1
|
Satitsri S, Akrimajirachoote N, Nunta K, Ruennarong N, Amnucksoradej O, Muanprasat C. Piperine as potential therapy of post-weaning porcine diarrheas: an in vitro study using a porcine duodenal enteroid model. BMC Vet Res 2023; 19:4. [PMID: 36624444 PMCID: PMC9827699 DOI: 10.1186/s12917-022-03536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Post-weaning diarrhea in piglets is a major problem, resulting in a significant loss in pig production. This study aimed to investigate the effects of piperine, an alkaloid abundantly found in black peppers, on biological activities related to the pathogenesis of post-weaning diarrhea using a porcine duodenal enteroid model, a newly established intestinal stem cell-derived in vitro model recapitulating physiology of porcine small intestinal epithelia. Porcine duodenal enteroid models were treated with disease-relevant pathological inducers with or without piperine (8 μg/mL and/or 20 μg/mL) before measurements of oxidative stress, mRNA, and protein expression of proinflammatory cytokines, nuclear factor-kappa B (NF-κB) nuclear translocation, barrier leakage, and fluid secretion. We found that piperine (20 μg/mL) inhibited H2O2-induced oxidative stress, TNF-α-induced mRNA, and protein expression of proinflammatory cytokines without affecting NF-κB nuclear translocation, and prevented TNF-α-induced barrier leakage in porcine duodenal enteroid monolayers. Importantly, piperine inhibited fluid secretion induced by both forskolin and heat-stable toxins (STa) in a three-dimensional model of porcine duodenal enteroids. Collectively, piperine possesses both anti-inflammatory and anti-secretory effects in porcine enteroid models. Further research and development of piperine may provide novel interventions for the treatment of post-weaning porcine diarrhea.
Collapse
Affiliation(s)
- Saravut Satitsri
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540 Thailand
| | - Nattaphong Akrimajirachoote
- grid.9723.f0000 0001 0944 049XDepartment of Physiology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900 Thailand
| | - Kanokkan Nunta
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Nitwarat Ruennarong
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Orawan Amnucksoradej
- Vet Products Research and Innovation Center Co., Ltd., Pathum Thani, 12120 Thailand
| | - Chatchai Muanprasat
- grid.10223.320000 0004 1937 0490Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540 Thailand
| |
Collapse
|
2
|
Reyne N, Cmielewski P, McCarron A, Delhove J, Parsons D, Donnelley M. Single-Dose Lentiviral Mediated Gene Therapy Recovers CFTR Function in Cystic Fibrosis Knockout Rats. Front Pharmacol 2021; 12:682299. [PMID: 34084147 PMCID: PMC8167067 DOI: 10.3389/fphar.2021.682299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/04/2021] [Indexed: 01/23/2023] Open
Abstract
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective ion transport in the airways. Addition of a functioning CFTR gene into affected airway cells has the potential to be an effective treatment for lung disease. The therapeutic efficacy of airway gene transfer can be quantified in animal models by assessing ion transport in the treated nasal epithelium using the nasal potential difference (PD) measurement technique. The nasal PD technique is routinely used in CF mice, however when applied to a recently developed CF rat model those animals did not tolerate the initial nasal PD assessment, therefore the procedure was firstly optimised in rats. This study evaluated the effect of lentiviral (LV)-mediated CFTR airway gene delivery on nasal PD in a CFTR knockout rat model. LV gene vector containing the CFTR gene tagged with a V5 epitope tag (LV-V5-CFTR) was delivered to the nasal epithelium of CF rats, and one week later nasal PD was analysed. This study demonstrated for the first time that LV-V5-CFTR treatment produced a mean correction of 46% towards wild-type chloride response in treated CF rats. Transduced cells were subsequently identifiable using V5 immunohistochemical staining. These findings in the nose validate the use of airway gene therapy for future lung based experiments.
Collapse
Affiliation(s)
- Nicole Reyne
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Patricia Cmielewski
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Alexandra McCarron
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Juliette Delhove
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - David Parsons
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Martin Donnelley
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia.,Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia.,Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
3
|
Short-term CFTR inhibition reduces islet area in C57BL/6 mice. Sci Rep 2019; 9:11244. [PMID: 31375720 PMCID: PMC6677757 DOI: 10.1038/s41598-019-47745-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis-related diabetes (CFRD) worsens CF lung disease leading to early mortality. Loss of beta cell area, even without overt diabetes or pancreatitis is consistently observed. We investigated whether short-term CFTR inhibition was sufficient to impact islet morphology and function in otherwise healthy mice. CFTR was inhibited in C57BL/6 mice via 8-day intraperitoneal injection of CFTRinh172. Animals had a 7-day washout period before measures of hormone concentration or islet function were performed. Short-term CFTR inhibition increased blood glucose concentrations over the course of the study. However, glucose tolerance remained normal without insulin resistance. CFTR inhibition caused marked reductions in islet size and in beta cell and non-beta cell area within the islet, which resulted from loss of islet cell size rather than islet cell number. Significant reductions in plasma insulin concentrations and pancreatic insulin content were also observed in CFTR-inhibited animals. Temporary CFTR inhibition had little long-term impact on glucose-stimulated, or GLP-1 potentiated insulin secretion. CFTR inhibition has a rapid impact on islet area and insulin concentrations. However, islet cell number is maintained and insulin secretion is unaffected suggesting that early administration of therapies aimed at sustaining beta cell mass may be useful in slowing the onset of CFRD.
