1
|
Gao J, Bao L, Zhang A. The mechanism underlying hypaconitine-mediated alleviation of pancreatitis-associated lung injury through up-regulating aquaporin-1/TNF-α. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:790-798. [PMID: 33361042 DOI: 10.5152/tjg.2020.19542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS Acute pancreatitis-associated lung injury (APALI) is one of the most common and most dangerous form of extra-pancreatic organ damage in severe acute pancreatitis (SAP). The treatment options for SAP were limited thus far; as a result, approximately 60%-80% of patients with SAP would die within a week. Hypaconitine (HC), one of the most important active ingredients in a Mongolian traditional medicine Radix Aconiti Kusnezoffii has an excellent anti-inflammatory effect. MATERIALS AND METHODS To ascertain whether HC has a protective effect against APALI, we investigated the therapeutic effects and the underlying mechanisms in vivo and in vitro and attempted to elucidate the mechanism in detail. In this study, APALI rats and human pulmonary microvascular endothelial cells were treated with therapeutic doses of HC after establishing a model with sodium taurocholate and lipopolysaccharide, respectively. RESULTS Serum amylase and lipase activity, lung wet/dry weight ratio, lung myeloperoxidase activity, and pancreatic and lung histopathological changes showed that HC alleviated APALI in a dose-dependent way, which can be abolished by an aquaporin-1 (AQP-1) knockdown. The results of the reverse transcriptase polymerase chain reaction, Western blot, and immunohistochemical staining confirmed the expression of AQP-1, a kind of transmembrane protein that mainly distributed in the membranes of pulmonary cells and contributed to maintain water balance in the body by interacting with tumor necrosis factor-alpha (TNF-α), is negatively associated with APALI. On the contrary, HC treatment up-regulated AQP-1 expression and down-regulated the TNF-α expression as a consequence in APALI. CONCLUSION These results suggest that HC has a good anti-inflammatory therapeutic effect on APALI with a possible underlying mechanism that affects the AQP-1/TNF-α pathway.
Collapse
Affiliation(s)
- Jiali Gao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| | - Aiwu Zhang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, P. R. China
| |
Collapse
|
2
|
Díaz MI, Díaz P, Bennett JC, Urra H, Ortiz R, Orellana PC, Hetz C, Quest AFG. Caveolin-1 suppresses tumor formation through the inhibition of the unfolded protein response. Cell Death Dis 2020; 11:648. [PMID: 32811828 PMCID: PMC7434918 DOI: 10.1038/s41419-020-02792-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023]
Abstract
Caveolin-1 (CAV1), is a broadly expressed, membrane-associated scaffolding protein that acts both, as a tumor suppressor and a promoter of metastasis, depending on the type of cancer and stage. CAV1 is downregulated in human tumors, tumor cell lines and oncogene-transformed cells. The tumor suppressor activity of CAV1 is generally associated with its presence at the plasma membrane, where it participates, together with cavins, in the formation of caveolae and also has been suggested to interact with and inhibit a wide variety of proteins through interactions mediated by the scaffolding domain. However, a pool of CAV1 is also located at the endoplasmic reticulum (ER), modulating the secretory pathway in a manner dependent on serine-80 (S80) phosphorylation. In melanoma cells, CAV1 expression suppresses tumor formation, but the protein is largely absent from the plasma membrane and does not form caveolae. Perturbations to the function of the ER are emerging as a central driver of cancer, highlighting the activation of the unfolded protein response (UPR), a central pathway involved in stress mitigation. Here we provide evidence indicating that the expression of CAV1 represses the activation of the UPR in vitro and in solid tumors, reflected in the attenuation of PERK and IRE1α signaling. These effects correlated with increased susceptibility of cells to ER stress and hypoxia. Interestingly, the tumor suppressor activity of CAV1 was abrogated by site-directed mutagenesis of S80, correlating with a reduced ability to repress the UPR. We conclude that the tumor suppression by CAV1 involves the attenuation of the UPR, and identified S80 as essential in this context. This suggests that intracellular CAV1 regulates cancer through alternative signaling outputs.
Collapse
Affiliation(s)
- María I Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Paula Díaz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Jimena Castillo Bennett
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Hery Urra
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
| | - Pamela Contreras Orellana
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Claudio Hetz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile.
- FONDAP Center for Geroscience, Brain Health and Metabolism (GERO), Santiago, Chile.
- Laboratory of Proteostasis Control and Biomedicine, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
- Buck Institute for Research on Aging, Novato, CA, 94945, USA.
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for studies on Exercise, Metabolism and Cancer (CEMC), Faculty of Medicine, University of Chile, Santiago, Chile.
