1
|
Malinczak CA, Fonseca W, Hrycaj SM, Morris SB, Rasky AJ, Yagi K, Wellik DM, Ziegler SF, Zemans RL, Lukacs NW. Early-life pulmonary viral infection leads to long-term functional and lower airway structural changes in the lungs. Am J Physiol Lung Cell Mol Physiol 2024; 326:L280-L291. [PMID: 38290164 PMCID: PMC11281791 DOI: 10.1152/ajplung.00300.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024] Open
Abstract
Early-life respiratory virus infections have been correlated with enhanced development of childhood asthma. In particular, significant numbers of respiratory syncytial virus (RSV)-hospitalized infants go on to develop lung disease. It has been suggested that early-life viral infections may lead to altered lung development or repair that negatively impacts lung function later in life. Our data demonstrate that early-life RSV infection modifies lung structure, leading to decreased lung function. At 5 wk postneonatal RSV infection, significant defects are observed in baseline pulmonary function test (PFT) parameters consistent with decreased lung function as well as enlarged alveolar spaces. Lung function changes in the early-life RSV-infected group continue at 3 mo of age. The altered PFT and structural changes induced by early-life RSV were mitigated in TSLPR-/- mice that have previously been shown to have reduced immune cell accumulation associated with a persistent Th2 environment. Importantly, long-term effects were demonstrated using a secondary RSV infection 3 mo following the initial early-life RSV infection and led to significant additional defects in lung function, with severe mucus deposition within the airways, and consolidation of the alveolar spaces. These studies suggest that early-life respiratory viral infection leads to alterations in lung structure/repair that predispose to diminished lung function later in life.NEW & NOTEWORTHY These studies outline a novel finding that early-life respiratory virus infection can alter lung structure and function long-term. Importantly, the data also indicate that there are critical links between inflammatory responses and subsequent events that produce a more severe pathogenic response later in life. The findings provide additional data to support that early-life infections during lung development can alter the trajectory of airway function.
Collapse
Affiliation(s)
| | - Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Steven M Hrycaj
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Susan B Morris
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew J Rasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Kazuma Yagi
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
| | - Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Wisconsin, United States
| | - Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, Washington, United States
| | - Rachel L Zemans
- Department of Internal Medicine, Pulmonary, University of Michigan, Ann Arbor, Michigan, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, United States
- Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
2
|
Li Y, Han M, Singh S, Breckenridge HA, Kreger JE, Stroupe CC, Sawicky DA, Kuo S, Goldsmith AM, Ke F, Shenoy AT, Bentley JK, Matsumoto I, Hershenson MB. Tuft cells are required for a rhinovirus-induced asthma phenotype in immature mice. JCI Insight 2024; 9:e166136. [PMID: 38061015 PMCID: PMC10906234 DOI: 10.1172/jci.insight.166136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Infection of immature mice with rhinovirus (RV) induces an asthma-like phenotype consisting of type 2 inflammation, mucous metaplasia, eosinophilic inflammation, and airway hyperresponsiveness that is dependent on IL-25 and type 2 innate lymphoid cells (ILC2s). Doublecortin-like kinase 1-positive (DCLK1+) tuft cells are a major source of IL-25. We sought to determine the requirement of tuft cells for the RV-induced asthma phenotype in wild-type mice and mice deficient in Pou2f3, a transcription factor required for tuft cell development. C57BL/6J mice infected with RV-A1B on day 6 of life and RV-A2 on day 13 of life showed increased DCLK1+ tuft cells in the large airways. Compared with wild-type mice, RV-infected Pou2f3-/- mice showed reductions in IL-25 mRNA and protein expression, ILC2 expansion, type 2 cytokine expression, mucous metaplasia, lung eosinophils, and airway methacholine responsiveness. We conclude that airway tuft cells are required for the asthma phenotype observed in immature mice undergoing repeated RV infections. Furthermore, RV-induced tuft cell development provides a mechanism by which early-life viral infections could potentiate type 2 inflammatory responses to future infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Fang Ke
- Department of Microbiology and Immunology, and
| | - Anukul T. Shenoy
- Department of Microbiology and Immunology, and
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Marc B. Hershenson
- Department of Pediatrics
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Yang H, Huang YX, Xiong PY, Li JQ, Chen JL, Liu X, Gong YJ, Ding WJ. Possible connection between intestinal tuft cells, ILC2s and obesity. Front Immunol 2024; 14:1266667. [PMID: 38283340 PMCID: PMC10811205 DOI: 10.3389/fimmu.2023.1266667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/21/2023] [Indexed: 01/30/2024] Open
Abstract
Intestinal tuft cells (TCs) are defined as chemosensory cells that can "taste" danger and induce immune responses. They play a critical role in gastrointestinal parasite invasion, inflammatory bowel diseases and high-fat diet-induced obesity. Intestinal IL-25, the unique product of TCs, is a key activator of type 2 immunity, especially to promote group 2 innate lymphoid cells (ILC2s) to secret IL-13. Then the IL-13 mainly promotes intestinal stem cell (ISCs) proliferation into TCs and goblet cells. This pathway formulates the circuit in the intestine. This paper focuses on the potential role of the intestinal TC, ILC2 and their circuit in obesity-induced intestinal damage, and discussion on further study and the potential therapeutic target in obesity.