Collapse
|
4
|
Beka M, Leal T. Nasal Potential Difference to Quantify Trans-epithelial Ion Transport in Mice. J Vis Exp 2018. [PMID: 30035761 DOI: 10.3791/57934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The nasal potential difference test has been used for almost three decades to assist in the diagnosis of cystic fibrosis (CF). It has proven to be helpful in cases of attenuated, oligo- or mono-symptomatic forms of CF usually diagnosed later in life, and of CF-related disorders such as congenital bilateral absence of vas deferens, idiopathic chronic pancreatitis, allergic bronchopulmonary aspergillosis, and bronchiectasis. In both clinical and preclinical settings, the test has been used as a biomarker to quantify responses to targeted therapeutic strategies for CF. Adapting the test to a mouse is challenging and can entail an associated mortality. This paper describes the adequate depth of anesthesia required to maintain a nasal catheter in situ for continuous perfusion. It lists measures to avoid broncho-aspiration of solutions perfused in the nose. It also describes the animal care at the end of the test, including administration of a combination of antidotes of the anesthetic drugs, leading to rapidly reversing the anesthesia with full recovery of the animals. Representative data obtained from a CF and a wild-type mouse show that the test discriminates between CF and non-CF. Altogether, the protocol described here allows reliable measurements of the functional status of trans-epithelial chloride and sodium transporters in spontaneously breathing mice, as well as multiple tests in the same animal while reducing test-related mortality.
Collapse
Affiliation(s)
- Mathilde Beka
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain
| | - Teresinha Leal
- Louvain Center for Toxicology and Applied Pharmacology (LTAP), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain;
| |
Collapse
|
5
|
Zhang YL, Chen PX, Guan WJ, Guo HM, Qiu ZE, Xu JW, Luo YL, Lan CF, Xu JB, Hao Y, Tan YX, Ye KN, Lun ZR, Zhao L, Zhu YX, Huang J, Ko WH, Zhong WD, Zhou WL, Zhong NS. Increased intracellular Cl - concentration promotes ongoing inflammation in airway epithelium. Mucosal Immunol 2018; 11:1149-1157. [PMID: 29545647 DOI: 10.1038/s41385-018-0013-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Airway epithelial cells harbor the capacity of active Cl- transepithelial transport and play critical roles in modulating innate immunity. However, whether intracellular Cl- accumulation contributes to relentless airway inflammation remains largely unclear. This study showed that, in airway epithelial cells, intracellular Cl- concentration ([Cl-]i) was increased after Pseudomonas aeruginosa lipopolysaccharide (LPS) stimulation via nuclear factor-κB (NF-κB)-phosphodiesterase 4D (PDE4D)-cAMP signaling pathways. Clamping [Cl-]i at high levels or prolonged treatment with LPS augmented serum- and glucocorticoid-inducible protein kinase 1 (SGK1) phosphorylation and subsequently triggered NF-κB activation in airway epithelial cells, whereas inhibition of SGK1 abrogated airway inflammation in vitro and in vivo. Furthermore, Cl--SGK1 signaling pathway was pronouncedly activated in patients with bronchiectasis, a chronic airway inflammatory disease. Conversely, hydrogen sulfide (H2S), a sulfhydryl-containing gasotransmitter, confers anti-inflammatory effects through decreasing [Cl-]i via activation of cystic fibrosis transmembrane conductance regulator (CFTR). Our study confirms that intracellular Cl- is a crucial mediator of sustained airway inflammation. Medications that abrogate excessively increased intracellular Cl- may offer novel targets for the management of airway inflammatory diseases.
Collapse
Affiliation(s)
- Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peng-Xiao Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Hong-Mei Guo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Biology and Food Engineering Institute, Guangdong University of Education, Guangzhou, China
| | - Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Li Luo
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chong-Feng Lan
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yuan Hao
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Ya-Xia Tan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ke-Nan Ye
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhao-Rong Lun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiehong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wing-Hung Ko
- School of Biomedical Sciences, The Chinese University of Hong Kong, N. T., China, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| | - Nan-Shan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
6
|
da Cunha MF, Simonin J, Sassi A, Freund R, Hatton A, Cottart CH, Elganfoud N, Zoubairi R, Dragu C, Jais JP, Hinzpeter A, Edelman A, Sermet-Gaudelus I. Analysis of nasal potential in murine cystic fibrosis models. Int J Biochem Cell Biol 2016; 80:87-97. [PMID: 27717840 DOI: 10.1016/j.biocel.2016.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022]
Abstract
The nasal epithelium of the mouse closely mimics the bioelectrical phenotype of the human airways. Ion transport across the nasal epithelium induces a nasal transepithelial potential difference. Its measurement by a relatively non-invasive method adapted from humans allows in vivo longitudinal measurements of CFTR-dependent ionic transport in the murine nasal mucosa. This test offers a useful tool to assess CFTR function in preclinical studies for novel therapeutics modulating CFTR activity. Here we extensively review work done to assess transepithelial transport in the murine respiratory epithelium in the basal state and after administration of CFTR modulators. Factors of variability and discriminative threshold between the CF and the WT mice for different readouts are discussed.