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
3
|
Hu S, Chang X, Zhu H, Wang D, Chen G. PI3K mediates tumor necrosis factor induced-necroptosis through initiating RIP1-RIP3-MLKL signaling pathway activation. Cytokine 2020; 129:155046. [PMID: 32114297 DOI: 10.1016/j.cyto.2020.155046] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/07/2020] [Accepted: 02/19/2020] [Indexed: 01/15/2023]
Abstract
Necroptosis is a recently identified programmed cell death, which is initiated by receptor-interacting serine/threonine-protein kinase 1 (RIP1), RIP3 and mixed-lineage kinase domain-like protein (MLKL). It has been reported that necroptosis induced by tumor necrosis factor (TNF) was inhibited by the inhibitor of phosphatidylinositol-3-kinase (PI3K) and its substrate protein AKT, indicating that PI3K-AKT signaling pathway was involved in mediating TNF-induced necroptosis, whereas it is unclear how PI3K initiates necroptosis. In this study, we found that TNF-induced necroptosis was inhibited by chemical inhibition or genetic deletion of PI3K. Moreover, knockdown of p110α, the catalytic subunit of PI3K, significantly suppressed the phosphorylation of PI3K substrate protein AKT, and TNF-induced necroptosis was blocked by AKT inhibitors. Furthermore, we found that p110α knockdown also suppressed the phosphorylation and oligomerization of RIP1, RIP3 and MLKL in response to TNF stimulation. In addition to the critical role in mediating TNF-induced necrosome formation, p110α was also essential for the spontaneous phosphorylation of RIP1 and RIP3. Finally, we found that p110α bound to RIP3, but not RIP1, to form protein complex in the process of TNF-induced necroptosis, and mediated TNF-induced necroptosis in the absence of RIP1. Our results demonstrate that PI3K is essential for TNF-induced necroptosis, which may act as the partner of RIP3 to initiate the activation of RIP1-RIP3-MLKL signal pathway and the subsequent necroptosis.
Collapse
Affiliation(s)
- Shiping Hu
- Department of Gastroenterology, The 983rd Hospital of Chinese PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Xixi Chang
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hongbin Zhu
- Department of Gastroenterology, The 983rd Hospital of Chinese PLA Joint Logistics Support Force, Tianjin 300142, China
| | - Dongxu Wang
- Department of Gastroenterology, The 983rd Hospital of Chinese PLA Joint Logistics Support Force, Tianjin 300142, China.
| | - Guozhu Chen
- Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China.
| |
Collapse
|
4
|
García-Rodríguez S, Rosal-Vela A, Botta D, Cumba Garcia LM, Zumaquero E, Prados-Maniviesa V, Cerezo-Wallis D, Lo Buono N, Robles-Guirado JÁ, Guerrero S, González-Paredes E, Andrés-León E, Corbí Á, Mack M, Koch-Nolte F, Merino R, Zubiaur M, Lund FE, Sancho J. CD38 promotes pristane-induced chronic inflammation and increases susceptibility to experimental lupus by an apoptosis-driven and TRPM2-dependent mechanism. Sci Rep 2018; 8:3357. [PMID: 29463868 PMCID: PMC5820326 DOI: 10.1038/s41598-018-21337-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 02/02/2018] [Indexed: 12/19/2022] Open
Abstract
In this study, we investigated the role of CD38 in a pristane-induced murine model of lupus. CD38-deficient (Cd38-/-) but not ART2-deficient (Art2-/-) mice developed less severe lupus compared to wild type (WT) mice, and their protective phenotype consisted of (i) decreased IFN-I-stimulated gene expression, (ii) decreased numbers of peritoneal CCR2hiLy6Chi inflammatory monocytes, TNF-α-producing Ly6G+ neutrophils and Ly6Clo monocytes/macrophages, (iii) decreased production of anti-single-stranded DNA and anti-nRNP autoantibodies, and (iv) ameliorated glomerulonephritis. Cd38-/- pristane-elicited peritoneal exudate cells had defective CCL2 and TNF-α secretion following TLR7 stimulation. However, Tnf-α and Cxcl12 gene expression in Cd38-/- bone marrow (BM) cells was intact, suggesting a CD38-independent TLR7/TNF-α/CXCL12 axis in the BM. Chemotactic responses of Cd38-/- Ly6Chi monocytes and Ly6G+ neutrophils were not impaired. However, Cd38-/- Ly6Chi monocytes and Ly6Clo monocytes/macrophages had defective apoptosis-mediated cell death. Importantly, mice lacking the cation channel TRPM2 (Trpm2-/-) exhibited very similar protection, with decreased numbers of PECs, and apoptotic Ly6Chi monocytes and Ly6Clo monocytes/macrophages compared to WT mice. These findings reveal a new role for CD38 in promoting aberrant inflammation and lupus-like autoimmunity via an apoptosis-driven mechanism. Furthermore, given the implications of CD38 in the activation of TRPM2, our data suggest that CD38 modulation of pristane-induced apoptosis is TRPM2-dependent.