Collapse
Affiliation(s)
- Hong Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Xing Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pei-Yu Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Qian Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji-Lan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xia Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan-Ju Gong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Wang C, Du Z, Li R, Luo Y, Zhu C, Ding N, Lei A. Interferons as negative regulators of ILC2s in allergic lung inflammation and respiratory viral infections. J Mol Med (Berl) 2023; 101:947-959. [PMID: 37414870 DOI: 10.1007/s00109-023-02345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s), characterized by a lack of antigen receptors, have been regarded as an important component of type 2 pulmonary immunity. Analogous to Th2 cells, ILC2s are capable of releasing type 2 cytokines and amphiregulin, thus playing an essential role in a variety of diseases, such as allergic diseases and virus-induced respiratory diseases. Interferons (IFNs), an important family of cytokines with potent antiviral effects, can be triggered by microbial products, microbial exposure, and pathogen infections. Interestingly, the past few years have witnessed encouraging progress in revealing the important role of IFNs and IFN-producing cells in modulating ILC2 responses in allergic lung inflammation and respiratory viral infections. This review underscores recent progress in understanding the role of IFNs and IFN-producing cells in shaping ILC2 responses and discusses disease phenotypes, mechanisms, and therapeutic targets in the context of allergic lung inflammation and infections with viruses, including influenza virus, rhinovirus (RV), respiratory syncytial virus (RSV), and severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).
Collapse
Affiliation(s)
- Cui Wang
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Zhaoxiang Du
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ranhui Li
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Ying Luo
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Cuiming Zhu
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Aihua Lei
- Institute of Pathogenic Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, China.
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
5
|
Loos P, Baiwir J, Maquet C, Javaux J, Sandor R, Lallemand F, Marichal T, Machiels B, Gillet L. Dampening type 2 properties of group 2 innate lymphoid cells by a gammaherpesvirus infection reprograms alveolar macrophages. Sci Immunol 2023; 8:eabl9041. [PMID: 36827420 DOI: 10.1126/sciimmunol.abl9041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Immunological dysregulation in asthma is associated with changes in exposure to microorganisms early in life. Gammaherpesviruses (γHVs), such as Epstein-Barr virus, are widespread human viruses that establish lifelong infection and profoundly shape host immunity. Using murid herpesvirus 4 (MuHV-4), a mouse γHV, we show that after infection, lung-resident and recruited group 2 innate lymphoid cells (ILC2s) exhibit a reduced ability to expand and produce type 2 cytokines in response to house dust mites, thereby contributing to protection against asthma. In contrast, MuHV-4 infection triggers GM-CSF production by those lung ILC2s, which orders the differentiation of monocytes (Mos) into alveolar macrophages (AMs) without promoting their type 2 functions. In the context of γHV infection, ILC2s are therefore essential cells within the pulmonary niche that imprint the tissue-specific identity of Mo-derived AMs and shape their function well beyond the initial acute infection.