Collapse
Affiliation(s)
- Mélanie Faria da Cunha
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Juliette Simonin
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Ali Sassi
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Romain Freund
- Unité de Biostatistiques, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Aurélie Hatton
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Charles-Henry Cottart
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Nadia Elganfoud
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Rachid Zoubairi
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Corina Dragu
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Jean Philippe Jais
- Unité de Biostatistiques, Hôpital Necker Enfants Malades, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Alexandre Hinzpeter
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | - Aleksander Edelman
- INSERM U 1151, Institut Necker Enfants Malades, Université Paris Sorbonne, Paris, France
| | | |
Collapse
|
7
|
Lazrak A, Jurkuvenaite A, Ness EC, Zhang S, Woodworth BA, Muhlebach MS, Stober VP, Lim YP, Garantziotis S, Matalon S. Inter-α-inhibitor blocks epithelial sodium channel activation and decreases nasal potential differences in ΔF508 mice. Am J Respir Cell Mol Biol 2014; 50:953-62. [PMID: 24303840 DOI: 10.1165/rcmb.2013-0215oc] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased activity of lung epithelial sodium channels (ENaCs) contributes to the pathophysiology of cystic fibrosis (CF) by increasing the rate of epithelial lining fluid reabsorption. Inter-α-inhibitor (IαI), a serum protease inhibitor, may decrease ENaC activity by preventing its cleavage by serine proteases. High concentrations of IαI were detected in the bronchoalveolar lavage fluid (BALF) of children with CF and lower airway diseases. IαI decreased amiloride-sensitive (IENaC) but not cAMP-activated Cl(-) currents across confluent monolayers of rat ATII, and mouse nasal epithelial cells grew in primary culture by 45 and 25%, respectively. Changes in IENaC by IαI in ATII cells were accompanied by increased levels of uncleaved (immature) surface α-ENaC. IαI increased airway surface liquid depth overlying murine nasal epithelial cells to the same extent as amiloride, consistent with ENaC inhibition. Incubation of lung slices from C57BL/6, those lacking phenylalanine at position 508 (∆F508), or CF transmembrane conductance regulator knockout mice with IαI for 3 hours decreased the open probability of their ENaC channels by 50%. ∆F508 mice had considerably higher levels the amiloride-sensitive fractions of ENaC nasal potential difference (ENaC-NPD) than wild-type littermates and only background levels of IαI in their BALF. A single intranasal instillation of IαI decreased their ENaC-NPD 24 hours later by 25%. In conclusion, we show that IαI is present in the BALF of children with CF, is an effective inhibitor of ENaC proteolysis, and decreases ENaC activity in lung epithelial cells of ∆F508 mice.
Collapse
|
8
|
Jin W, Song Y, Bai C, Jiang J. Novel role for cystic fibrosis transmembrane conductance regulator in alveolar fluid clearance in lipopolysaccharide-induced acute lung injury in mice. Respirology 2014; 18:978-82. [PMID: 23659604 DOI: 10.1111/resp.12114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Alveolar fluid clearance (AFC) is important for the resolution of acute lung injury (ALI). The role of cystic fibrosis transmembrane conductance regulator (CFTR) in AFC has not been entirely elucidated in animal models of ALI. The aim of this study was to investigate the role of CFTR and its mechanisms in AFC in normal and ALI mice. METHODS Seventy mice were randomly divided into 14 groups and ALI was established by intratracheal instillation of lipopolysaccharide (LPS). After 48 h, CFTR activator CFTRact-16 or inhibitor CFinh-172 with or without β-agonist was instillated intratracheally and AFC was measured with radioisotopic tracer. RESULTS Although there was no effects of CFTRact-16 on AFC in mice with or without isoproterenol, CFinh-172 markedly decreased isoproterenol-stimulated AFC in both normal (P < 0.01) and LPS-induced ALI mice (P < 0.01) and there was significantly decreased basal AFC in ALI mice (P < 0.05). CONCLUSIONS These results provide direct functional evidence for CFTR in cAMP-mediated AFC in both normal and ALI mice.
Collapse
Affiliation(s)
- Weizhong Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | | | |
Collapse
|
9
|
Role of CFTR in oxidative stress and suicidal death of renal cells during cisplatin-induced nephrotoxicity. Cell Death Dis 2013; 4:e817. [PMID: 24091660 PMCID: PMC3824665 DOI: 10.1038/cddis.2013.355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 07/16/2013] [Accepted: 08/06/2013] [Indexed: 11/08/2022]
Abstract
The clinical use of the antineoplastic drug cisplatin is limited by its deleterious nephrotoxic side effect. Cisplatin-induced nephrotoxicity is associated with an increase in oxidative stress, leading ultimately to renal cell death and irreversible kidney dysfunction. Oxidative stress could be modified by the cystic fibrosis transmembrane conductance regulator protein (CFTR), a Cl− channel not only involved in chloride secretion but as well in glutathione (GSH) transport. Thus, we tested whether the inhibition of CFTR could protect against cisplatin-induced nephrotoxicity. Using a renal proximal cell line, we show that the specific inhibitor of CFTR, CFTRinh-172, prevents cisplatin-induced cell death and apoptosis by modulating the intracellular reactive oxygen species balance and the intracellular GSH concentration. This CFTRinh-172-mediated protective effect occurs without affecting cellular cisplatin uptake or the formation of platinum-DNA adducts. The protective effect of CFTRinh-172 in cisplatin-induced nephrotoxicity was also investigated in a rat model. Five days after receiving a single cisplatin injection (5 mg/kg), rats exhibited renal failure, as evidenced by the alteration of biochemical and functional parameters. Pretreatment of rats with CFTRinh-172 (1 mg/kg) prior to cisplatin injection significantly prevented these deleterious cisplatin-induced nephrotoxic effects. Finally, we demonstrate that CFTRinh-172 does not impair cisplatin-induced cell death in the cisplatin-sensitive A549 cancer cell line. In conclusion, the use of a specific inhibitor of CFTR may represent a novel therapeutic approach in the prevention of nephrotoxic side effects during cisplatin treatment without affecting its antitumor efficacy.
Collapse
|
10
|
Characterization of nasal potential difference in cftr knockout and F508del-CFTR mice. PLoS One 2013; 8:e57317. [PMID: 23505426 PMCID: PMC3591431 DOI: 10.1371/journal.pone.0057317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 01/21/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Treatments designed to correct cystic fibrosis transmembrane conductance regulator (CFTR) defects must first be evaluated in preclinical experiments in the mouse model of cystic fibrosis (CF). Mice nasal mucosa mimics the bioelectric defect seen in humans. The use of nasal potential difference (V(TE)) to assess ionic transport is a powerful test evaluating the restoration of CFTR function. Nasal V(TE) in CF mice must be well characterized for correct interpretation. METHODS We performed V(TE) measurements in large-scale studies of two mouse models of CF--B6;129 cftr knockout and FVB F508del-CFTR--and their respective wild-type (WT) littermates. We assessed the repeatability of the test for cftr knockout mice and defined cutoff points distinguishing between WT and F508del-CFTR mice. RESULTS We determined the typical V(TE) values for CF and WT mice and demonstrated the existence of residual CFTR activity in F508del-CFTR mice. We characterized intra-animal variability in B6;129 mice and defined the cutoff points for F508del-CFTR chloride secretion rescue. Hyperpolarization of more than -2.15 mV after perfusion with a low-concentration Cl(-) solution was considered to indicate a normal response. CONCLUSIONS These data will make it possible to interpret changes in nasal V(TE) in mouse models of CF, in future preclinical studies.