Collapse
Affiliation(s)
| | - Antonio Rosal-Vela
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
| | - Davide Botta
- Department of Microbiology, UAB, Birmingham, Alabama, USA
| | - Luz M Cumba Garcia
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Immunology Graduate Program, Mayo Clinic, Rochester, MN, USA
| | | | | | - Daniela Cerezo-Wallis
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Melanoma Group, CNIO, Madrid, Spain
| | - Nicola Lo Buono
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
- Laboratory of Immune-mediated Diseases, San Raffaele Diabetes Research Institute (DRI), Milano, Italy
| | | | | | | | | | - Ángel Corbí
- Department of Molecular Microbiology and Infection Biology, CIB-CSIC, Madrid, Spain
| | - Matthias Mack
- Department of Internal Medicine II, Nephrology, Regensburg University Medical Center, Regensburg, Germany
| | - Friedrich Koch-Nolte
- Institute of Immunology, University Medical Center Eppendorf-Hamburg, Hamburg, Germany
| | - Ramón Merino
- Department of Molecular and Cellular Signalling, IBBTEC-CSIC-UC, Santander, Spain
| | - Mercedes Zubiaur
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain
| | - Frances E Lund
- Department of Microbiology, UAB, Birmingham, Alabama, USA
| | - Jaime Sancho
- Department of Cellular Biology and Immunology, IPBLN-CSIC, Granada, Spain.
| |
Collapse
|
5
|
Chen GT, Fu YX, Yang WJ, Hu QH, Zhao LY. Effects of polysaccharides from the base of Flammulina Velutipes stipe on growth of murine RAW264.7, B16F10 and L929 cells. Int J Biol Macromol 2018; 107:2150-2156. [DOI: 10.1016/j.ijbiomac.2017.10.090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 12/28/2022]
|
6
|
Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 2017; 312:C459-C477. [PMID: 28122734 DOI: 10.1152/ajpcell.00355.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/09/2023]
Abstract
Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae ("little caves") require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.1.
Collapse
Affiliation(s)
- Anna R Busija
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Medicine, University of California, San Diego, La Jolla, California; and .,Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Park B, Je YT, Chun KH. Akt is translocated to the mitochondria during etoposide-induced apoptosis of HeLa cells. Mol Med Rep 2015; 12:7577-81. [PMID: 26458825 DOI: 10.3892/mmr.2015.4378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 09/03/2015] [Indexed: 11/05/2022] Open
Abstract
Akt, or protein kinase B, is a key serine-threonine kinase, which exerts anti-apoptotic effects and promotes cell proliferation in response to various stimuli. Recently, however, it was demonstrated that Akt exhibits a proapoptotic role in certain contexts. During etoposide‑induced apoptosis of HeLa cells, Akt enhances the interaction of second mitochondria‑derived activator of caspases/direct IAP binding protein with low pI (Smac/DIABLO) and X‑linked inhibitor of apoptosis protein by phosphorylating Smac at serine 67, and thus promotes apoptosis. However, the detailed mechanisms underlying Akt regulation in etoposide‑mediated apoptosis remain to be determined. The present study investigated whether etoposide triggers the translocation of Akt into the mitochondria. It was found that Akt activity was increased and sustained during apoptosis triggered by etoposide in HeLa cells. During apoptosis, Akt was translocated from the cytoplasm into the mitochondria in a phosphoinositide 3‑kinase-dependent manner at the early and late stages of apoptosis. Concomitantly, the depletion of Akt in the nuclear fraction was observed after etoposide treatment from analysis of confocal microscopy. The results suggest that etoposide‑stimulated Akt is translocated into the mitochondria, thereby possibly enhancing its interaction with Smac and promoting apoptosis in HeLa cells. These results indicate that Akt may be a promising candidate for a pro-apoptotic approach in cancer treatment.
Collapse
Affiliation(s)
- Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Young-Tae Je
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
8
|
Takeda K, Kermani P, Anastasia A, Obinata Y, Hempstead BL, Kurihara H. BDNF protects human vascular endothelial cells from TNFα-induced apoptosis. Biochem Cell Biol 2013; 91:341-9. [PMID: 24032685 DOI: 10.1139/bcb-2013-0005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) enhances periodontal tissue regeneration. Tissue regeneration is characterized by inflammation that directs the quality of tissue repair. In this study, we investigated the anti-apoptotic effect of BDNF against the toxicity of tumor necrosis factor α (TNFα), which is known for its pro-apoptotic action in human microvascular endothelial cells (HMVECs). We demonstrate that BDNF attenuates TNFα-increased Annexin V-positive cells, lactic dehydrogenase (LDH) release, and intercellular adhesion molecule 1 (ICAM-1) mRNA and cleaved caspase-3 expression. In addition, biochemical analyses indicate that TNFα increases phosphatase and tensin homolog (PTEN) expression; however, it decreases phosphorylated PTEN. BDNF did not affect PTEN expression, but it did increase the phosphorylation of PTEN. BDNF-induced Akt phosphorylation was inhibited by TNFα. Terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) assay showed that the PTEN inhibitor bpV(pic) rescues HMVECs from TNFα-induced apoptosis. In conclusion, BDNF protects HMVECs from toxicity of TNFα through the regulation of the PTEN/Akt pathway.