Collapse
Affiliation(s)
- Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - François Lallemand
- Centre Hospitalier Universitaire de Liège, Département de Physique Médicale, Service médical de radiothérapie, Liège 4000, Belgium
| | - Thomas Marichal
- Laboratory of Immunophysiology, GIGA-Research and Faculty of Veterinary Medicine, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
6
|
Han M, Breckenridge HA, Kuo S, Singh S, Goldsmith AG, Li Y, Kreger JE, Bentley JK, Hershenson MB. M2 Macrophages promote IL-33 expression, ILC2 expansion and mucous metaplasia in response to early life rhinovirus infections. Front Immunol 2022; 13:952509. [PMID: 36032072 PMCID: PMC9412168 DOI: 10.3389/fimmu.2022.952509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022] Open
Abstract
Wheezing-associated rhinovirus (RV) infections are associated with asthma development. We have shown that infection of immature mice with RV induces type 2 cytokine production and mucous metaplasia which is dependent on IL-33 and type 2 innate lymphoid cells (ILC2s) and intensified by a second heterologous RV infection. We hypothesize that M2a macrophages are required for the exaggerated inflammation and mucous metaplasia in response to heterologous RV infection. Wild-type C57Bl/6J mice and LysMCre IL4Rα KO mice lacking M2a macrophages were treated as follows: (1) sham infection on day 6 of life plus sham on day 13 of life, (2) RV-A1B on day 6 plus sham on day 13, (3) sham on day 6 and RV-A2 on day 13, or (4) RV-A1B on day 6 and RV-A2 on day 13. Lungs were harvested one or seven days after the second infection. Wild-type mice infected with RV-A1B at day 6 showed an increased number of Arg1- and Retnla-expressing lung macrophages, indicative of M2a polarization. Compared to wild-type mice infected with RV on day 6 and 13 of life, the lungs of LysMCre IL4Rα KO mice undergoing heterologous RV infection showed decreased protein abundance of the epithelial-derived innate cytokines IL-33, IL-25 and TSLP, decreased ILC2s, decreased mRNA expression of IL-13 and IL-5, and decreased PAS staining. Finally, mRNA analysis and immunofluorescence microscopy of double-infected LysMCre IL4Rα KO mice showed reduced airway epithelial cell IL-33 expression, and treatment with IL-33 restored the exaggerated muco-inflammatory phenotype.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Haley A. Breckenridge
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shiuhyang Kuo
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Shilpi Singh
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Adam G. Goldsmith
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yiran Li
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jordan E. Kreger
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - J. Kelley Bentley
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Marc B. Hershenson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
- *Correspondence: Marc B. Hershenson,
| |
Collapse
|
7
|
Badrani JH, Strohm AN, Lacasa L, Civello B, Cavagnero K, Haung YA, Amadeo M, Naji LH, Lund SJ, Leng A, Kim H, Baum RE, Khorram N, Mondal M, Seumois G, Pilotte J, Vanderklish PW, McGee HM, Doherty TA. RNA-binding protein RBM3 intrinsically suppresses lung innate lymphoid cell activation and inflammation partially through CysLT1R. Nat Commun 2022; 13:4435. [PMID: 35908044 PMCID: PMC9338970 DOI: 10.1038/s41467-022-32176-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate lymphoid cells (ILC) promote lung inflammation in asthma through cytokine production. RNA-binding proteins (RBPs) are critical post-transcriptional regulators, although less is known about RBPs in ILC biology. Here, we demonstrate that RNA-binding motif 3 (RBM3) is highly expressed in lung ILCs and is further induced by alarmins TSLP and IL-33. Rbm3-/- and Rbm3-/-Rag2-/- mice exposed to asthma-associated Alternaria allergen develop enhanced eosinophilic lung inflammation and ILC activation. IL-33 stimulation studies in vivo and in vitro show that RBM3 suppressed lung ILC responses. Further, Rbm3-/- ILCs from bone marrow chimeric mice display increased ILC cytokine production suggesting an ILC-intrinsic suppressive function of RBM3. RNA-sequencing of Rbm3-/- lung ILCs demonstrates increased expression of type 2/17 cytokines and cysteinyl leukotriene 1 receptor (CysLT1R). Finally, Rbm3-/-Cyslt1r-/- mice show dependence on CysLT1R for accumulation of ST2+IL-17+ ILCs. Thus, RBM3 intrinsically regulates lung ILCs during allergen-induced type 2 inflammation that is partially dependent on CysLT1R.
