1
|
Almazroue H, Jin Y, Nelin LD, Barba JC, Milton AD, Trittmann JK. Human pulmonary microvascular endothelial cell DDAH1-mediated nitric oxide production promotes pulmonary smooth muscle cell apoptosis in co-culture. Am J Physiol Lung Cell Mol Physiol 2023; 325:L360-L367. [PMID: 37431589 PMCID: PMC10639007 DOI: 10.1152/ajplung.00433.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/24/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in preterm infants, and pulmonary hypertension (PH) develops in 25%-40% of patients with BPD, increasing morbidity and mortality. BPD-PH is characterized by vasoconstriction and vascular remodeling. Nitric oxide (NO) is a pulmonary vasodilator and apoptotic mediator made in the pulmonary endothelium by NO synthase (eNOS). Asymmetric dimethylarginine (ADMA) is an endogenous eNOS inhibitor, primarily metabolized by dimethylarginine dimethylaminohydrolase-1 (DDAH1). Our hypothesis is that DDAH1 knockdown in human pulmonary microvascular endothelial cells (hPMVEC) will result in lower NO production, decreased apoptosis, and greater proliferation of human pulmonary arterial smooth muscle cells (hPASMC), whereas DDAH1 overexpression will have the opposite effect. hPMVECs were transfected with small interfering RNA targeting DDAH1 (siDDAH1)/scramble or adenoviral vector containing DDAH1 (AdDDAH1)/AdGFP for 24 h and co-cultured for 24 h with hPASMC. Analyses included Western blot for cleaved and total caspase-3, caspase-8, caspase-9, β-actin; trypan blue exclusion for viable cell numbers; terminal deoxynucleotide transferase dUTP nick end labeling (TUNEL); and BrdU incorporation. Small interfering RNA targeting DDAH1 (siDDAH1) transfected into hPMVEC resulted in lower media nitrites, cleaved caspase-3 and caspase-8 protein expression, and TUNEL staining; and greater viable cell numbers and BrdU incorporation in co-cultured hPASMC. Adenoviral-mediated transfection of the DDAH1 gene (AdDDAH1) into hPMVEC resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured hPASMC. Partial recovery of hPASMC viable cell numbers after AdDDAH1-hPMVEC transfection was observed when media were treated with hemoglobin to sequester NO. In conclusion, hPMVEC-DDAH1-mediated NO production positively regulates hPASMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.NEW & NOTEWORTHY BPD-PH is characterized by vascular remodeling. NO is an apoptotic mediator made in the pulmonary endothelium by eNOS. ADMA is an endogenous eNOS inhibitor metabolized by DDAH1. EC-DDAH1 overexpression resulted in greater cleaved caspase-3 and caspase-8 protein expression and lower viable cell numbers in co-cultured SMC. After NO sequestration, SMC viable cell numbers partially recovered despite EC-DDAH1 overexpression. EC-DDAH1-mediated NO production positively regulates SMC apoptosis, which may prevent/attenuate aberrant pulmonary vascular proliferation/remodeling in BPD-PH.
Collapse
Affiliation(s)
- Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - John C Barba
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Avante D Milton
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio, United States
- Division of Neonatology, Department of Pediatrics, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio, United States
| |
Collapse
|
2
|
Chen B, Jin Y, Pool CM, Liu Y, Nelin LD. Hypoxic pulmonary endothelial cells release epidermal growth factor leading to vascular smooth muscle cell arginase-2 expression and proliferation. Physiol Rep 2022; 10:e15342. [PMID: 35674115 PMCID: PMC9175134 DOI: 10.14814/phy2.15342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 05/01/2023] Open
Abstract
The hallmark of pulmonary hypertension (PH) is vascular remodeling. We have previously shown that human pulmonary microvascular endothelial cells (hPMVEC) respond to hypoxia with epidermal growth factor (EGF) mediated activation of the receptor tyrosine kinase, EGF receptor (EGFR), resulting in arginase-2 (Arg2)-dependent proliferation. We hypothesized that the release of EGF by hPMVEC could result in the proliferation of human pulmonary arterial smooth muscle cells (hPASMC) via activation of EGFR on the hPASMC leading to Arg2 up-regulation. To test this hypothesis, we used conditioned media (CM) from hPMVEC grown either in normoxia (NCM) or hypoxia (HCM). Human PASMC were incubated in normoxia with either HCM or NCM, and HCM caused significant induction of Arg2 and viable cell numbers. When HCM was generated with either an EGF-neutralizing antibody or an EGFR blocking antibody the resulting HCM did not induce Arg2 or increase viable cell numbers in hPASMC. Adding an EGFR blocking antibody to HCM, prevented the HCM-induced increase in Arg2 and viable cell numbers. HCM induced robust phosphorylation of hPASMC EGFR. When hPASMC were transfected with siRNA against EGFR the HCM-induced increase in viable cell numbers was prevented. When hPASMC were treated with the arginase antagonist nor-NOHA, the HCM-induced increase in viable cell numbers was prevented. These data suggest that hypoxic hPMVEC releases EGF, which activates hPASMC EGFR leading to Arg2 protein expression and an increase in viable cell numbers. We speculate that EGF neutralizing antibodies or EGFR blocking antibodies represent potential therapeutics to prevent and/or attenuate vascular remodeling in PH associated with hypoxia.