Collapse
Affiliation(s)
- Katsuhiro Takeda
- a Division of Frontier Medical Science, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Chambaut-Guérin AM, Pairault J. Tumour necrosis factor α-induced adipose-related protein (TIARP): co-localization with caveolin-1. Biol Cell 2012; 97:339-47. [PMID: 15836432 DOI: 10.1042/bc20040062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We previously identified TIARP (TNF(alpha)-induced adipose-related protein, where TNF(alpha) stands for tumour necrosis factor alpha), a novel plasma-membrane protein that is induced during 3T3-L1 preadipocytes differentiation by TNF(alpha). Whereas the biological function of TIARP is currently unknown, its protein sequence is reminiscent of transporter protein and/or NAD(P)/NAD(P)H-dependent oxidoreductase activities. We hypothesized that TIARP could be associated with the 3T3-L1 adipocyte plasma-membrane caveolae domains that contain many proteins involved in cellular trafficking and signalling processes. Studies by confocal microscopy showed that TIARP and caveolin-1, a major protein of caveolae, co-localized as patches at the plasma membrane. Immunoblot analysis of cell extracts indicated that TIARP was completely detergent-extractible from membranes, whereas caveolin-1 was present as both detergent-extractible and -insoluble pools. Since TIARP is compartmentalized with caveolin-1 within caveolae domains, we suggest this protein to be part of a signalling complex in association with caveolin-1 and regulatory proteins.
Collapse
Affiliation(s)
- Anne-Marie Chambaut-Guérin
- Laboratoire de Physiologie et Physiopathologie, Centre de Recherche Biomédicale des Cordeliers, UMR 7079 CNRS-Université Paris VI, 15 rue de l'Ecole de Médecine, 75270 Paris Cedex 06, France.
| | | |
Collapse
|
10
|
Mo S, Yang S, Cui Z. New glimpses of caveolin-1 functions in embryonic development and human diseases. FRONTIERS IN BIOLOGY 2011; 6:367. [PMID: 32215005 PMCID: PMC7089126 DOI: 10.1007/s11515-011-1132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from {itCaenorhabditis elegans} to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Collapse
Affiliation(s)
- Saijun Mo
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengli Yang
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Zongbin Cui
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
11
|
De Salvo M, Maresca G, D'agnano I, Marchese R, Stigliano A, Gagliassi R, Brunetti E, Raza GH, De Paula U, Bucci B. Temozolomide induced c-Myc-mediated apoptosis via Akt signalling in MGMT expressing glioblastoma cells. Int J Radiat Biol 2011; 87:518-33. [PMID: 21405945 DOI: 10.3109/09553002.2011.556173] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE We investigated the molecular mechanisms underlying the cytotoxic effect of Temozolomide (TMZ) in both O(6)-methylguanine-DNA methyl transferase (MGMT) depleted as well as undepleted glioblastoma cell lines. Since TMZ is used in clinics in combination with radiotherapy, we also studied the effects of TMZ in combination with ionising radiation (IR). METHODS Cell colony-forming ability was measured using a clonogenic assay. Cell cycle analysis and apoptosis were evaluated by Flow Cytometry (FCM). Proteins involved in cell cycle control were detected by Western blot and co-immunoprecipitation assays. RESULTS Our data showed that TMZ, independent of MGMT expression, inhibited glioblastoma cell growth via an irreversible G(2) block in MGMT depleted cells or the induction of apoptosis in MGMT normal expressing cells. When TMZ was administered in combination with IR, apoptosis was greater than observed with either agent separately. This TMZ-induced apoptosis in the MGMT expressing cells occurred through Akt/Glycogen-Synthase-Kinase-3ß (GSK3ß) signalling and was mediated by Myelocytomatosis (c-Myc) oncoprotein. Indeed, TMZ phosphorylated/activated Akt led to phosphorylation/inactivation of GSK3ß which resulted in the stabilisation of c-Myc protein and subsequent modulation of the c-Myc target genes involved in the apoptotic processes. CONCLUSION C-Myc expression could be considered a good indicator of TMZ effectiveness.