Collapse
Affiliation(s)
- Jana H. Badrani
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Allyssa N. Strohm
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| | - Lee Lacasa
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Blake Civello
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kellen Cavagnero
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Yung-An Haung
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.145695.a0000 0004 1798 0922Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Michael Amadeo
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Luay H. Naji
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Sean J. Lund
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Anthea Leng
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hyojoung Kim
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Rachel E. Baum
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Naseem Khorram
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Monalisa Mondal
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Grégory Seumois
- grid.185006.a0000 0004 0461 3162La Jolla Institute, La Jolla, CA USA
| | - Julie Pilotte
- grid.214007.00000000122199231The Scripps Research Institute, La Jolla, CA USA
| | | | - Heather M. McGee
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,grid.250671.70000 0001 0662 7144NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute, La Jolla, CA USA ,grid.410425.60000 0004 0421 8357Departments of Radiation Oncology and Immuno-Oncology, City of Hope, Duarte, CA USA ,Department of Molecular Medicine, La Jolla, CA USA
| | - Taylor A. Doherty
- grid.266100.30000 0001 2107 4242Divison of Rheumatology, Allergy and Immunology, Department of Medicine, University of California San Diego, La Jolla, CA USA ,Veterans Affairs San Diego Health Care System, La Jolla, CA USA
| |
Collapse
|
8
|
Zhao M, Li C, Zhang J, Yin Z, Zheng Z, Wan J, Wang M. Maresin-1 and Its Receptors RORα/LGR6 as Potential Therapeutic Target for Respiratory Diseases. Pharmacol Res 2022; 182:106337. [PMID: 35781060 DOI: 10.1016/j.phrs.2022.106337] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Maresin-1 is one of the representative specialized pro-resolving mediators that has shown beneficial effects in inflammatory disease models. Recently, two distinct types of receptor molecules were discovered as the targets of maresin-1, further revealing the pro-resolution mechanism of maresin-1. One is retinoic acid-related orphan receptor α (RORα) and the another one is leucine-rich repeat domain-containing G protein-coupled receptor 6 (LGR6). In this review, we summarized the detailed role of maresin-1 and its two different receptors in respiratory diseases. RORα and LGR6 are potential targets for the treatment of respiratory diseases. Future basic research and clinical trials on MaR1 and its receptors should provide useful information for the treatment of respiratory diseases.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Jishou Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China
| | - Zheng Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Zihui Zheng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| | - Menglong Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, Wuhan 430060, PR China.
| |
Collapse
|
9
|
Hsu AY, Wang T, Syahirah R, Liu S, Li K, Zhang W, Wang J, Cao Z, Tian S, Matosevic S, Staiger CJ, Wan J, Deng Q. Rora Regulates Neutrophil Migration and Activation in Zebrafish. Front Immunol 2022; 13:756034. [PMID: 35309302 PMCID: PMC8931656 DOI: 10.3389/fimmu.2022.756034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil migration and activation are essential for defense against pathogens. However, this process may also lead to collateral tissue injury. We used microRNA overexpression as a platform and discovered protein-coding genes that regulate neutrophil migration. Here we show that miR-99 decreased the chemotaxis of zebrafish neutrophils and human neutrophil-like cells. In zebrafish neutrophils, miR-99 directly targets the transcriptional factor RAR-related orphan receptor alpha (roraa). Inhibiting RORα, but not the closely related RORγ, reduced chemotaxis of zebrafish and primary human neutrophils without causing cell death, and increased susceptibility of zebrafish to bacterial infection. Expressing a dominant-negative form of Rorα or disrupting the roraa locus specifically in zebrafish neutrophils reduced cell migration. At the transcriptional level, RORα regulates transmembrane signaling receptor activity and protein phosphorylation pathways. Our results, therefore, reveal previously unknown functions of miR-99 and RORα in regulating neutrophil migration and anti-microbial defense.