Collapse
|
11
|
Schiffhauer ES, Vij N, Kovbasnjuk O, Kang PW, Walker D, Lee S, Zeitlin PL. Dual activation of CFTR and CLCN2 by lubiprostone in murine nasal epithelia. Am J Physiol Lung Cell Mol Physiol 2013; 304:L324-31. [PMID: 23316067 DOI: 10.1152/ajplung.00277.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sodium and chloride channels on the apical surface of nasal epithelial cells contribute to periciliary fluid homeostasis, a function that is disrupted in patients with cystic fibrosis (CF). Among these channels is the chloride channel CLCN2, which has been studied as a potential alternative chloride efflux pathway in the absence of CFTR. The object of the present study was to use the nasal potential difference test (NPD) to quantify CLCN2 function in an epithelial-directed TetOn CLCN2 transgenic mouse model (TGN-K18rtTA-hCLCN2) by using the putative CLCN2 pharmacological agonist lubiprostone and peptide inhibitor GaTx2. Lubiprostone significantly increased chloride transport in the CLCN2-overexpressing mice following activation of the transgene by doxycycline. This response to lubiprostone was significantly inhibited by GaTx2 after CLCN2 activation in TGN-CLCN2 mice. Cftr(-/-) and Clc2(-/-) mice showed hyperpolarization indicative of chloride efflux in response to lubiprostone, which was fully inhibited by GaTx2 and CFTR inhibitor 172 + GlyH-101, respectively. Our study reveals lubiprostone as a pharmacological activator of both CFTR and CLCN2. Overexpression and activation of CLCN2 leads to improved mouse NPD readings, suggesting it is available as an alternative pathway for epithelial chloride secretion in murine airways. The utilization of CLCN2 as an alternative chloride efflux channel could provide clinical benefit to patients with CF, especially if the pharmacological activator is administered as an aerosol.
Collapse
Affiliation(s)
- Eric S Schiffhauer
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Chen JH, Stoltz DA, Karp PH, Ernst SE, Pezzulo AA, Moninger TO, Rector MV, Reznikov LR, Launspach JL, Chaloner K, Zabner J, Welsh MJ. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia. Cell 2011; 143:911-23. [PMID: 21145458 DOI: 10.1016/j.cell.2010.11.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 08/31/2010] [Accepted: 11/02/2010] [Indexed: 10/18/2022]
Abstract
Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR⁻(/)⁻ pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissues, cultures, and in vivo. CFTR⁻(/)⁻ epithelia showed markedly reduced Cl⁻ and HCO₃⁻ transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na(+) or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR⁻(/)⁻ pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl⁻ conductance caused the change, not increased Na(+) transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl⁻ and HCO₃⁻ in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease.
Collapse
Affiliation(s)
- Jeng-Haur Chen
- Department of Internal Medicine, University of Iowa, Iowa City, 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kelly M, Trudel S, Brouillard F, Bouillaud F, Colas J, Nguyen-Khoa T, Ollero M, Edelman A, Fritsch J. Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition. J Pharmacol Exp Ther 2010; 333:60-9. [PMID: 20051483 DOI: 10.1124/jpet.109.162032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Two highly potent and selective cystic fibrosis (CF) transmembrane regulator (CFTR) inhibitors have been identified by high-throughput screening: the thiazolidinone CFTR(inh)-172 [3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]- 2-thioxo-4-thiazolidinone] and the glycine hydrazide GlyH-101 [N-(2-naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide]. Inhibition of the CFTR chloride channel by these compounds has been suggested to be of pharmacological interest in the treatment of secretory diarrheas and polycystic kidney disease. In addition, functional inhibition of CFTR by CFTR(inh)-172 has been proposed to be sufficient to mimic the CF inflammatory profile. In the present study, we investigated the effects of the two compounds on reactive oxygen species (ROS) production and mitochondrial membrane potential in several cell lines: the CFTR-deficient human lung epithelial IB3-1 (expressing the heterozygous F508del/W1282X mutation), the isogenic CFTR-corrected C38, and HeLa and A549 as non-CFTR-expressing controls. Both inhibitors were able to induce a rapid increase in ROS levels and depolarize mitochondria in the four cell types, suggesting that these effects are independent of CFTR inhibition. In HeLa cells, these events were associated with a decrease in the rate of oxygen consumption, with GlyH-101 demonstrating a higher potency than CFTR(inh)-172. The impact of CFTR inhibitors on inflammatory parameters was also tested in HeLa cells. CFTR(inh)-172, but not GlyH-101, induced nuclear translocation of nuclear factor-kappaB (NF-kappaB). CFTR(inh)-172 slightly decreased interleukin-8 secretion, whereas GlyH-101 induced a slight increase. These results support the conclusion that CFTR inhibitors may exert nonspecific effects regarding ROS production, mitochondrial failure, and activation of the NF-kappaB signaling pathway, independently of CFTR inhibition.
