. [PMID: 26052827 DOI: 10.3109/01902148.2015.1018557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Macrophages importantly contribute to sepsis-induced lung injury. As their impact on pulmonary endothelial injury and dysregulation of hypoxic pulmonary vasoconstriction (HPV) remains unclear, we assessed pulmonary endothelial dysfunction and HPV by macrophage inhibition via gadolinium chloride (GC) pre-treatment in rats with peritonitis (cecal ligation and puncture [CLP]). METHODS The following four study groups were made: Group I: SHAM and group II: SHAM + GC (pre-treatment with NaCl 0.9% or GC 14 mg/kg body weight (b.w.) intravenously 24 hours prior to sham laparotomy); group III: CLP and group IV: CLP + GC (pre-treatment with NaCl 0.9% or GC 14 mg/kg b.w. 24 hours prior to induction of peritonitis). Exhaled nitric oxide (exNO), bradykinin-induced pulmonary vasoconstriction (=surrogate marker of endothelial dysfunction) and HPV were investigated in isolated and perfused lungs (n = 40). Using the same protocol wet to dry lung weight ratio and myeloperoxidase (MPO) activity were investigated in separate rats (n = 28). In additional rats (n = 12) of groups III and IV nitrite levels in alveolar macrophages (AM) were measured. RESULTS In sepsis, GC pre-treatment significantly attenuated exNO levels, AM-derived nitrite levels, lung MPO activity, and restored blunted HPV, but severely enhanced endothelial dysfunction in healthy and septic animals. CONCLUSION Macrophages exhibit a controversial role in sepsis-induced lung injury. The GC-induced restoration of inflammation parameters to sham levels is clearly limited by the negative impact on CLP-induced endothelial injury in this setting. The exact link between the GC-associated modulation of the NO pathway demonstrated and septic lung injury needs to be determined in future studies.
Collapse
Affiliation(s)
- Stefan Lauer
- 1Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster , Muenster , Germany
| | | | | | | | | |
Collapse
|
29
|
Huang YC, Horng CT, Chen ST, Lee SS, Yang ML, Lee CY, Kuo WH, Yeh CH, Kuan YH. Rutin improves endotoxin-induced acute lung injury via inhibition of iNOS and VCAM-1 expression. ENVIRONMENTAL TOXICOLOGY 2016; 31:185-191. [PMID: 25080890 DOI: 10.1002/tox.22033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 06/03/2023]
Abstract
Endotoxins exist anywhere including in water pools, dust, humidifier systems, and machining fluids. The major causal factor is endotoxins in many serious diseases, such as fever, sepsis, multi-organ failure, meningococcemia, and severe morbidities like neurologic disability, or hearing loss. Endotoxins are also called lipopolysaccharide (LPS) and are important pathogens of acute lung injury (ALI). Rutin has potential beneficial effects including anti-inflammation, antioxidation, anti-hyperlipidemia, and anti-platelet aggregation. Pre-treatment with rutin inhibited LPS-induced neutrophil infiltration in the lungs. LPS-induced expression of vascular cell adhesion molecule (VCAM)-1 and inducible nitric oxide synthase (iNOS) was suppressed by rutin, but there was no influence on expression of intercellular adhesion molecule-1 and cyclooxygenase-2. In addition, activation of the nuclear factor (NF)κB was reduced by rutin. Furthermore, we found that the inhibitory concentration of rutin on expression of VCAM-1 and iNOS was similar to NFκB activation. In conclusion, rutin is a potential protective agent for ALI via inhibition of neutrophil infiltration, expression of VCAM-1 and iNOS, and NFκB activation.