Collapse
Affiliation(s)
- Alan Y. Hsu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Tianqi Wang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Ramizah Syahirah
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
| | - Kailing Li
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
| | - Weiwei Zhang
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Ziming Cao
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Simon Tian
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Collaborative Core for Cancer Bioinformatics, Indiana University Simon Cancer Center, Indianapolis, IN, United States
- Department of BioHealth Informatics, Indiana University School of Informatics and Computing, Indiana University – Purdue University Indianapolis, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qing Deng
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Inflammation, Immunology, and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
10
|
A genome-wide association meta-analysis identifies new eosinophilic esophagitis loci. J Allergy Clin Immunol 2022; 149:988-998. [PMID: 34506852 PMCID: PMC9579995 DOI: 10.1016/j.jaci.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Eosinophilic esophagitis (EoE) is a chronic inflammatory disorder of the esophagus marked by eosinophilic infiltration. Cumulative evidence indicates that the risk of EoE involves the complex interplay of both genetic and environmental factors. Because only a few genetic loci have been identified in EoE, the genetic underpinning of EoE remains largely elusive. OBJECTIVE We sought to identify genetic loci associated with EoE. METHODS Four EoE cohorts were genotyped using the Illumina single nucleotide polymorphism array platform, totaling 1,930 cases and 13,634 controls of European ancestry. Genotype imputation was performed with the Michigan Imputation Server using the Trans-Omics for Precision Medicine reference panel including whole-genome sequencing data from more than 100,000 individuals. Meta-analysis was conducted to identify potential novel genetic loci associated with EoE. RESULTS Our study identified 11 new genome-wide significant loci, of which 6 are common variant loci, including 5q31.1 (rs2106984, P = 4.16 × 10-8; odds ratio [OR], 1.26, RAD50), 15q22.2 (rs2279293, P = 1.23 × 10-10; OR, 0.69, RORA), and 15q23 (rs56062135, P = 2.91 × 10-11; OR, 1.29, SMAD3), which have been previously associated with allergic conditions. Interestingly, a low-frequency synonymous mutation within the MATN2 gene was identified as the most significant single nucleotide polymorphism at the 8q22.1 locus. We also identified 5 sex-specific loci in the EoE cases, including an inflammatory bowel disease-associated locus at 9p24.1 (rs62541556, P = 4.4 × 10-8; OR, 1.11, JAK2). CONCLUSIONS Our findings demonstrate shared genetic underpinnings between EoE and other immune-mediated diseases and provide novel candidate genes for therapeutic target identification and prioritization.
Collapse
|
11
|
Fagiani F, Di Marino D, Romagnoli A, Travelli C, Voltan D, Mannelli LDC, Racchi M, Govoni S, Lanni C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct Target Ther 2022; 7:41. [PMID: 35136018 PMCID: PMC8825842 DOI: 10.1038/s41392-022-00899-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The term “circadian rhythms” describes endogenous oscillations with ca. 24-h period associated with the earth’s daily rotation and light/dark cycle. Such rhythms reflect the existence of an intrinsic circadian clock that temporally orchestrates physiological processes to adapt the internal environment with the external cues. At the molecular level, the circadian clock consists of multiple sets of transcription factors resulting in autoregulatory transcription-translation feedback loops. Notably, in addition to their primary role as generator of circadian rhythm, the biological clock plays a key role in controlling physiological functions of almost all tissues and organs. It regulates several intracellular signaling pathways, ranging from cell proliferation, DNA damage repair and response, angiogenesis, metabolic and redox homeostasis, to inflammatory and immune response. In this review, we summarize findings showing the crosstalk between the circadian molecular clock and some key intracellular pathways, describing a scenario wherein their reciprocal regulation impinges upon several aspects of mammalian physiology. Moreover, based on evidence indicating that circadian rhythms can be challenged by environmental factors, social behaviors, as well as pre-existing pathological conditions, we discuss implications of circadian misalignment in human pathologies, such as cancer and inflammatory diseases. Accordingly, disruption of circadian rhythm has been reported to affect several physiological processes that are relevant to human diseases. Expanding our understanding of this field represents an intriguing and transversal medicine challenge in order to establish a circadian precision medicine.