Collapse
Affiliation(s)
- Mairead Kelly
- Institut National de la Santé et de la Recherche Médicale, U845, Centre de Recherche Croissance and Signalization, 156 Rue de Vaugirard, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cormet-Boyaka E, Hong JS, Berdiev BK, Fortenberry JA, Rennolds J, Clancy JP, Benos DJ, Boyaka PN, Sorscher EJ. A truncated CFTR protein rescues endogenous DeltaF508-CFTR and corrects chloride transport in mice. FASEB J 2009; 23:3743-51. [PMID: 19620404 DOI: 10.1096/fj.08-127878] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystic fibrosis (CF) is most frequently associated with deletion of phenylalanine at position 508 (DeltaF508) in the CF transmembrane conductance regulator (CFTR) protein. The DeltaF508-CFTR mutant protein exhibits a folding defect that affects its processing and impairs chloride-channel function. This study aimed to determine whether CFTR fragments approximately half the size of wild-type CFTR and complementary to the portion of CFTR bearing the mutation can specifically rescue the processing of endogenous DeltaF508-CFTR in vivo. cDNA encoding CFTR fragments were delivered to human airway epithelial cells and mice harboring endogenous DeltaF508-CFTR. Delivery of small CFTR fragments, which do not act as chloride channels by themselves, rescue DeltaF508-CFTR. Therefore, we can speculate that the presence of the CFTR fragment, which does not harbor a mutation, might facilitate intermolecular interactions. The rescue of CFTR was evident by the restoration of chloride transport in human CFBE41o- bronchial epithelial cells expressing DeltaF508-CFTR in vitro. More important, nasal administration of an adenovirus expressing a complementary CFTR fragment restored some degree of CFTR activity in the nasal airways of DeltaF508 homozygous mice in vivo. These findings identify complementary protein fragments as a viable in vivo approach for correcting disease-causing misfolding of plasma membrane proteins.
Collapse
Affiliation(s)
- Estelle Cormet-Boyaka
- Division of Pulmonary Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43201, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Coote KJ, Atherton H, Young A, Sugar R, Burrows R, Smith NJ, Schlaeppi JM, Groot-Kormelink PJ, Gosling M, Danahay H. The guinea-pig tracheal potential difference as an in vivo model for the study of epithelial sodium channel function in the airways. Br J Pharmacol 2008; 155:1025-33. [PMID: 18806814 DOI: 10.1038/bjp.2008.363] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE The epithelial sodium channel (ENaC) is a key regulator of airway mucosal hydration and mucus clearance. Negative regulation of airway ENaC function is predicted to be of clinical benefit in the cystic fibrosis lung. The aim of this study was to develop a small animal model to enable the direct assessment of airway ENaC function in vivo. EXPERIMENTAL APPROACH Tracheal potential difference (TPD) was utilized as a measure of airway epithelial ion transport in the guinea-pig. ENaC activity in the trachea was established with a dose-response assessment to a panel of well-characterized direct and indirect pharmacological modulators of ENaC function, delivered by intra-tracheal (i.t.) instillation. KEY RESULTS The TPD in anaesthetized guinea-pigs was attenuated by the direct ENaC blockers: amiloride, benzamil and CF552 with ED(50) values of 16, 14 and 0.2 microg kg(-1) (i.t.), respectively. 5-(N-Ethyl-N-isopropyl) amiloride, a structurally related compound but devoid of activity on ENaC, was without effect on the TPD. Intra-tracheal dosing of the Kunitz-type serine protease inhibitors aprotinin and placental bikunin, which have previously been demonstrated to inhibit proteolytic activation of ENaC, likewise potently attenuated TPD in guinea-pigs, whereas alpha(1)-antitrypsin and soya bean trypsin inhibitor were without effect. CONCLUSIONS AND IMPLICATIONS The pharmacological sensitivity of the TPD to amiloride analogues and also to serine protease inhibitors are both consistent with that of ENaC activity in the guinea-pig trachea. The guinea-pig TPD therefore represents a suitable in vivo model of human airway epithelial ion transport.
Collapse
Affiliation(s)
- K J Coote
- Novartis Institutes for BioMedical Research, Horsham, West Sussex, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
MacDonald KD, McKenzie KR, Henderson MJ, Hawkins CE, Vij N, Zeitlin PL. Lubiprostone activates non-CFTR-dependent respiratory epithelial chloride secretion in cystic fibrosis mice. Am J Physiol Lung Cell Mol Physiol 2008; 295:L933-40. [PMID: 18805957 DOI: 10.1152/ajplung.90221.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Periciliary fluid balance is maintained by the coordination of sodium and chloride channels in the apical membranes of the airways. In the absence of the cystic fibrosis transmembrane regulator (CFTR), chloride secretion is diminished and sodium reabsorption exaggerated. ClC-2, a pH- and voltage-dependent chloride channel, is present on the apical membranes of airway epithelial cells. We hypothesized that ClC-2 agonists would provide a parallel pathway for chloride secretion. Using nasal potential difference (NPD) measurements, we quantified lubiprostone-mediated Cl(-) transport in sedated cystic fibrosis null (gut-corrected), C57Bl/6, and A/J mice during nasal perfusion of lubiprostone (a putative ClC-2 agonist). Baseline, amiloride-inhibited, chloride-free gluconate-substituted Ringer with amiloride and low-chloride Ringer plus lubiprostone (at increasing concentrations of lubiprostone) were perfused, and the NPD was continuously recorded. A clear dose-response relationship was detected in all murine strains. The magnitude of the NPD response to 20 muM lubiprostone was -5.8 +/- 2.1 mV (CF, n = 12), -8.1 +/- 2.6 mV (C57Bl/6 wild-type, n = 12), and -5.3 +/- 1.2 mV (AJ wild-type, n = 8). A cohort of ClC-2 knockout mice did not respond to 20 muM lubiprostone (n = 6, P = 0.27). In C57Bl/6 mice, inhibition of CFTR with topical application of CFTR inhibitor-172 did not abolish the lubiprostone response, thus confirming the response seen is independent of CFTR regulation. RT-PCR confirmed expression of ClC-2 mRNA in murine lung homogenate. The direct application of lubiprostone in the CF murine nasal airway restores nearly normal levels of chloride secretion in nasal epithelia.