Collapse
Affiliation(s)
- Yi-Chun Huang
- School of Health, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Chi-Ting Horng
- Medical Education Center, Kaohsiung Armed Forced General Hospital, Kaohsiung, Taiwan
- Department of Ophthalmology, Kaohsiung Armed Forced General Hospital, Kaohsiung, Taiwan
| | - Shyan-Tarng Chen
- School of Optometry, Chung Shan Medical University, Taichung, Taiwan
| | - Shiuan-Shinn Lee
- School of Public Health, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ling Yang
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Ying Lee
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wu-Hsien Kuo
- Department of Medicine, Kaohsiung Armed Forced General Hospital,Taiwan, Kaohsiung, Taiwan
- Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Chung-Hsin Yeh
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Nursing, College of Medicine & Nursing, Hung Kuang University, Taichung, Taiwan
| | - Yu-Hsiang Kuan
- Department of Pharmacology, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Pharmacy, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
30
|
Protective effects of Rabdosia japonica var. glaucocalyx extract on lipopolysaccharide-induced acute lung injury in mice. Chin J Nat Med 2015; 13:767-75. [DOI: 10.1016/s1875-5364(15)30077-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Indexed: 11/21/2022]
|
31
|
Gill SE, Rohan M, Mehta S. Role of pulmonary microvascular endothelial cell apoptosis in murine sepsis-induced lung injury in vivo. Respir Res 2015; 16:109. [PMID: 26376777 PMCID: PMC4574190 DOI: 10.1186/s12931-015-0266-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
Background Sepsis remains a common and serious condition with significant morbidity and mortality due to multiple organ dysfunction, especially acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Sepsis-induced ALI is characterized by injury and dysfunction of the pulmonary microvasculature and pulmonary microvascular endothelial cells (PMVEC), resulting in enhanced pulmonary microvascular sequestration and pulmonary infiltration of polymorphonuclear leukocytes (PMN) as well as disruption of the normal alveolo-capillary permeability barrier with leak of albumin-rich edema fluid into pulmonary interstitium and alveoli. The role of PMVEC death and specifically apoptosis in septic pulmonary microvascular dysfunction in vivo has not been established. Methods In a murine cecal ligation/perforation (CLP) model of sepsis, we quantified and correlated time-dependent changes in pulmonary microvascular Evans blue (EB)-labeled albumin permeability with (1) PMVEC death (propidium iodide [PI]-staining) by both fluorescent intravital videomicroscopy (IVVM) and histology, and (2) PMVEC apoptosis using histologic fluorescent microscopic assessment of a panel of 3 markers: cell surface phosphatidylserine (detected by Annexin V binding), caspase activation (detected by FLIVO labeling), and DNA fragmentation (TUNEL labeling). Results Compared to sham mice, CLP-sepsis resulted in pulmonary microvascular barrier dysfunction, quantified by increased EB-albumin leak, and PMVEC death (PI+ staining) as early as 2 h and more marked by 4 h after CLP. Septic PMVEC also exhibited increased presence of all 3 markers of apoptosis (Annexin V+, FLIVO+, TUNEL+) as early as 30 mins – 1 h after CLP-sepsis, which all similarly increased markedly until 4 h. The time-dependent changes in septic pulmonary microvascular albumin-permeability barrier dysfunction were highly correlated with PMVEC death (PI+; r = 0.976, p < 0.01) and PMVEC apoptosis (FLIVO+; r = 0.991, p < 0.01). Treatment with the pan-caspase inhibitor Q-VD prior to CLP reduced PMVEC death/apoptosis and attenuated septic pulmonary microvascular dysfunction, including both albumin-permeability barrier dysfunction and pulmonary microvascular PMN sequestration (p < 0.05). Septic PMVEC apoptosis and pulmonary microvascular dysfunction were also abrogated following CLP-sepsis in mice deficient in iNOS (Nos2−/−) or NADPH oxidase (p47phox−/− or gp91phox−/−) and in wild-type mice treated with the NADPH oxidase inhibitor, apocynin. Conclusions Septic murine pulmonary microvascular dysfunction in vivo is due to PMVEC death, which is mediated through caspase-dependent apoptosis and iNOS/NADPH-oxidase dependent signaling.
Collapse
Affiliation(s)
- Sean E Gill
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada.,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Marta Rohan
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada
| | - Sanjay Mehta
- Centre for Critical Illness Research, Lawson Health Research Institute, London Health Sciences Center, London, ON, Canada. .,Division of Respirology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada. .,Division of Respirology, E6.204, London Health Sciences Center - Victoria Hospital, 800 Commissioners Road East, London, ON, N6A 5W9, Canada.
| |
Collapse
|
32
|
Choudhury S, Kandasamy K, Maruti BS, Addison MP, Kasa JK, Darzi SA, Singh TU, Parida S, Dash JR, Singh V, Mishra SK. Atorvastatin along with imipenem attenuates acute lung injury in sepsis through decrease in inflammatory mediators and bacterial load. Eur J Pharmacol 2015; 765:447-56. [PMID: 26375251 DOI: 10.1016/j.ejphar.2015.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 09/04/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
Abstract
Lung is one of the vital organs which is affected during the sequential development of multi-organ dysfunction in sepsis. The purpose of the present study was to examine whether combined treatment with atorvastatin and imipenem could attenuate sepsis-induced lung injury in mice. Sepsis was induced by caecal ligation and puncture. Lung injury was assessed by the presence of lung edema, increased vascular permeability, increased inflammatory cell infiltration and cytokine levels in broncho-alveolar lavage fluid (BALF). Treatment with atorvastatin along with imipenem reduced the lung bacterial load and pro-inflammatory cytokines (IL-1β and TNFα) level in BALF. The markers of pulmonary edema such as microvascular leakage and wet-dry weight ratio were also attenuated. This was further confirmed by the reduced activity of MPO and ICAM-1 mRNA expression, indicating the lesser infiltration and adhesion of inflammatory cells to the lungs. Again, expression of mRNA and protein level of iNOS in lungs was also reduced in the combined treatment group. Based on the above findings it can be concluded that, combined treatment with atorvastatin and imipenem dampened the inflammatory response and reduced the bacterial load, thus seems to have promising therapeutic potential in sepsis-induced lung injury in mice.