Collapse
Affiliation(s)
- Bernadette Chen
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yi Jin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Caitlyn M. Pool
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Yusen Liu
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Leif D. Nelin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchAbigail Wexner Research Institute at Nationwide Children’s Hospital and Department of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
3
|
Palanisamy S, Xue C, Ishiyama S, Naga Prasad SV, Gabrielson K. GPCR-ErbB transactivation pathways and clinical implications. Cell Signal 2021; 86:110092. [PMID: 34303814 DOI: 10.1016/j.cellsig.2021.110092] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
Cell surface receptors including the epidermal growth factor receptor (EGFR) family and G-protein coupled receptors (GPCRs) play quintessential roles in physiology, and in diseases, including cardiovascular diseases. While downstream signaling from these individual receptor families has been well studied, the cross-talk between EGF and GPCR receptor families is still incompletely understood. Including members of both receptor families, the number of receptor and ligand combinations for unique interactions is vast, offering a frontier of pharmacologic targets to explore for preventing and treating disease. This molecular cross-talk, called receptor transactivation, is reviewed here with a focus on the cardiovascular system featuring the well-studied GPCR receptors, but also discussing less-studied receptors from both families for a broad understanding of context of expansile interactions, repertoire of cellular signaling, and disease consequences. Attention is given to cell type, level of chronicity, and disease context given that transactivation and comorbidities, including diabetes, hypertension, coronavirus infection, impact cardiovascular disease and health outcomes.
Collapse
Affiliation(s)
| | - Carolyn Xue
- University of California, Los Angeles, 101 Hershey Hall, 612 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
| | - Shun Ishiyama
- Sidney Kimmel Cancer Center, Department of Surgery, Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Coloproctological Surgery, Juntendo University School of Medicine, Tokyo, Japan.
| | - Sathyamangla Venkata Naga Prasad
- NB50, Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, 1, Cleveland, OH 44195, USA.
| | - Kathleen Gabrielson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University, School of Medicine, 733 North Broadway, Miller Research Building, Room 807, Baltimore, MD 21205-2196, USA.
| |
Collapse
|
4
|
Onufer EJ, Aladegbami B, Imai T, Seiler K, Bajinting A, Courtney C, Sutton S, Bustos A, Yao J, Yeh CH, Sescleifer A, Wang LV, Guo J, Warner BW. EGFR in enterocytes & endothelium and HIF1α in enterocytes are dispensable for massive small bowel resection induced angiogenesis. PLoS One 2020; 15:e0236964. [PMID: 32931498 PMCID: PMC7491746 DOI: 10.1371/journal.pone.0236964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Background Short bowel syndrome (SBS) results from significant loss of small intestinal length. In response to this loss, adaptation occurs, with Epidermal Growth Factor Receptor (EGFR) being a key driver. Besides enhanced enterocyte proliferation, we have revealed that adaptation is associated with angiogenesis. Further, we have found that small bowel resection (SBR) is associated with diminished oxygen delivery and elevated levels of hypoxia-inducible factor 1-alpha (HIF1α). Methods We ablated EGFR in the epithelium and endothelium as well as HIF1α in the epithelium, ostensibly the most hypoxic element. Using these mice, we determined the effects of these genetic manipulations on intestinal blood flow after SBR using photoacoustic microscopy (PAM), intestinal adaptation and angiogenic responses. Then, given that endothelial cells require a stromal support cell for efficient vascularization, we ablated EGFR expression in intestinal subepithelial myofibroblasts (ISEMFs) to determine its effects on angiogenesis in a microfluidic model of human small intestine. Results Despite immediate increased demand in oxygen extraction fraction measured by PAM in all mouse lines, were no differences in enterocyte and endothelial cell EGFR knockouts or enterocyte HIF1α knockouts by POD3. Submucosal capillary density was also unchanged by POD7 in all mouse lines. Additionally, EGFR silencing in ISEMFs did not impact vascular network development in a microfluidic device of human small intestine. Conclusions Overall, despite the importance of EGFR in facilitating intestinal adaptation after SBR, it had no impact on angiogenesis in three cell types–enterocytes, endothelial cells, and ISEMFs. Epithelial ablation of HIF1α also had no impact on angiogenesis in the setting of SBS.