Collapse
Affiliation(s)
- Maria De Salvo
- Centro Ricerca S. Pietro, Fatebenefratelli Hospital, Via Cassia 600, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhao X, Liu Y, Ma Q, Wang X, Jin H, Mehrpour M, Chen Q. Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun 2009; 378:21-26. [DOI: doi10.1016/j.bbrc.2008.10.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun 2009; 378:21-6. [DOI: 10.1016/j.bbrc.2008.10.123] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 10/19/2008] [Indexed: 11/19/2022]
|
14
|
Matthews LC, Taggart MJ, Westwood M. Modulation of caveolin-1 expression can affect signalling through the phosphatidylinositol 3-kinase/Akt pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology 2008; 149:5199-208. [PMID: 18583416 DOI: 10.1210/en.2007-1211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The IGFs mediate their effects on cell function through the type I IGF receptor and numerous intracellular signalling molecules, including the phosphatidylinositol 3-kinase (PI-3K)/Akt pathway. The type I IGF receptor also binds to the caveolae protein caveolin-1, but the impact of caveolae on IGF/PI-3K/Akt signalling remains controversial. We have examined the effect of complete (knockout) and partial (knockdown) caveolin-1 deficiency on cellular IGF effects mediated via the PI-3K/Akt pathway. Under basal conditions, caveolin-1-deficient mouse embryonic fibroblast cells [MF(-/-)] incorporated significantly more [3H]thymidine than wild-type mouse embryonic fibroblast cells [MF(+/+)]; however, small hairpin RNA-mediated knockdown of caveolin-1 (80% reduction) in 3T3L1 fibroblasts had no effect on basal proliferation. Interestingly, IGF-I induced proliferation was similar in MF(-/-) and MF(+/+) cells, whereas caveolin-1 knockdown promoted a hyperproliferative response to IGF-I [pkDCav3T3L1(80) 12.4+/-0.4-fold; pkDShuffle3T3L1 4.3+/-0.2-fold induction; P<0.01]. Immunoblot analysis showed that caveolin-1 knockdown had no affect on Akt expression or activation. However, in MF(-/-) cells, IGF-I-stimulated phosphorylation of Akt was reduced despite up-regulated Akt levels. Further investigation demonstrated that caveolin knockout up-regulated Akt-2 and Akt-3 isoform expression, but Akt-1 expression was down-regulated; interestingly, coimmunoprecipitation studies revealed Akt-1 as the predominant isoform to be phosphorylated in response to IGF-I. In summary, caveolin-1 deficiency promotes a hyperproliferative response to IGF-I that is unrelated to Akt expression/activation. However, cells that lack caveolin are able to respond appropriately to IGF-I through compensatory changes in Akt isoform expression. These data posit caveolin-1 as a component of the IGF/PI-3K/Akt signalling modulus regulating cellular proliferation with implications for diseases, including cancers, which have altered caveolin expression.
Collapse
Affiliation(s)
- Laura C Matthews
- Maternal and Fetal Health Research Group, University of Manchester, St. Mary's Hospital, Hathersage Road, Manchester M13 0JH, United Kingdom
| | | | | |
Collapse
|
15
|
Quest AFG, Gutierrez-Pajares JL, Torres VA. Caveolin-1: an ambiguous partner in cell signalling and cancer. J Cell Mol Med 2008; 12:1130-50. [PMID: 18400052 PMCID: PMC3865655 DOI: 10.1111/j.1582-4934.2008.00331.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Caveolae are small plasma membrane invaginations that have been implicated in a variety of functions including transcytosis, potocytosis and cholesterol transport and signal transduction. The major protein component of this compartment is a family of proteins called caveolins. Experimental data obtained in knockout mice have provided unequivocal evidence for a requirement of caveolins to generate morphologically detectable caveolae structures. However, expression of caveolins is not sufficient per seto assure the presence of these structures. With respect to other roles attributed to caveolins in the regulation of cellular function, insights are even less clear. Here we will consider, more specifically, the data concerning the ambiguous roles ascribed to caveolin-1 in signal transduction and cancer. In particular, evidence indicating that caveolin-1 function is cell context dependent will be discussed.
Collapse
Affiliation(s)
- Andrew F G Quest
- FONDAP Centre for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | | | |
Collapse
|
16
|
Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 2008; 48:359-91. [PMID: 17914930 PMCID: PMC3083858 DOI: 10.1146/annurev.pharmtox.48.121506.124841] [Citation(s) in RCA: 355] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Caveolae, a subset of membrane (lipid) rafts, are flask-like invaginations of the plasma membrane that contain caveolin proteins, which serve as organizing centers for cellular signal transduction. Caveolins (-1, -2, and -3) have cytoplasmic N and C termini, palmitolylation sites, and a scaffolding domain that facilitates interaction and organization of signaling molecules so as to help provide coordinated and efficient signal transduction. Such signaling components include upstream entities (e.g., G protein-coupled receptors (GPCRs), receptor tyrosine kinases, and steroid hormone receptors) and downstream components (e.g., heterotrimeric and low-molecular-weight G proteins, effector enzymes, and ion channels). Diseases associated with aberrant signaling may result in altered localization or expression of signaling proteins in caveolae. Caveolin-knockout mice have numerous abnormalities, some of which may reflect the impact of total body knockout throughout the life span. This review provides a general overview of caveolins and caveolae, signaling molecules that localize to caveolae, the role of caveolae/caveolin in cardiac and pulmonary pathophysiology, pharmacologic implications of caveolar localization of signaling molecules, and the possibility that caveolae might serve as a therapeutic target.