Collapse
Affiliation(s)
- Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy.,New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - Cristina Travelli
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Davide Voltan
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | | | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
12
|
Han M, Ishikawa T, Stroupe CC, Breckenridge HA, Bentley JK, Hershenson MB. Deficient inflammasome activation permits an exaggerated asthma phenotype in rhinovirus C-infected immature mice. Mucosal Immunol 2021; 14:1369-1380. [PMID: 34354243 PMCID: PMC8542611 DOI: 10.1038/s41385-021-00436-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 02/04/2023]
Abstract
Compared to other RV species, RV-C has been associated with more severe respiratory illness and is more likely to occur in children with a history of asthma or who develop asthma. We therefore inoculated 6-day-old mice with sham, RV-A1B, or RV-C15. Inflammasome priming and activation were assessed, and selected mice treated with recombinant IL-1β. Compared to RV-A1B infection, RV-C15 infection induced an exaggerated asthma phenotype, with increased mRNA expression of Il5, Il13, Il25, Il33, Muc5ac, Muc5b, and Clca1; increased lung lineage-negative CD25+CD127+ST2+ ILC2s; increased mucous metaplasia; and increased airway responsiveness. Lung vRNA, induction of pro-inflammatory type 1 cytokines, and inflammasome priming (pro-IL-1β and NLRP3) were not different between the two viruses. However, inflammasome activation (mature IL-1β and caspase-1 p12) was reduced in RV-C15-infected mice compared to RV-A1B-infected mice. A similar deficiency was found in cultured macrophages. Finally, IL-1β treatment decreased RV-C-induced type 2 cytokine and mucus-related gene expression, ILC2s, mucous metaplasia, and airway responsiveness but not lung vRNA level. We conclude that RV-C induces an enhanced asthma phenotype in immature mice. Compared to RV-A, RV-C-induced macrophage inflammasome activation and IL-1β are deficient, permitting exaggerated type 2 inflammation and mucous metaplasia.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Tomoko Ishikawa
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Claudia C Stroupe
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Haley A Breckenridge
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - J Kelley Bentley
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Marc B Hershenson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Liang T, Qiu J, Li S, Deng Z, Qiu X, Hu W, Li P, Chen T, Liang Z, Zhou H, Gao B, Huang D, Liang A, Gao W. Inverse Agonist of Retinoid-Related Orphan Receptor-Alpha Prevents Apoptosis and Degeneration in Nucleus Pulposus Cells via Upregulation of YAP. Mediators Inflamm 2021; 2021:9954909. [PMID: 34366712 PMCID: PMC8337132 DOI: 10.1155/2021/9954909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
Intervertebral disc degenerative disease (IDD) is the most common degenerative spine disease, which leads to chronic low back pain and symptoms in the lower extremities. In this study, we found that RORα, a member of the retinoid-related orphan receptor family, is significantly elevated in nucleus pulposus tissue in IDD patients. The elevation of RORα is associated with increased apoptosis of nucleus pulposus (NP) cells. Therefore, we applicated a well-established inverse agonist of RORα, SR3335, to investigate its role in regulating NP cell metabolism and apoptosis. To further investigate the mechanism that SR3335 regulates the pathogenesis of IDD in vitro, tumor necrosis factor alpha (TNF-α) stimulation was used in human NP cells to mimic the hostile environment that leads to degeneration. We found that SR3335 treatment reversed the trend of increased apoptosis in NP cells induced by TNF-α treatment. Next, TNF-α treatment upregulated the expression of type II collagen and aggrecan and downregulated MMP13 (matrix-degrading enzyme matrix metalloproteinase 13) and ADAMTS4 (a disintegrin and metalloproteinase with thrombospondin motifs 4). However, these effects were reversed after SR3335 treatment. Furthermore, we find that SR3335 mediated the effect in NP cells by regulating the YAP signaling pathway, especially by affecting the phosphorylation state of YAP. In conclusion, the reduction of matrix degradation enzymes and apoptosis upon SR3335 treatment suggests that SR3335 is a promising drug in reversing the deleterious microenvironment in IDD patients.
Collapse
Affiliation(s)
- Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Shaoguang Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjun Hu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Pengfei Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Zhancheng Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 West Yan Jiang Road, Guangzhou, Guangdong 510120, China
| |
Collapse
|
14
|
Rodriguez-Rodriguez N, Gogoi M, McKenzie AN. Group 2 Innate Lymphoid Cells: Team Players in Regulating Asthma. Annu Rev Immunol 2021; 39:167-198. [PMID: 33534604 PMCID: PMC7614118 DOI: 10.1146/annurev-immunol-110119-091711] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.