Collapse
Affiliation(s)
- Soumen Choudhury
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Kannan Kandasamy
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Bhojane Somnath Maruti
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - M Pule Addison
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jaya Kiran Kasa
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Sazad A Darzi
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Thakur Uttam Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Jeevan Ranjan Dash
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Vishakha Singh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India
| | - Santosh Kumar Mishra
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar, 243122 Bareilly, Uttar Pradesh, India.
| |
Collapse
|
33
|
Neunaber C, Angela Y, Safi S, Krettek C, Zeckey C. Beneficial effects of finasteride on hepatic and pulmonary immune response after trauma hemorrhage in mice. Cytokine 2015; 74:123-9. [PMID: 25907835 DOI: 10.1016/j.cyto.2015.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 03/20/2015] [Accepted: 03/30/2015] [Indexed: 12/15/2022]
Abstract
UNLABELLED The literature reveals evidence for a gender specific outcome after major trauma and hemorrhage. Increased levels of male sex hormones such as testosterone and even more dihydrotestosterone (DHT) mediate negative effects on the posttraumatic immune response. Pretreatment with finasteride several days before trauma hemorrhage (TH) led to improved outcomes in mice. We hypothesized that finasteride mediates its protective effects also when administered after TH within the resuscitation process. METHODS Male C57BL/6N-mice underwent TH (blood pressure: 35 mmHg, 90 min) followed by finasteride application and fluid resuscitation. Plasma cytokines (MIP-1β, TNF-α, MCP-1, MCP-3, IL-6), productive capacity of alveolar macrophages (AM) and hepatic Kupffer cells (KC) and systemic DHT levels were determined 4 h and 24 h thereafter. Pulmonary and hepatic infiltration of PMN was determined by immunohistochemical staining. RESULTS Finasteride treatment resulted in reduced levels of systemic cytokines. This was accompanied by a reduced posttraumatic cytokine secretion of AM as well as Kupffer cells, thereby reducing hepatic distant organ damage as measured by reduced PMN infiltration. Systemic DHT levels were decreased following finasteride treatment. CONCLUSION Finasteride exerts salutary effects on the pulmonary and hepatic immune response using a therapeutic approach following TH in mice. Therefore, finasteride might represent a potential agent following multiple trauma and hemorrhage.
Collapse
Affiliation(s)
| | - Yenny Angela
- Trauma Department, Hannover Medical School, Hannover, Germany
| | - Schabnam Safi
- Trauma Department, Hannover Medical School, Hannover, Germany
| | | | | |
Collapse
|
34
|
Hu Z, Gu Z, Sun M, Zhang K, Gao P, Yang Q, Yuan Y. Ursolic acid improves survival and attenuates lung injury in septic rats induced by cecal ligation and puncture. J Surg Res 2015; 194:528-536. [PMID: 25454976 DOI: 10.1016/j.jss.2014.10.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sepsis is characterized as a systemic inflammatory response syndrome during infection, which can result in multiple organ dysfunction and death. Ursolic acid (UA), a pentacyclic triterpene acid, has been reported to have potent anti-inflammatory and antioxidant properties. The aim of this study was to detect the possible protective effects of UA on sepsis-evoked acute lung injury. MATERIALS AND METHODS A rat model of sepsis induced by cecal ligation and puncture (CLP) was used. Rats were injected intraperitoneally with UA (10 mg/kg) after CLP, and then the survival was determined twice a day for 4 d. The protective effects of UA on CLP-induced acute lung injury were assayed at 24 h after CLP. RESULTS The results revealed that UA treatment markedly improved the survival of septic rats, and attenuated CLP-induced lung injury, including reduction of lung wet/dry weight ratio, infiltration of leukocytes and proteins, myeloperoxidase activity, and malondialdehyde content. In addition, UA significantly decreased the serum levels of tumor necrosis factor-α, interleukin-6, and interleukin-1β, inhibited the expression of inducible nitric oxide synthase and cyclooxygenase-2 in the lung, which are involved in the productions of nitric oxide and prostaglandin E2. CONCLUSIONS These findings indicate that UA exerts protective effects on CLP-induced septic rats. UA may be a potential therapeutic agent against sepsis.