Collapse
Affiliation(s)
- Hemal H Patel
- Department of Anesthesiology, University of California-San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
17
|
Matthews L, Berry A, Ohanian V, Ohanian J, Garside H, Ray D. Caveolin mediates rapid glucocorticoid effects and couples glucocorticoid action to the antiproliferative program. Mol Endocrinol 2008; 22:1320-30. [PMID: 18308897 DOI: 10.1210/me.2007-0154] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many glucocorticoid (Gc) actions are of rapid onset and therefore require acute regulation of intracellular signaling cascades. Integration of diverse extracellular signals requires cross-talk between intracellular pathways, suggesting the existence of nodes for signal interaction, such as the specialized membrane microdomains caveolae. We have identified rapid Gc-dependent phosphorylation of caveolin, and protein kinase B (PKB)/Akt, in the lung epithelial cell line A549 and found this was dependent on src kinases. There was also activation of PKB downstream molecules glycogen synthase kinase-3beta, and mammalian target of rapamycin. Subcellular fractionation colocalized glucocorticoid receptor (GR) and c-src to caveolin-containing membrane fractions. Coimmunoprecipitation studies also identified interactions between GR and caveolin and suggested that the activation function 1 domain within the GR may serve to support an interaction between GR and caveolin. Disruption of lipid raft formation, impairment of caveolin function using dominant-negative caveolin, down-regulation of caveolin-1 using short hairpin RNA or complete ablation of caveolin-1 prevented Gc-induced activation of PKB. Loss of caveolin-1 also prevents Gc activation of glycogen synthase kinase-3beta and mammalian target of rapamycin. In contrast, caveolin interference/down-regulation had no effect on Gc transactivation. Functional analysis of caveolin-1 knockdown and knockout cells identified profound loss of Gc-mediated growth inhibition compared with controls, with a requirement for caveolin in order for Gc to regulate cell cycle progression. Therefore, disruption of caveolae leads to dissociation of Gc action, with impaired induction of PKB activation, and cell growth inhibition, but with negligible effects on Gc transactivation. These observations have implications for understanding the diverse physiological actions of Gc.
Collapse
Affiliation(s)
- L Matthews
- University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Patel HH, Murray F, Insel PA. G-protein-coupled receptor-signaling components in membrane raft and caveolae microdomains. Handb Exp Pharmacol 2008:167-84. [PMID: 18491052 DOI: 10.1007/978-3-540-72843-6_7] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The efficiency of signal transduction in cells derives in part from subcellular, in particular plasma membrane, microdomains that organize signaling molecules and signaling complexes. Two related plasma membrane domains that compartmentalize G-protein coupled receptor (GPCR) signaling complexes are lipid (membrane) rafts, domains that are enriched in certain lipids, including cholesterol and sphingolipids, and caveolae, a subset of lipid rafts that are enriched in the protein caveolin. This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.
Collapse
Affiliation(s)
- H H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | |
Collapse
|
19
|
Zeldich E, Koren R, Dard M, Nemcovsky C, Weinreb M. Enamel matrix derivative protects human gingival fibroblasts from TNF-induced apoptosis by inhibiting caspase activation. J Cell Physiol 2007; 213:750-8. [PMID: 17607712 DOI: 10.1002/jcp.21142] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Emdogain, a formulation of enamel matrix derivative (EMD), is used clinically for regeneration of the periodontium (tooth supporting tissues), but the molecular mechanisms of its action have not been elucidated. Several clinical studies suggested that EMD may also improve gingival healing after periodontal surgery and thus affect the fate of gingival fibroblasts (GFs). Since these cells are targets for local inflammatory mediators such as TNF, a pro-apoptotic cytokine, during the course of periodontal disease, we tested whether EMD protects human GFs (hGFs) from TNF-induced cytotoxicity. Quiescent primary hGFs were challenged with TNF (10-100 ng/ml) with or without EMD (100 microg/ml) pretreatment. Cell viability was assessed by neutral red staining, cell death by LDH release and apoptosis by caspase activity. Signaling pathways were evaluated by Western blotting and pharmacological inhibitors. TNF induced classical signs of apoptosis in hGFs, including typical cellular morphology and increased caspase activity. TNF-induced cytotoxicity was entirely caspase-dependent. Pretreatment (4-24 h) with EMD dramatically inhibited the activation of initiator and executioner caspases and enhanced hGF survival. Although TNF induced the activation of p38 MAPK, JNK, ERK and PI-3K signaling, these pathways were not crucial for EMD protection of hGFs. However, EMD increased the levels of c-FLIP(L), an anti-apoptotic protein located upstream of caspase activation. These data demonstrate, for the first time, that EMD protects hGFs from inflammatory cytokines and, together with our recent reports that EMD stimulates rat and human GF proliferation, could help explain the mechanisms whereby in vivo use of EMD promotes gingival healing.