Collapse
Affiliation(s)
- Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Bola Aladegbami
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Toru Imai
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Kristen Seiler
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Adam Bajinting
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Cathleen Courtney
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Stephanie Sutton
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Aiza Bustos
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Junjie Yao
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Cheng-Hung Yeh
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Anne Sescleifer
- Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Lihong V. Wang
- Department of Electrical Engineering, Caltech Optical Imaging Laboratory, Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Jun Guo
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
| | - Brad W. Warner
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children’s Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
5
|
Trittmann JK, Almazroue H, Jin Y, Nelin LD. DDAH1 regulates apoptosis and angiogenesis in human fetal pulmonary microvascular endothelial cells. Physiol Rep 2020; 7:e14150. [PMID: 31209995 PMCID: PMC6579941 DOI: 10.14814/phy2.14150] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/17/2023] Open
Abstract
Nitric Oxide (NO) is an endogenous pulmonary vasodilator produced by endothelial NO synthase (eNOS). Asymmetric dimethyl L‐arginine (ADMA) is an endogenous inhibitor of eNOS activity. In endothelial cells, ADMA is hydrolyzed to L‐citrulline primarily by dimethylarginine dimethyl‐aminohydrolase‐1 (DDAH1). We tested the hypothesis that DDAH1 expression is essential for maintaining NO production in human fetal pulmonary microvascular endothelial cells (hfPMVEC), such that knockdown of DDAH1 expression will lead to decreased NO production resulting in less caspase‐3 activation and less tube formation. We found that hfPMVEC transfected with DDAH1 siRNA had lower NO production than control, with no difference in eNOS protein levels between groups. hfPMVEC transfected with DDAH1 siRNA had lower protein levels of cleaved caspase‐3 and ‐8 than control. Both DDAH1 siRNA‐ and ADMA‐treated hfPMVEC had greater numbers of viable cells than controls. Angiogenesis was assessed using tube formation assays in matrigel, and tube formation was lower after either DDAH1 siRNA transfection or ADMA treatment than controls. Addition of an NO donor restored cleaved caspase‐3 and ‐8 protein levels after DDAH1 siRNA transfection in hfPMVEC to essentially the levels seen in scramble control. Addition of a putative caspase‐3 inhibitor to DDAH1 siRNA transfected and NO‐donor treated cells led to greater numbers of viable cells and far less angiogenesis than in any other group studied. We conclude that in hfPMVEC, DDAH1 is central to the regulation of NO‐mediated caspase‐3 activation and the resultant apoptosis and angiogenesis. Our findings suggest that DDAH1 may be a potential therapeutic target in pulmonary hypertensive disorders.