Collapse
Affiliation(s)
- Noe Rodriguez-Rodriguez
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Mayuri Gogoi
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK
| | - Andrew N.J. McKenzie
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH. UK,Corresponding author:
| |
Collapse
|
15
|
Fonseca W, Lukacs NW, Elesela S, Malinczak CA. Role of ILC2 in Viral-Induced Lung Pathogenesis. Front Immunol 2021; 12:675169. [PMID: 33953732 PMCID: PMC8092393 DOI: 10.3389/fimmu.2021.675169] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Innate lymphoid type-2 cells (ILC2) are a population of innate cells of lymphoid origin that are known to drive strong Type 2 immunity. ILC2 play a key role in lung homeostasis, repair/remodeling of lung structures following injury, and initiation of inflammation as well as more complex roles during the immune response, including the transition from innate to adaptive immunity. Remarkably, dysregulation of this single population has been linked with chronic lung pathologies, including asthma, chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrotic diseases (IPF). Furthermore, ILC2 have been shown to increase following early-life respiratory viral infections, such as respiratory syncytial virus (RSV) and rhinovirus (RV), that may lead to long-term alterations of the lung environment. The detrimental roles of increased ILC2 following these infections may include pathogenic chronic inflammation and/or alterations of the structural, repair, and even developmental processes of the lung. Respiratory viral infections in older adults and patients with established chronic pulmonary diseases often lead to exacerbated responses, likely due to previous exposures that leave the lung in a dysregulated functional and structural state. This review will focus on the role of ILC2 during respiratory viral exposures and their effects on the induction and regulation of lung pathogenesis. We aim to provide insight into ILC2-driven mechanisms that may enhance lung-associated diseases throughout life. Understanding these mechanisms will help identify better treatment options to limit not only viral infection severity but also protect against the development and/or exacerbation of other lung pathologies linked to severe respiratory viral infections.
Collapse
Affiliation(s)
- Wendy Fonseca
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Nicholas W Lukacs
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | - Srikanth Elesela
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States.,Mary H. Weiser Food Allergy Center, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
16
|
A critical regulation of Th2 cell responses by RORα in allergic asthma. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1326-1335. [PMID: 33165810 DOI: 10.1007/s11427-020-1825-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
Allergic asthma is a chronic inflammatory disease of the lung and the airway, which is characterized by aberrant type 2 immune responses to otherwise unharmful aeroallergens. While the central role of Th2 cells and type 2 cytokines in the pathogenesis of allergic asthma is well documented, the regulation and plasticity of Th2 cells remain incompletely understood. By using an animal model of allergic asthma in IL-4-reporter mice, we found that Th2 cells in the lung expressed higher levels of Rora than those in the lymph nodes, and that treatment with an RORα agonist SR1078 resulted in diminished Th2 cell responses in vivo. To determine the T cell-intrinsic role of RORα in allergic asthma in vivo, we established T cell-specific RORα-deficient (Cd4creRoraf/f) mice. Upon intranasal allergen challenges, Cd4creRoraf/f mice exhibited a significantly increased Th2 cells in the lungs and the airway and showed an enhanced eosinophilic inflammation compared to littermate control mice. Studies with Foxp3YFP-creRoraf/f mice and CD8+ T cell depletion showed that the increased Th2 cell responses in the Cd4creRoraf/f mice were independent of Treg cells and CD8+ T cells. Our findings demonstrate a critical regulatory role of RORα in Th2 cells, which suggest that RORα agonists could be effective for the treatment of allergic diseases.