Collapse
Affiliation(s)
- Zhansheng Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Zhilong Gu
- Department of Critical Care Medicine, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Meina Sun
- Department of Critical Care Medicine, Graduate School of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Ke Zhang
- Department of Critical Care Medicine, Graduate School of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Penghui Gao
- Department of Critical Care Medicine, Graduate School of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Qinwu Yang
- Department of Critical Care Medicine, Graduate School of Liaoning Medical University, Jinzhou, Liaoning, People's Republic of China
| | - Yuan Yuan
- Department of Pharmacy, Jinzhou Central Hospital, Jinzhou, Liaoning, People's Republic of China.
| |
Collapse
|
35
|
Gauna AE, Cha S. Akt2 deficiency as a therapeutic strategy protects against acute lung injury. Immunotherapy 2014; 6:377-80. [PMID: 24815778 DOI: 10.2217/imt.14.5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Evaluation of: Vergadi E, Vaporidi K, Theodorakis EE et al. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. J. Immunol. 192, 394-406 (2013). Acute respiratory distress syndrome currently has limited effective treatments; however, recent evidence suggests that modulation of alveolar macrophage responses may be an effective method for protection or repair of lung injury. Vergadi et al. are the first to demonstrate that depletion of Akt2 kinase and microRNA-146a induction in mice resulted in polarization of alveolar macrophages towards an M2 activation phenotype and resulted in less severe injury following acid-induced lung injury. However, this M2 polarization also resulted in increased lung bacterial load following infection with Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Adrienne E Gauna
- University of Florida College of Dentistry, Department of Oral & Maxillofacial Diagnostic Sciences, 1395 Center Drive, Gainesville, FL 32610, USA
| | | |
Collapse
|
36
|
Cavalcanti V, Santos CL, Samary CS, Araújo MN, Heil LBB, Morales MM, Silva PL, Pelosi P, Fernandes FC, Villela N, Rocco PRM. Effects of short-term propofol and dexmedetomidine on pulmonary morphofunction and biological markers in experimental mild acute lung injury. Respir Physiol Neurobiol 2014; 203:45-50. [DOI: 10.1016/j.resp.2014.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/03/2014] [Accepted: 08/12/2014] [Indexed: 11/30/2022]
|
37
|
Rentsendorj O, D'Alessio FR, Pearse DB. Phosphodiesterase 2A is a major negative regulator of iNOS expression in lipopolysaccharide-treated mouse alveolar macrophages. J Leukoc Biol 2014; 96:907-15. [PMID: 25063878 DOI: 10.1189/jlb.3a0314-152r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PDE2A is a dual-function PDE that is stimulated by cGMP to hydrolyze cAMP preferentially. In a two-hit model of ALI, we found previously that PDE2A decreased lung cAMP, up-regulated lung iNOS, and exacerbated ALI. Recent data suggest that macrophage iNOS expression contributes to ALI but later, promotes lung-injury resolution. However, macrophage iNOS is increased by cAMP, suggesting that PDE2A could negatively regulate macrophage iNOS expression. To test this, we examined the effects of manipulating PDE2A expression and function on LPS-induced iNOS expression in a mouse AM cell line (MH-S) and primary mouse AMs. In MH-S cells, LPS (100 ng/ml) increased PDE2A expression by 15% at 15 min and 50% at 6 h before decreasing at 24 h and 48 h. iNOS expression appeared at 6 h and remained increased 48 h post-LPS. Compared with control Ad, Ad.PDE2A-shRNA enhanced LPS-induced iNOS expression further by fourfold, an effect mimicked by the PDE2A inhibitor BAY 60-7550. Adenoviral PDE2A overexpression or treatment with ANP decreased LPS-induced iNOS expression. ANP-induced inhibition of iNOS was lost by knocking down PDE2A and was not mimicked by 8-pCPT-cGMP, a cGMP analog that does not stimulate PDE2A activity. Finally, we found that in primary AMs from LPS-treated mice, PDE2A knockdown also increased iNOS expression, consistent with the MH-S cell data. We conclude that increased AM PDE2A is an important negative regulator of macrophage iNOS expression.