Collapse
Affiliation(s)
- Kelvin D MacDonald
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, 200 N. Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|
17
|
Verkman AS. From the farm to the lab: the pig as a new model of cystic fibrosis lung disease. Am J Physiol Lung Cell Mol Physiol 2008; 295:L238-9. [DOI: 10.1152/ajplung.90311.2008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is an epithelial Cl- channel inhibited with high affinity and selectivity by the thiazolidinone compound CFTR(inh)-172. In the present study, we provide evidence that CFTR(inh)-172 acts directly on the CFTR. We introduced mutations in amino acid residues of the sixth transmembrane helix of the CFTR protein, a domain that has an important role in the formation of the channel pore. Basic and hydrophilic amino acids at positions 334-352 were replaced with alanine residues and the sensitivity to CFTR(inh)-172 was assessed using functional assays. We found that an arginine-to-alanine change at position 347 reduced the inhibitory potency of CFTR(inh)-172 by 20-30-fold. Mutagenesis of Arg347 to other amino acids also decreased the inhibitory potency, with aspartate producing near total loss of CFTR(inh)-172 activity. The results of the present study provide evidence that CFTR(inh)-172 interacts directly with CFTR, and that Arg347 is important for the interaction.
Collapse
|
19
|
Rogers CS, Abraham WM, Brogden KA, Engelhardt JF, Fisher JT, McCray PB, McLennan G, Meyerholz DK, Namati E, Ostedgaard LS, Prather RS, Sabater JR, Stoltz DA, Zabner J, Welsh MJ. The porcine lung as a potential model for cystic fibrosis. Am J Physiol Lung Cell Mol Physiol 2008; 295:L240-63. [PMID: 18487356 DOI: 10.1152/ajplung.90203.2008] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Airway disease currently causes most of the morbidity and mortality in patients with cystic fibrosis (CF). However, understanding the pathogenesis of CF lung disease and developing novel therapeutic strategies have been hampered by the limitations of current models. Although the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) has been targeted in mice, CF mice fail to develop lung or pancreatic disease like that in humans. In many respects, the anatomy, biochemistry, physiology, size, and genetics of pigs resemble those of humans. Thus pigs with a targeted CFTR gene might provide a good model for CF. Here, we review aspects of porcine airways and lung that are relevant to CF.
Collapse
Affiliation(s)
- Christopher S Rogers
- Department of Internal Medicine, Roy J. Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Routaboul C, Norez C, Melin P, Molina MC, Boucherle B, Bossard F, Noel S, Robert R, Gauthier C, Becq F, Décout JL. Discovery of α-Aminoazaheterocycle-Methylglyoxal Adducts as a New Class of High-Affinity Inhibitors of Cystic Fibrosis Transmembrane Conductance Regulator Chloride Channels. J Pharmacol Exp Ther 2007; 322:1023-35. [PMID: 17578899 DOI: 10.1124/jpet.107.123307] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) represents the main Cl(-) channel in the apical membrane of epithelial cells for cAMP-dependent Cl(-) secretion. Here we report on the synthesis and screening of a small library of nontoxic alpha-aminoazaheterocycle-methylglyoxal adducts, inhibitors of wild-type (WT) CFTR and G551D-, G1349D-, and F508del-CFTR Cl(-) channels. In whole-cell patch-clamp experiments of Chinese hamster ovary (CHO) cells expressing WT-CFTR, we recorded rapid and reversible inhibition of forskolin-activated CFTR currents in the presence of the adducts 5a and 8a,b at 10 pM concentrations. Using iodide efflux experiments, we compared concentration-dependent inhibition of CFTR with glibenclamide (IC(50) = 14.7 microM), 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl-)methylene]-2-thioxo-4-thiazolidinone (CFTR(inh)-172) (IC(50) = 1.2 microM), and alpha-aminoazaheterocycle-methylglyoxal adducts and identified compounds 5a (IC(50) = 71 pM), 8a,b (IC(50) = 2.5 nM), and 7a,b (IC(50) = 3.4 nM) as the most potent inhibitors of WT-CFTR channels. Similar ranges of inhibition were also found when these compounds were evaluated on CFTR channels with the cystic fibrosis mutations F508del (in temperature-corrected human airway epithelial F508del/F508del CF15 cells)-, G551D-, and G1349D-CFTR (expressed in CHO and COS-7 cells). No effect of compound 5a was detected on the volume-regulated or calcium-regulated iodide efflux. Picomolar inhibition of WT-CFTR with adduct 5a was also found using a 6-methoxy-N-(3-sulfopropyl)-quinolinium fluorescent probe applied to the human tracheobronchial epithelial cell line 16HBE14o-. Finally, we found comparable inhibition by 5a or by CFTR(inh)-172 of forskolin-dependent short-circuit currents in mouse colon. To the best of our knowledge, these new nontoxic alpha-aminoazaheterocycle-methylglyoxal adducts represent the most potent compounds reported to inhibit CFTR chloride channels.