Collapse
Affiliation(s)
- E Zeldich
- Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|
20
|
Jiang YN, Li YH, Ke MW, Tseng TY, Tang YB, Huang MC, Cheng WTK, Ju YT. Caveolin-1 sensitizes rat pituitary adenoma GH3 cells to bromocriptine induced apoptosis. Cancer Cell Int 2007; 7:1. [PMID: 17331262 PMCID: PMC1832175 DOI: 10.1186/1475-2867-7-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 03/02/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prolactinoma is the most frequent pituitary tumor in humans. The dopamine D2 receptor agonist bromocriptine has been widely used clinically to treat human breast tumor and prolactinoma through inhibition of hyperprolactinemia and induction of tumor cell apoptosis, respectively, but the molecular mechanism of bromocriptine induction of pituitary tumor apoptosis remains unclear. Caveolin-1 is a membrane-anchored protein enriched on caveolae, inverted flask-shaped invaginations on plasma membranes where signal transduction molecules are concentrated. Currently, caveolin-1 is thought to be a negative regulator of cellular proliferation and an enhancer of apoptosis by blocking signal transduction between cell surface membrane receptors and intracellular signaling protein cascades. Rat pituitary adenoma GH3 cells, which express endogenous caveolin-1, exhibit increased apoptosis and shrinkage after exposure to bromocriptine. Hence, the GH3 cell line is an ideal model for studying the molecular action of bromocriptine on prolactinoma. RESULTS The expression of endogenous caveolin-1 in GH3 cells was elevated after bromocriptine treatment. Transiently expressed mouse recombinant caveolin-1 induced apoptosis in GH3 cells by enhancing the activity of caspase 8. Significantly, caveolin-1 induction of GH3 cell apoptosis was sensitized by the administration of bromocriptine. Phosphorylation of caveolin-1 at tyrosine 14 was enhanced after bromocriptine treatment, suggesting that bromocriptine-induced phosphorylation of caveolin-1 may contribute to sensitization of apoptosis in GH3 cells exposed to bromocriptine. CONCLUSION Our results reveal that caveolin-1 increases sensitivity for apoptosis induction in pituitary adenoma GH3 cells and may contribute to tumor shrinkage after clinical bromocriptine treatment.
Collapse
Affiliation(s)
- Yan-Nian Jiang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yi-Hung Li
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Meng-Wei Ke
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Ting-Yu Tseng
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yueh-Bih Tang
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Mu-Chiou Huang
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | | | - Yu-Ten Ju
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Morjaria S, Deleuze-Masquefa C, Lafont V, Gayraud S, Bompart J, Bonnet PA, Dornand J. Impairment of TNF-alpha production and action by imidazo[1,2- alpha] quinoxalines, a derivative family which displays potential anti-inflammatory properties. Int J Immunopathol Pharmacol 2006; 19:525-38. [PMID: 17026837 DOI: 10.1177/039463200601900308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In a previous study, we analysed the synthesis and properties of a series of imidazo[1,2-alpha]quinoxalines designed in our laboratory as possible imiquimod analogues. We found that these imidazo[1,2-alpha]quinoxalines were in fact potent inhibitors of phosphodiesterase 4 enzymes (PDE4). PDE4 inhibition normally results in an increase in intracellular cAMP which, in PBMC, induces the suppression of TNF-alpha mRNA transcription and thus cytokine synthesis. Such an effect is antagonistic to that of imiquimod. Furthermore, some TNF-alpha-induced activity, such as cell apoptosis which is dependent on the intracellular cAMP levels might also be affected. Therefore, by counteracting the properties of TNF-alpha and/or its production, the imidazo[1,2-alpha]quinoxalines could be considered as potential anti-inflammatory drugs. The present study was performed to confirm or refute this hypothesis. For this, we characterized the effects of imidazo[1,2-alpha]quinoxalines both on TNF-alpha activity and synthesis in regard to their ability to act as inhibitors of PDE4 (IPDE4). We found that the imidazo[1,2-alpha]quinoxalines dose-dependently prevented the TNF-alpha-triggered death of L929 cells, with the 8-series (-NHCH3 in R4) being the most potent. Moreover, when the effect of the 8-series on TNF-alpha production was investigated using gamma9delta2 T cells, it was observed that these compounds impaired the TCR:CD3-triggered TNF-alpha production. Structure-activity analysis revealed that these properties of the drugs did not coincide with their IPDE4 properties. This prompted further exploration into other signalling mechanisms possibly involved in TNF-alpha action and production, notably the p38 MAPK and the PI3K pathway. We demonstrate here that the imidazo[1,2-alpha]quinoxalines targeted these pathways in a different way: they activated the p38 MAPK pathway whilst inhibiting the PI3K pathway. Such effects on cell signalling could account for the imidazo[1,2-alpha]quinoxalines effects on 1) action and 2) production of TNF-alpha, which define these drugs as potential anti-inflammatory agents.
Collapse
Affiliation(s)
- S Morjaria
- INSERM U431, University of Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Chintharlapalli S, Papineni S, Safe S. 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes inhibit colon cancer cell and tumor growth through PPARgamma-dependent and PPARgamma-independent pathways. Mol Cancer Ther 2006; 5:1362-70. [PMID: 16731770 DOI: 10.1158/1535-7163.mct-06-0002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing p-trifluoromethyl, t-butyl, and phenyl [1,1-bis(3'-indolyl)-1-(p-phenyl)methane (DIM-C-pPhC(6)H(5))] substituents induce peroxisome proliferator-activated receptor gamma (PPARgamma)-mediated transactivation in SW480 colon cancer cells. These PPARgamma-active compounds also inhibit cell proliferation and modulate some cell cycle proteins. At concentrations from 2.5 to 7.5 micromol/L, the PPARgamma agonists induce caveolin-1 and phosphorylation of Akt and cotreatment with the PPARgamma antagonist GW9662 inhibited the induction response. In contrast, higher concentrations (10 micromol/L) of 1,1-bis(3'-indolyl)-1-(p-substituted phenyl)methanes containing 1,1-bis(3'-indolyl)-1-(p-trifluoromethyl)methane and DIM-C-pPhC(6)H(5) induce apoptosis, which is PPARgamma independent. This was accompanied by loss of caveolin-1 induction but induction of proapoptotic nonsteroidal anti-inflammatory drug activated gene-1. In athymic nude mice bearing SW480 cell xenografts, DIM-C-pPhC(6)H(5) inhibits tumor growth at doses of 20 and 40 mg/kg/d and immunohistochemical staining of the tumors showed induction of apoptosis and nonsteroidal anti-inflammatory drug activated gene-1 expression. Thus, the indole-derived PPARgamma-active compounds induce both receptor-dependent and receptor-independent responses in SW480 cells, which are separable over a narrow range of concentrations. This dual mechanism of action enhances their antiproliferative and anticancer activities.