Collapse
Affiliation(s)
- Otgonchimeg Rentsendorj
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Franco R D'Alessio
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - David B Pearse
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Lee CY, Yang JJ, Lee SS, Chen CJ, Huang YC, Huang KH, Kuan YH. Protective effect of Ginkgo biloba leaves extract, EGb761, on endotoxin-induced acute lung injury via a JNK- and Akt-dependent NFκB pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6337-6344. [PMID: 24956234 DOI: 10.1021/jf501913b] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Acute lung injury (ALI) is a clinical syndrome mainly caused by Gram-negative bacteria which is still in need of an effective therapeutic medicine. EGb761, an extract of Ginkgo biloba leaves, has several bioeffects including anti-inflammation, cardioprotection, neuroprotection, and free radical scavenging. Preadministration of EGb761 inhibited lipopolysaccharide (LPS)-induced histopathological changes and exchange of arterial blood gas. In addition, LPS-induced expression of proinflammatory mediators, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, macrophage inflammatory protein (MIP)-2, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were suppressed by EGb761. The activation of nuclear factor (NF)κB, a transcription factor of proinflammatory mediators, and phosphorylation of IκB, an inhibitor of NFκB, were also reduced by EGb761. Furthermore, we found the inhibitory concentration of EGb761 on phosphorylation of JNK and Akt was less than those of ERK and p38 MAPK. In conclusion, EGb761 is a potential protective agent for ALI, possibly via downregulating the JNK- and Akt-dependent NFκB activation pathway.
Collapse
Affiliation(s)
- Chien-Ying Lee
- Department of Pharmacology, Chung Shan Medical University , No. 110, Sec. 1, Jianguo North Road, Taichung 40201, Taiwan
| | | | | | | | | | | | | |
Collapse
|
39
|
Ranjan R, Deng J, Chung S, Lee YG, Park GY, Xiao L, Joo M, Christman JW, Karpurapu M. The transcription factor nuclear factor of activated T cells c3 modulates the function of macrophages in sepsis. J Innate Immun 2014; 6:754-64. [PMID: 24970700 DOI: 10.1159/000362647] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 04/03/2014] [Indexed: 01/16/2023] Open
Abstract
The role of the transcription factor nuclear factor of activated T cells (NFAT) was initially identified in T and B cell gene expression, but its role in regulating gene expression in macrophages during sepsis is not known. Our data show that NFATc3 regulates expression of inducible nitric oxide synthase (iNOS) in macrophages stimulated with lipopolysaccharide. Selective inhibition of NFAT by cyclosporine A and a competitive peptide inhibitor 11R-VIVIT inhibited endotoxin-induced expression of iNOS and nitric oxide (NO) release. Macrophages from NFATc3 knockout (KO) mice show reduced iNOS expression and NO release and attenuated bactericidal activity. Gel shift and chromatin immunoprecipitation assays show that endotoxin challenge increases NFATc3 binding to the iNOS promoter, resulting in transcriptional activation of iNOS. The binding of NFATc3 to the iNOS promoter is abolished by NFAT inhibitors. NFATc3 KO mice subjected to sepsis show that NFATc3 is necessary for bacterial clearance in mouse lungs during sepsis. Our study demonstrates for the first time that NFATc3 is necessary for macrophage iNOS expression during sepsis, which is essential for containment of bacterial infections.
Collapse
Affiliation(s)
- Ravi Ranjan
- Department of Medicine and Section of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois, Chicago, Ill., USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Huang BP, Lin CH, Chen YC, Kao SH. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW264.7 cells. Mol Med Rep 2014; 10:1077-83. [PMID: 24898576 DOI: 10.3892/mmr.2014.2298] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 03/28/2014] [Indexed: 11/05/2022] Open
Abstract
Perilla leaves are widely used in Chinese herbal medicine and in Japanese herbal agents used to treat respiratory diseases. This study aimed to investigate the anti‑inflammatory effects and the underlying mechanisms of Perilla frutescens leaf extract (PLE). Murine macrophage RAW264.7 cells were used as a model. Cell viability and morphological changes were studied by the MTT assay and microscopy. mRNA expression of pro‑inflammatory mediators was assessed by both semi‑quantitative reverse transcription‑polymerase chain reaction (RT‑PCR) and quantitative (q) RT‑PCR. Nitric oxide (NO) and prostaglandin E2 (PGE2) production were analyzed by the Griess test and sandwich enzyme‑linked immunosorbent assay (ELISA), respectively. The activation of kinase cascades was studied by immunoblotting. Our findings showed that PLE slightly affects cell viability, but alleviates LPS‑induced activation of RAW264.7 cells. Furthermore, PLE significantly reduced the LPS‑induced mRNA expression of the interleukin (IL)‑6, IL‑8, tumor necrosis factor‑α (TNF‑α), cyclooxygenase‑2 (COX‑2) and inducible nitric oxide synthase (iNOS), genes in a dose‑dependent manner. In addition, PLE reduced NO production and PGE2 secretion induced by LPS. PLE also inhibited activation of mitogen‑activated protein kinases (MAPKs), increased the cytosolic IκBα level, and reduced the level of nuclear factor (NF)‑κB. Taken together, these findings indicate that PLE significantly decreases the mRNA expression and protein production of pro‑inflammatory mediators, via the inhibition of extracellular‑signal‑regulated kinase (ERK)1/2, c‑Jun N‑terminal kinase (JNK), p38, as well as NF‑κB signaling in RAW264.7 cells stimulated with LPS.