Collapse
Affiliation(s)
- Christel Routaboul
- Département de Pharmacochimie Moléculaire, Université de Grenoble, Centre National de la Recherche Scientifique, Bât. E, rue de la Chimie, BP 53, 38041 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu X, Luo M, Zhang L, Ding W, Yan Z, Engelhardt JF. Bioelectric properties of chloride channels in human, pig, ferret, and mouse airway epithelia. Am J Respir Cell Mol Biol 2006; 36:313-23. [PMID: 17008635 PMCID: PMC1894945 DOI: 10.1165/rcmb.2006-0286oc] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of effective therapies for cystic fibrosis (CF) requires animal models that can appropriately reproduce the human disease phenotype. CF mouse models have demonstrated cAMP-inducible, non-CF transmembrane conductance regulator (non-CFTR) chloride transport in conducting airway epithelia, and this property is thought to be responsible for the lack of a spontaneous CF-like phenotype in the lung. Thus, an understanding of species diversity in airway epithelial electrolyte transport and CFTR function is critical to developing better models for CF. Two species currently being used in attempts to develop better animal models of CF include the pig and ferret. In the study reported here, we sought to comparatively characterize the bioelectric properties of in vitro polarized airway epithelia--from human, mouse, pig and ferret--grown at the air-liquid interface (ALI). Bioelectric properties analyzed include amiloride-sensitive Na(+) transport, 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS)-sensitive Cl(-) transport, and cAMP-sensitive Cl(-) transport. In addition, as an index for CFTR functional conservation, we evaluated the ability of four CFTR inhibitors, including glibenclamide, 5-nitro-2-(3-phenylpropyl-amino)-benzoic acid, CFTR (inh)-172, and CFTR(inh)-GlyH101, to block cAMP-mediated Cl(-) transport. Compared with human epithelia, pig epithelia demonstrated enhanced amiloride-sensitive Na(+) transport. In contrast, ferret epithelia exhibited significantly reduced DIDS-sensitive Cl(-) transport. Interestingly, although the four CFTR inhibitors effectively blocked cAMP-mediated Cl(-) secretion in human airway epithelia, each species tested demonstrated unique differences in its responsiveness to these inhibitors. These findings suggest the existence of substantial species-specific differences at the level of the biology of airway epithelial electrolyte transport, and potentially also in terms of CFTR structure/function.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anatomy, The Center for Gene Therapy, College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
22
|
Gu X, Wang Z, Xu J, Maeda S, Sugita M, Sagawa M, Toga H, Sakuma T. Denopamine stimulates alveolar fluid clearance via cystic fibrosis transmembrane conductance regulator in rat lungs. Respirology 2006; 11:566-71. [PMID: 16916328 DOI: 10.1111/j.1440-1843.2006.00898.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of this study was to test the hypothesis that cystic fibrosis transmembrane conductance regulator (CFTR) plays a role in beta(1)-adrenergic agonist-stimulated alveolar fluid clearance. METHODS Isotonic 5% albumin solutions containing different pharmacological agents were instilled into the alveolar spaces of the isolated rat lungs. The lungs were inflated with 100% oxygen at an airway pressure of 7 cm H(2)O and placed in a humidified incubator at 37 degrees C. Alveolar fluid clearance was estimated by the progressive increase in the albumin concentration over 1 h. To test the hypothesis, we determined whether CFTR Cl(-) channel inhibitors (glibenclamide and CFTR(inh)-172) inhibited the effect of denopamine, a beta(1)-adrenergic agonist, on stimulation of alveolar fluid clearance in the isolated rat lungs. RESULTS Denopamine increased alveolar fluid clearance in a dose-dependent manner. Atenolol, a beta(1)-adrenergic antagonist, abolished the effects of denopamine on stimulation of alveolar fluid clearance. Although glibenclamide alone or CFTR(inh)-172 alone did not change basal alveolar fluid clearance, these CFTR inhibitors inhibited the effect of denopamine on alveolar fluid clearance. CONCLUSION CFTR plays a role in beta(1)-adrenergic agonist-stimulated alveolar fluid clearance in rat lungs.
Collapse
Affiliation(s)
- Xiu Gu
- Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa 920-0293, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sakuma T, Gu X, Wang Z, Maeda S, Sugita M, Sagawa M, Osanai K, Toga H, Ware LB, Folkesson G, Matthay MA. Stimulation of alveolar epithelial fluid clearance in human lungs by exogenous epinephrine. Crit Care Med 2006; 34:676-81. [PMID: 16505652 PMCID: PMC2765117 DOI: 10.1097/01.ccm.0000201403.70636.0f] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Because several experimental studies have demonstrated that cyclic adenosine monophosphate generation following beta-adrenoceptor activation can markedly stimulate alveolar fluid clearance, we determined whether the endogenous levels of catecholamines that occur in the pulmonary edema fluid and plasma of patients with acute lung injury are high enough to stimulate alveolar fluid clearance in the human lung. DESIGN Observational clinical study. SETTING Academic university hospital and laboratory. PATIENTS Twenty-one patients with acute pulmonary edema plus ex vivo human lungs. INTERVENTIONS Measurements of catecholamine levels in patient samples and controlled laboratory studies of the effects of these catecholamine levels on the rates of alveolar fluid clearance in ex vivo human lungs. MEASUREMENTS AND MAIN RESULTS The concentrations of both epinephrine and norepinephrine in the pulmonary edema fluid and plasma were approximately 10 M (range of 1-8x10 M) in hydrostatic pulmonary edema (n=6) and acute lung injury patients (n=15). We therefore tested whether 10 M epinephrine or norepinephrine stimulated alveolar fluid clearance in isolated human lungs and found that these epinephrine or norepinephrine concentrations did not stimulate alveolar fluid clearance. However, higher concentrations of epinephrine (10 M), but not norepinephrine (10 M), significantly stimulated alveolar fluid clearance by 84% above control. Glibenclamide (10 M) and CFTRinh-172 (10 M), cystic fibrosis transmembrane conductance regulator inhibitors, completely inhibited the epinephrine-induced stimulation of alveolar fluid clearance. CONCLUSIONS These results indicate that endogenous catecholamine concentrations in pulmonary edema fluid are probably not sufficient to stimulate alveolar fluid clearance. In contrast, administration of exogenous catecholamines into the distal airspaces can stimulate alveolar fluid clearance in the human lung, an effect that is mediated in part by cystic fibrosis transmembrane conductance regulator. Therefore, exogenous cyclic adenosine monophosphate-dependent stimulation will probably be required to accelerate the resolution of alveolar edema in the lungs of patients with pulmonary edema.