Collapse
Affiliation(s)
- Sudhakar Chintharlapalli
- Department of Physiology and Pharmacology, Texas A&M University, 4466 TAMU, Veterinary Research Building 410, College Station, TX 77843-4466, USA
| | | | | |
Collapse
|
23
|
Kassouf W, Chintharlapalli S, Abdelrahim M, Nelkin G, Safe S, Kamat AM. Inhibition of bladder tumor growth by 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methanes: a new class of peroxisome proliferator-activated receptor gamma agonists. Cancer Res 2006; 66:412-8. [PMID: 16397256 DOI: 10.1158/0008-5472.can-05-2755] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
1,1-Bis(3'-indolyl)-1-(p-substitutedphenyl)methanes containing p-trifluoromethyl (DIM-C-pPhCF3), p-t-butyl (DIM-C-pPhtBu), and phenyl (DIM-C-pPhC6H5) substituents have been identified as a new class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists that exhibit antitumorigenic activity. The PPARgamma-active C-DIMs have not previously been studied against bladder cancer. We investigated the effects of the PPARgamma-active C-DIMs on bladder cancer cells in vitro and bladder tumors in vivo. In this study, the PPARgamma-active compounds inhibited the proliferation of KU7 and 253J-BV bladder cancer cells, and the corresponding IC50 values were 5 to 10 and 1 to 5 micromol/L, respectively. In the less responsive KU7 cells, the PPARgamma agonists induced caveolin-1 and p21 expression but no changes in cyclin D1 or p27; in 253J-BV cells, the PPARgamma agonists did not affect caveolin-1, cyclin D1, or p27 expression but induced p21 protein. In KU7 cells, induction of caveolin-1 by each of the PPARgamma agonists was significantly down-regulated after cotreatment with the PPARgamma antagonist GW9662. DIM-C-pPhCF3 (60 mg/kg thrice a week for 4 weeks) inhibited the growth of implanted KU7 orthotopic and s.c. tumors by 32% and 60%, respectively, and produced a corresponding decrease in proliferation index. Treatment of KU7 cells with DIM-C-pPhCF3 also elevated caveolin-1 expression by 25% to 30%, suggesting a role for this protein in mediating the antitumorigenic activity of DIM-C-pPhCF3 in bladder cancer.
Collapse
Affiliation(s)
- Wassim Kassouf
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston 77030, USA
| | | | | | | | | | | |
Collapse
|
24
|
Xia M, Wang M, Tashiro SI, Onodera S, Minami M, Ikejima T. Dracorhodin Perchlorate Induces A375-S2 Cell Apoptosis via Accumulation of p53 and Activation of Caspases. Biol Pharm Bull 2005; 28:226-32. [PMID: 15684474 DOI: 10.1248/bpb.28.226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dracorhodin perchlorate, an anthocyanin red pigment, induces human melanoma A375-S2 cell death through the apoptotic pathway. Caspase-3, -8, -9, and -10 inhibitors partially reversed the cell death induced by dracorhodin perchlorate. Caspase-3 and -8 were activated, followed by the degradation of caspase-3 substrates, the inhibitor of caspase-activated DNase, and poly-(ADP-ribose) polymerase. Dracorhodin perchlorate upregulated the expression ratio of Bax/Bcl-2 and significantly increased the expression of p53 and p21(WAF1) proteins. The cell death was partially reduced by the mitogen-activated protein kinase c-JUN NH2-terminal protein kinase (JNK MAPK) inhibitor (SP600125) and p38 MAPK inhibitor (SB 203580), while the MEK inhibitor (PD98059) augmented cell death; the drug induced sustained phosphorylation of JNK and p38 MAPK. Moreover, the Fas agonistic antibody CH-11 has a synergistic effect with dracorhodin perchlorate. The phoshatidylinositol 3-kinase (PI3-K) family inhibitor wortmanin and tyrosine kinase inhibitor genistein rescued the viability loss induced by dracohodin perchlorate. Taken together, dracorhodin perchlorate induces apoptosis in A375-S2 cells via accumulation of p53, alters the Bax/Bcl-2 ratio, and activates caspases and p38/JNK MAPKs.
Collapse
Affiliation(s)
- Mingyu Xia
- China-Japan Research Institute of Medical and Pharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | | | |
Collapse
|