Collapse
Affiliation(s)
- Bee-Piao Huang
- Department of Pathology, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, R.O.C
| | - Chun-Hsiang Lin
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yi-Ching Chen
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Shao-Hsuan Kao
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University Hospital, Taichung, Taiwan, R.O.C
| |
Collapse
|
41
|
Khailova L, Petrie B, Baird CH, Dominguez Rieg JA, Wischmeyer PE. Lactobacillus rhamnosus GG and Bifidobacterium longum attenuate lung injury and inflammatory response in experimental sepsis. PLoS One 2014; 9:e97861. [PMID: 24830455 PMCID: PMC4022641 DOI: 10.1371/journal.pone.0097861] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 04/25/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Probiotic use to prevent nosocomial gastrointestinal and potentially respiratory tract infections in critical care has shown great promise in recent clinical trials of adult and pediatric patients. Despite well-documented benefits of probiotic use in intestinal disorders, the potential for probiotic treatment to reduce lung injury following infection and shock has not been well explored. Objective Evaluate if Lactobacillus rhamnosus GG (LGG) or Bifidobacterium longum (BL) treatment in a weanling mouse model of cecal ligation and puncture (CLP) peritonitis will protect against lung injury. Methods 3 week-old FVB/N mice were orally gavaged with 200 µl of either LGG, BL or sterile water (vehicle) immediately prior to CLP. Mice were euthanized at 24 h. Lung injury was evaluated via histology and lung neutrophil infiltration was evaluated by myeloperoxidase (MPO) staining. mRNA levels of IL-6, TNF-α, MyD88, TLR-4, TLR-2, NFΚB (p50/p105) and Cox-2 in the lung analyzed via real-time PCR. TNF-α and IL-6 in lung was analyzed via ELISA. Results LGG and BL treatment significantly improved lung injury following experimental infection and sepsis and lung neutrophil infiltration was significantly lower than in untreated septic mice. Lung mRNA and protein levels of IL-6 and TNF-α and gene expression of Cox-2 were also significantly reduced in mice receiving LGG or BL treatment. Gene expression of TLR-2, MyD88 and NFΚB (p50/p105) was significantly increased in septic mice compared to shams and decreased in the lung of mice receiving LGG or BL while TLR-4 levels remained unchanged. Conclusions Treatment with LGG and BL can reduce lung injury following experimental infection and sepsis and is associated with reduced lung inflammatory cell infiltrate and decreased markers of lung inflammatory response. Probiotic therapy may be a promising intervention to improve clinical lung injury following systemic infection and sepsis.
Collapse
Affiliation(s)
- Ludmila Khailova
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Benjamin Petrie
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Christine H. Baird
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jessica A. Dominguez Rieg
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Paul E. Wischmeyer
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
42
|
Alveolar macrophage depletion increases the severity of acute inflammation following nonlethal unilateral lung contusion in mice. J Trauma Acute Care Surg 2014; 76:982-90. [PMID: 24662861 DOI: 10.1097/ta.0000000000000163] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lung contusion (LC) is a common injury resulting from blunt thoracic trauma. LC is an important risk factor for the development acute lung injury, adult respiratory distress syndrome, and ventilator-associated pneumonia, all of which increase mortality from trauma. LC produces a nonspecific immune cellular response. Neutrophil recruitment is known to increase the severity of inflammation during LC. However, the exact role of macrophages in modulating the response to LC has not been well described. METHODS We used a cortical contusion impactor to induce unilateral LC in mice. Thoracic micro computed tomographic scans of these animals were obtained to document radiologic changes over time following LC. To understand the role of macrophages during LC, liposomal clodronate was used to deplete macrophage levels before traumatic insult. Acute inflammatory attributes after LC were assessed, by measuring pressure-volume mechanics; quantifying bronchial alveolar lavage levels of leukocytes, albumin, and cytokines; and finally examining lung specimen histopathology at 5, 24, 48, and 72 hours after injury. RESULTS After LC, alveolar macrophage numbers were significantly reduced and exhibited slowed recovery. Simultaneously, there was a significant increase in bronchial alveolar lavage neutrophil counts. The loss of macrophages could be attributed to both cellular apoptosis and necrosis. Pretreatment with clodronate increased the severity of lung inflammation as measured by worsened pulmonary compliance, increased lung permeability, amplification of neutrophil recruitment, and increases in early proinflammatory cytokine levels. CONCLUSION The presence of regulatory alveolar macrophages plays an important role in the pathogenesis of acute inflammation following LC.