Collapse
Affiliation(s)
- Tsutomu Sakuma
- Thoracic Surgery, Kanazawa Medical University, Uchinada, Ishikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Akiba Y, Jung M, Ouk S, Kaunitz JD. A novel small molecule CFTR inhibitor attenuates HCO3- secretion and duodenal ulcer formation in rats. Am J Physiol Gastrointest Liver Physiol 2005; 289:G753-9. [PMID: 15905414 DOI: 10.1152/ajpgi.00130.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) plays a crucial role in mediating duodenal bicarbonate (HCO(3)(-)) secretion (DBS). Although impaired DBS is observed in CF mutant mice and in CF patients, which would predict increased ulcer susceptibility, duodenal injury is rarely observed in CF patients and is reduced in CF mutant mice. To explain this apparent paradox, we hypothesized that CFTR dysfunction increases cellular [HCO(3)(-)] and buffering power. To further test this hypothesis, we examined the effect of a novel, potent, and highly selective CFTR inhibitor, CFTR(inh)-172, on DBS and duodenal ulceration in rats. DBS was measured in situ using a standard loop perfusion model with a pH stat under isoflurane anesthesia. Duodenal ulcers were induced in rats by cysteamine with or without CFTR(inh)-172 pretreatment 1 h before cysteamine. Superfusion of CFTR(inh)-172 (0.1-10 microM) over the duodenal mucosa had no effect on basal DBS but at 10 microM inhibited acid-induced DBS, suggesting that its effect was limited to CFTR activation. Acid-induced DBS was abolished at 1 and 3 h and was reduced 24 h after treatment with CFTR(inh)-172, although basal DBS was increased at 24 h. CFTR(inh)-172 treatment had no effect on gastric acid or HCO(3)(-) secretion. Duodenal ulcers were observed 24 h after cysteamine treatment but were reduced in CFTR(inh)-172-pretreated rats. CFTR(inh)-172 acutely produces CFTR dysfunction in rodents for up to 24 h. CFTR inhibition reduces acid-induced DBS but also prevents duodenal ulcer formation, supporting our hypothesis that intracellular HCO(3)(-) may be an important protective mechanism for duodenal epithelial cells.
Collapse
Affiliation(s)
- Yasutada Akiba
- Department of Medicine, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
25
|
Muanprasat C, Sonawane ND, Salinas D, Taddei A, Galietta LJV, Verkman AS. Discovery of glycine hydrazide pore-occluding CFTR inhibitors: mechanism, structure-activity analysis, and in vivo efficacy. ACTA ACUST UNITED AC 2005; 124:125-37. [PMID: 15277574 PMCID: PMC2229623 DOI: 10.1085/jgp.200409059] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated epithelial Cl− channel that, when defective, causes cystic fibrosis. Screening of a collection of 100,000 diverse small molecules revealed four novel chemical classes of CFTR inhibitors with Ki < 10 μM, one of which (glycine hydrazides) had many active structural analogues. Analysis of a series of synthesized glycine hydrazide analogues revealed maximal inhibitory potency for N-(2-naphthalenyl) and 3,5-dibromo-2,4-dihydroxyphenyl substituents. The compound N-(2-naphthalenyl)-[(3,5-dibromo-2,4-dihydroxyphenyl)methylene]glycine hydrazide (GlyH-101) reversibly inhibited CFTR Cl− conductance in <1 min. Whole-cell current measurements revealed voltage-dependent CFTR block by GlyH-101 with strong inward rectification, producing an increase in apparent inhibitory constant Ki from 1.4 μM at +60 mV to 5.6 μM at −60 mV. Apparent potency was reduced by lowering extracellular Cl− concentration. Patch-clamp experiments indicated fast channel closures within bursts of channel openings, reducing mean channel open time from 264 to 13 ms (−60 mV holding potential, 5 μM GlyH-101). GlyH-101 inhibitory potency was independent of pH from 6.5–8.0, where it exists predominantly as a monovalent anion with solubility ∼1 mM in water. Topical GlyH-101 (10 μM) in mice rapidly and reversibly inhibited forskolin-induced hyperpolarization in nasal potential differences. In a closed-loop model of cholera, intraluminal GlyH-101 (2.5 μg) reduced by ∼80% cholera toxin–induced intestinal fluid secretion. Compared with the thiazolidinone CFTR inhibitor CFTRinh-172, GlyH-101 has substantially greater water solubility and rapidity of action, and a novel inhibition mechanism involving occlusion near the external pore entrance. Glycine hydrazides may be useful as probes of CFTR pore structure, in creating animal models of CF, and as antidiarrheals in enterotoxic-mediated secretory diarrheas.
Collapse
Affiliation(s)
- Chatchai Muanprasat
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143-0521, USA
| | | | | | | | | | | |
Collapse
|
26
|
Wang X, Lytle C, Quinton PM. Predominant constitutive CFTR conductance in small airways. Respir Res 2005; 6:7. [PMID: 15655076 PMCID: PMC548141 DOI: 10.1186/1465-9921-6-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 01/17/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The pathological hallmarks of chronic obstructive pulmonary disease (COPD) are inflammation of the small airways (bronchiolitis) and destruction of lung parenchyma (emphysema). These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. METHODS We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. RESULTS In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath) of the bronchiole was small (mean +/- sem: -3 +/- 1 mV; n = 25), but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 +/- 3 mV; n = 25) were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 microM)+IBMX (100 microM), ATP (100 microM), or adenosine (100 microM), but not by ionomycin. The TEP was partially inhibited by NPPB (100 microM), GlyH-101* (5-50 microM), and CFTRInh-172* (5 microM). RT-PCR gave identifying products for CFTR, alpha-, beta-, and gamma-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. CONCLUSION These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.
Collapse
Affiliation(s)
- Xiaofei Wang
- Dept. Pediatrics, Medical School, University of California, San Diego, San Diego, CA USA
| | - Christian Lytle
- Dept. Biomedical Sciences, University of California, Riverside, CA USA
| | - Paul M Quinton
- Dept. Pediatrics, Medical School, University of California, San Diego, San Diego, CA USA
- Dept. Biomedical Sciences, University of California, Riverside, CA USA
| |
Collapse
|