Collapse
Affiliation(s)
- Jennifer K Trittmann
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| | - Hanadi Almazroue
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Yi Jin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Leif D Nelin
- Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio.,Department of Pediatrics, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, Kiefmann R, Klose H. The P2-receptor-mediated Ca 2+ signalosome of the human pulmonary endothelium - implications for pulmonary arterial hypertension. Purinergic Signal 2019; 15:299-311. [PMID: 31396838 DOI: 10.1007/s11302-019-09674-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
Abstract
Dysfunction of the pulmonary endothelium is associated with most lung diseases. Extracellular nucleotides modulate a plethora of endothelial functions in the lung such as vessel integrity, vasodilatation, inflammatory, and thrombotic responses as well as survival and DNA repair, mostly via Ca2+ signaling pathways. However, a comprehensive analysis of the molecular components of the underlying P2 receptor-mediated Ca2+ signaling pathways in the lung has not been conducted so far. Therefore, our aim was to identify the principal P2 receptor Ca2+ signalosome in the human pulmonary endothelium and investigate potential dysregulation in pulmonary vascular disease. Comparative transcriptomics and quantitative immunohistochemistry were performed on publicly available RNA sequencing and protein datasets to identify the specific expression profile of the P2-receptor Ca2+ signalosome in the healthy human pulmonary endothelium and endothelial cells (EC) dysfunctional due to loss of or defective bone morphogenetic protein receptor (BMPR2). Functional expression of signalosome components was tested by single cell Ca2+ imaging. Comparative transcriptome analysis of 11 endothelial cell subtypes revealed a specific P2 receptor Ca2+ signalosome signature for the pulmonary endothelium. Pulmonary endothelial expression of the most abundantly expressed Ca2+ toolkit genes CALM1, CALM2, VDAC1, and GNAS was confirmed by immunohistochemistry (IHC). P2RX1, P2RX4, P2RY6, and P2YR11 showed strong lung endothelial staining by IHC, P2X5, and P2Y1 were found to a much lesser extent. Very weak or no signals were detected for all other P2 receptors. Stimulation of human pulmonary artery (HPA) EC by purine nucleotides ATP, ADP, and AMP led to robust intracellular Ca2+ signals mediated through both P2X and P2Y receptors. Pyrimidine UTP and UDP-mediated Ca2+ signals were generated almost exclusively by activation of P2Y receptors. HPAEC made dysfunctional by siRNA-mediated BMPR2 depletion showed downregulation of 18 and upregulation of 19 P2 receptor Ca2+ signalosome genes including PLCD4, which was found to be upregulated in iPSC-EC from BMPR2-mutant patients with pulmonary arterial hypertension. In conclusion, the human pulmonary endothelium expresses a distinct functional subset of the P2 receptor Ca2+ signalosome. Composition of the P2 receptor Ca2+ toolkit in the pulmonary endothelium is susceptible to genetic disturbances likely contributing to an unfavorable pulmonary disease phenotype found in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jan K Hennigs
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany. .,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Nicole Lüneburg
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Annett Stage
- Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Melanie Schmitz
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jakob Körbelin
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Lars Harbaum
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Christiane Matuszcak
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Julia Mienert
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Carsten Bokemeyer
- II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Rainer Kiefmann
- Department of Anesthesiology, Center of Anesthesiology and Critical Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Hans Klose
- Department of Pneumology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Center for Pulmonary Arterial Hypertension Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,II. Department of Internal Medicine, Center of Oncology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
7
|
Gao Y, Raj JU. Src and Epidermal Growth Factor Receptor: Novel Partners in Mediating Chronic Hypoxia-induced Pulmonary Artery Hypertension. Am J Respir Cell Mol Biol 2019; 62:5-7. [PMID: 31298924 PMCID: PMC6938126 DOI: 10.1165/rcmb.2019-0230ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yuansheng Gao
- Health Science CenterPeking UniversityBeijing, Chinaand
| | - J Usha Raj
- College of MedicineUniversity of Illinois at ChicagoChicago, Illinois
| |
Collapse
|
8
|
Krystofova J, Pathipati P, Russ J, Sheldon A, Ferriero D. The Arginase Pathway in Neonatal Brain Hypoxia-Ischemia. Dev Neurosci 2019; 40:437-450. [PMID: 30995639 PMCID: PMC6784534 DOI: 10.1159/000496467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
Brain damage after hypoxia-ischemia (HI) occurs in an age-dependent manner. Neuroprotective strategies assumed to be effective in adults might have deleterious effects in the immature brain. In order to create effective therapies, the complex pathophysiology of HI in the developing brain requires exploring new mechanisms. Critical determinants of neuronal survival after HI are the extent of vascular dysfunction, inflammation, and oxidative stress, followed later by tissue repair. The key enzyme of these processes in the human body is arginase (ARG) that acts via the bioavailability of nitric oxide, and the synthesis of polyamines and proline. ARG is expressed throughout the brain in different cells. However, little is known about the effect of ARG in pathophysiological states of the brain, especially hypoxia-ischemia. Here, we summarize the role of ARG during neurodevelopment as well as in various brain pathologies.