Collapse
|
43
|
Zhang HX, Duan GL, Wang CN, Zhang YQ, Zhu XY, Liu YJ. Protective effect of resveratrol against endotoxemia-induced lung injury involves the reduction of oxidative/nitrative stress. Pulm Pharmacol Ther 2014; 27:150-5. [DOI: 10.1016/j.pupt.2013.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/14/2013] [Accepted: 07/26/2013] [Indexed: 11/28/2022]
|
44
|
Peripheral blood monocyte-derived chemokine blockade prevents murine transfusion-related acute lung injury (TRALI). Blood 2014; 123:3496-503. [PMID: 24637362 DOI: 10.1182/blood-2013-11-536755] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transfusion-related acute lung injury (TRALI) is the leading cause of transfusion-related mortality and can occur with any type of transfusion. TRALI is thought to be primarily mediated by donor antibodies activating recipient neutrophils resulting in pulmonary endothelial damage. Nonetheless, details regarding the interactions between donor antibodies and recipient factors are unknown. A murine antibody-mediated TRALI model was used to elucidate the roles of the F(ab')2 and Fc regions of a TRALI-inducing immunoglobulin G anti-major histocompatibility complex (MHC) class I antibody (34.1.2s). Compared with intact antibody, F(ab')2 fragments significantly increased serum levels of the neutrophil chemoattractant macrophage inflammatory protein 2 (MIP-2); however, pulmonary neutrophil levels were only moderately increased, and no pulmonary edema or mortality occurred. Fc fragments did not modulate any of these parameters. TRALI induction by intact antibody was completely abrogated by in vivo peripheral blood monocyte depletion by gadolinium chloride (GdCl3) or chemokine blockade with a MIP-2 receptor antagonist but was restored upon repletion with purified monocytes. The results suggest a two-step process for antibody-mediated TRALI induction: the first step involves antibody binding its cognate antigen on blood monocytes, which generates MIP-2 chemokine production that is correlated with pulmonary neutrophil recruitment; the second step occurs when antibody-coated monocytes increase Fc-dependent lung damage.
Collapse
|
45
|
Gross TJ, Kremens K, Powers LS, Brink B, Knutson T, Domann FE, Philibert RA, Milhem MM, Monick MM. Epigenetic silencing of the human NOS2 gene: rethinking the role of nitric oxide in human macrophage inflammatory responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2326-38. [PMID: 24477906 PMCID: PMC3943971 DOI: 10.4049/jimmunol.1301758] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages, including alveolar macrophages, are primary phagocytic cells of the innate immune system. Many studies of macrophages and inflammation have been done in mouse models, in which inducible NO synthase (NOS2) and NO are important components of the inflammatory response. Human macrophages, in contrast to mouse macrophages, express little detectable NOS2 and generate little NO in response to potent inflammatory stimuli. The human NOS2 gene is highly methylated around the NOS2 transcription start site. In contrast, mouse macrophages contain unmethylated cytosine-phosphate-guanine (CpG) dinucleotides proximal to the NOS2 transcription start site. Further analysis of chromatin accessibility and histone modifications demonstrated a closed conformation at the human NOS2 locus and an open conformation at the murine NOS2 locus. In examining the potential for CpG demethylation at the NOS2 locus, we found that the human NOS2 gene was resistant to the effects of demethylation agents both in vitro and in vivo. Our data demonstrate that epigenetic modifications in human macrophages are associated with CpG methylation, chromatin compaction, and histone modifications that effectively silence the NOS2 gene. Taken together, our findings suggest there are significant and underappreciated differences in how murine and human macrophages respond to inflammatory stimuli.
Collapse
Affiliation(s)
- Thomas J. Gross
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Karol Kremens
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Linda S. Powers
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Brandi Brink
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Tina Knutson
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Frederick E. Domann
- Department of Radiation Oncology, Carver College of
Medicine, The University of Iowa, Iowa City, Iowa, 52242
| | - Robert A. Philibert
- Department of Psychiatry, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Mohammed M. Milhem
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| | - Martha M. Monick
- Department of Medicine, Carver College of Medicine, The
University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
46
|
Vergadi E, Vaporidi K, Theodorakis EE, Doxaki C, Lagoudaki E, Ieronymaki E, Alexaki VI, Helms M, Kondili E, Soennichsen B, Stathopoulos EN, Margioris AN, Georgopoulos D, Tsatsanis C. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:394-406. [PMID: 24277697 DOI: 10.4049/jimmunol.1300959] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Clinical Chemistry, University of Crete, Medical School, 71003 Heraklion, Greece
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
48
|
Anti-inflammatory and antioxidative effects of a methanol extract from bulbs of Scilla scilloides. Biosci Biotechnol Biochem 2013; 77:1569-71. [PMID: 23877615 DOI: 10.1271/bbb.120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extract from bulbs of Scilla scilloides exhibited inhibitory effects in lipoxygenase and hyaluronidase assays and various oxidation models in vitro. Incubating the cells in the presence of this extract ameliorated t-butyl hydroperoxide-induced cytotoxicity from 27% to 57% in a macrophage model. The results may indicate the potential role of S. scilloides for its anti-inflammatory and antioxidative effects.
Collapse
|
49
|
Liu XJ, Zhang ZD, Ma XC. High glucose enhances LPS-stimulated human PMVEC hyperpermeability via the NO pathway. Exp Ther Med 2013; 6:361-367. [PMID: 24137189 PMCID: PMC3786959 DOI: 10.3892/etm.2013.1166] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/30/2013] [Indexed: 12/04/2022] Open
Abstract
Chronic hyperglycemia is an established risk factor for endothelial damage. It remains unclear, however, whether brief hyperglycemic exposure exacerbates the damage to vascular endothelial cells induced by endotoxin. We hypothesize that brief hyperglycemic exposure enhances the permeability of the endothelium following stimulation with lipopolysaccharide (LPS). Correlations between modulation of nitric oxide synthase (NOS) pathways and altered endothelial homeostasis have been studied and demonstrated in various pathophysiological conditions. NOS activities are regulated by endogenous inhibitors, including asymmetric dimethylarginine (ADMA), which is metabolized by dimethylarginine dimethylaminohydrolase (DDAH). Since previous data demonstrated that endothelial dysfunction may be related to reduced expression and/or activity of DDAH, in this study, we aimed to determine the effect of increased glucose levels on pulmonary microvascular endothelial cell (PMVEC) permeability, including effects on the NOS pathways. Human PMVECs were incubated with normal (5.5 mM) and high (33 mM) concentrations of D-glucose for 5 days to create a monolayer of cells prior to LPS stimulation (10 μg/ml) for 12 h. When stimulated with LPS, cells incubated with a high glucose (HG) concentration had significant microfilament rearrangement compared with cells incubated with a normal glucose concentration, as determined by immunofluorescence. Scanning electron microscopy revealed a larger average diameter and increased number of fenestrae on the hyperglycemic PMVECs when stimulated with LPS, compared with PMVECs cultured with a normal glucose concentration. The results demonstrated that a high concentration of glucose increases the LPS-stimulated horseradish peroxidase (HRP) permeability compared with a normal concentration of glucose. Furthermore, a HG concentration upregulated LPS-stimulated inducible NOS (iNOS) production and down-regulated endothelial NOS (eNOS) and DDAH-2 expression. Hyperglycemia significantly increased LPS-stimulated nitrite/nitrate production (stable NO end-products). Our results, thus, demonstrate that in vitro HG concentrations exacerbate LPS-stimulated cytoskeletal rearrangement and hyperpermeability of an endothelial monolayer, and cause further imbalance of the NO pathway. These results suggest that it is important to manage even short-term increases in blood glucose, particularly following acute infection.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | | | | |
Collapse
|
50
|
Proinflammatory responses of heme in alveolar macrophages: repercussion in lung hemorrhagic episodes. Mediators Inflamm 2013; 2013:946878. [PMID: 23690673 PMCID: PMC3652176 DOI: 10.1155/2013/946878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/04/2013] [Accepted: 03/19/2013] [Indexed: 12/14/2022] Open
Abstract
Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM) being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM) elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS) and nitric oxide (NO) generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.
Collapse
|