Collapse
Affiliation(s)
- Jana Krystofova
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA,
| | - Praneeti Pathipati
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Jeffrey Russ
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Ann Sheldon
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Donna Ferriero
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Pool CM, Jin Y, Chen B, Liu Y, Nelin LD. Hypoxic-induction of arginase II requires EGF-mediated EGFR activation in human pulmonary microvascular endothelial cells. Physiol Rep 2018; 6:e13693. [PMID: 29845760 PMCID: PMC5974731 DOI: 10.14814/phy2.13693] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022] Open
Abstract
We have previously shown that hypoxia-induced proliferation of human pulmonary microvascular endothelial cells (hPMVEC) depends on arginase II, and that epidermal growth factor receptor (EGFR) is necessary for hypoxic-induction of arginase II. However, it remains unclear how hypoxia activates EGFR-mediated signaling in hPMVEC. We hypothesized that hypoxia results in epidermal growth factor (EGF) production and that EGF binds to EGFR to activate the signaling cascade leading to arginase II induction and proliferation in hPMVEC. We found that hypoxia significantly increased the mRNA levels of EGF, EGFR, and arginase in hPMVEC. Hypoxia significantly increased pEGFR(Tyr845) protein levels and an EGF neutralizing antibody prevented the hypoxic induction of pEGFR. Inhibiting EGFR activation prevented hypoxia-induced arginase II mRNA and protein induction. Treatment of hPMVEC with exogenous EGF resulted in greater levels of arginase II protein both in normoxia and hypoxia. An EGF neutralizing antibody diminished hypoxic induction of arginase II and resulted in fewer viable cells in hPMVEC. Similarly, siRNA against EGF prevented hypoxic induction of arginase II and resulted in fewer viable cells. Finally, conditioned media from hypoxic hPMVEC induced proliferation in human pulmonary artery smooth muscle cells (hPASMC), however, conditioned media from a group of hypoxic hPMVEC in which EGF were knocked down did not promote hPASMC proliferation. These findings demonstrate that hypoxia-induced arginase II expression and cellular proliferation depend on autocrine EGF production leading to EGFR activation in hPMVEC. We speculate that EGF-EGFR signaling may be a novel therapeutic target for pulmonary hypertensive disorders associated with hypoxia.
Collapse
Affiliation(s)
- Caitlyn M. Pool
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Yi Jin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Bernadette Chen
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Yusen Liu
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| | - Leif D. Nelin
- Pulmonary Hypertension GroupCenter for Perinatal ResearchResearch Institute at Nationwide Children's HospitalColumbusOhio
- Department of PediatricsThe Ohio State UniversityColumbusOhio
| |
Collapse
|
10
|
Roy Chowdhury U, Bahler CK, Holman BH, Fautsch MP. ATP-sensitive potassium (KATP) channel openers diazoxide and nicorandil lower intraocular pressure by activating the Erk1/2 signaling pathway. PLoS One 2017; 12:e0179345. [PMID: 28594895 PMCID: PMC5464668 DOI: 10.1371/journal.pone.0179345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/26/2017] [Indexed: 01/17/2023] Open
Abstract
Elevated intraocular pressure is the most prevalent and only treatable risk factor for glaucoma, a degenerative disease of the optic nerve. While treatment options to slow disease progression are available, all current therapeutic and surgical treatments have unwanted side effects or limited efficacy, resulting in the need to identify new options. Previous reports from our laboratory have established a novel ocular hypotensive effect of ATP-sensitive potassium channel (KATP) openers including diazoxide (DZ) and nicorandil (NCD). In the current study, we evaluated the role of Erk1/2 signaling pathway in KATP channel opener mediated reduction of intraocular pressure (IOP). Western blot analysis of DZ and NCD treated primary normal trabecular meshwork (NTM) cells, human TM (isolated from perfusion cultures of human anterior segments) and mouse eyes showed increased phosphorylation of Erk1/2 when compared to vehicle treated controls. DZ and NCD mediated pressure reduction (p<0.02) in human anterior segments (n = 7 for DZ, n = 4 for NCD) was abrogated by U0126 (DZ + U0126: -9.7 ± 11.5%, p = 0.11; NCD + U0126: -0.1 ± 11.5%, p = 1.0). In contrast, U0126 had no effect on latanoprostfree acid-induced pressure reduction (-52.5 ± 6.8%, n = 4, p = 0.001). In mice, DZ and NCD reduced IOP (DZ, 14.9 ± 3.8%, NCD, 16.9 ± 2.5%, n = 10, p<0.001), but the pressure reduction was inhibited by U0126 (DZ + U0126, 0.7 ± 3.0%; NCD + U0126, 0.9 ± 2.2%, n = 10, p>0.1). Histologic evaluation of transmission electron micrographs from DZ + U0126 and NCD + U0126 treated eyes revealed no observable morphological changes in the ultrastructure of the conventional outflow pathway. Taken together, the results indicate that the Erk1/2 pathway is necessary for IOP reduction by KATP channel openers DZ and NCD.
Collapse
Affiliation(s)
- Uttio Roy Chowdhury
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cindy K. Bahler
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Bradley H. Holman
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Michael P. Fautsch
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota, United States of America
| |
Collapse
|