Collapse
|
17
|
Han M, Ishikawa T, Bermick JR, Rajput C, Lei J, Goldsmith AM, Jarman CR, Lee J, Bentley JK, Hershenson MB. IL-1β prevents ILC2 expansion, type 2 cytokine secretion, and mucus metaplasia in response to early-life rhinovirus infection in mice. Allergy 2020; 75:2005-2019. [PMID: 32086822 DOI: 10.1111/all.14241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Early-life wheezing-associated respiratory infection with human rhinovirus (RV) is associated with asthma development. RV infection of 6-day-old immature mice causes mucous metaplasia and airway hyperresponsiveness which is associated with the expansion of IL-13-producing type 2 innate lymphoid cells (ILC2s) and dependent on IL-25 and IL-33. We examined regulation of this asthma-like phenotype by IL-1β. METHODS Six-day-old wild-type or NRLP3-/- mice were inoculated with sham or RV-A1B. Selected mice were treated with IL-1 receptor antagonist (IL-1RA), anti-IL-1β, or recombinant IL-1β. RESULTS Rhinovirus infection induced Il25, Il33, Il4, Il5, Il13, muc5ac, and gob5 mRNA expression, ILC2 expansion, mucus metaplasia, and airway hyperresponsiveness. RV also induced lung mRNA and protein expression of pro-IL-1β and NLRP3 as well as cleavage of caspase-1 and pro-IL-1β, indicating inflammasome priming and activation. Lung macrophages were a major source of IL-1β. Inhibition of IL-1β signaling with IL-1RA, anti-IL-1β, or NLRP3 KO increased RV-induced type 2 cytokine immune responses, ILC2 number, and mucus metaplasia, while decreasing IL-17 mRNA expression. Treatment with IL-1β had the opposite effect, decreasing IL-25, IL-33, and mucous metaplasia while increasing IL-17 expression. IL-1β and IL-17 each suppressed Il25, Il33, and muc5ac mRNA expression in cultured airway epithelial cells. Finally, RV-infected 6-day-old mice showed reduced IL-1β mRNA and protein expression compared to mature mice. CONCLUSION Macrophage IL-1β limits type 2 inflammation and mucous metaplasia following RV infection by suppressing epithelial cell innate cytokine expression. Reduced IL-1β production in immature animals provides a mechanism permitting asthma development after early-life viral infection.
Collapse
Affiliation(s)
- Mingyuan Han
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Tomoko Ishikawa
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Jennifer R. Bermick
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Charu Rajput
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Jing Lei
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Adam M. Goldsmith
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Caitlin R. Jarman
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Julie Lee
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - J. Kelley Bentley
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
| | - Marc B. Hershenson
- Departments of Pediatrics University of Michigan Medical School Ann Arbor Michigan
- Departments of Molecular and Integrative Physiology University of Michigan Medical School Ann Arbor Michigan
| |
Collapse
|
18
|
Wu K, Wang X, Keeler SP, Gerovac BJ, Agapov EV, Byers DE, Gilfillan S, Colonna M, Zhang Y, Holtzman MJ. Group 2 Innate Lymphoid Cells Must Partner with the Myeloid-Macrophage Lineage for Long-Term Postviral Lung Disease. THE JOURNAL OF IMMUNOLOGY 2020; 205:1084-1101. [PMID: 32641386 DOI: 10.4049/jimmunol.2000181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are implicated in host defense and inflammatory disease, but these potential functional roles need more precise definition, particularly using advanced technologies to better target ILC2s and engaging experimental models that better manifest both acute infection and chronic, even lifelong, disease. In this study, we use a mouse model that applies an improved genetic definition of ILC2s via IL-7r-conditional Rora gene targeting and takes advantage of a distinct progression from acute illness to chronic disease, based on a persistent type 2 immune response to respiratory infection with a natural pathogen (Sendai virus). We first show that ILC2s are activated but are not required to handle acute illness after respiratory viral infection. In contrast, we find that this type of infection also activates ILC2s chronically for IL-13 production and consequent asthma-like disease traits that peak and last long after active viral infection is cleared. However, to manifest this type of disease, the Csf1-dependent myeloid-macrophage lineage is also active at two levels: first, at a downstream level, this lineage provides lung tissue macrophages (interstitial macrophages and tissue monocytes) that represent a major site of Il13 gene expression in the diseased lung; and second, at an upstream level, this same lineage is required for Il33 gene induction that is necessary to activate ILC2s for participation in disease at all, including IL-13 production. Together, these findings provide a revised scheme for understanding and controlling the innate immune response leading to long-term postviral lung diseases with features of asthma and related progressive conditions.
Collapse
Affiliation(s)
- Kangyun Wu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Xinyu Wang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Benjamin J Gerovac
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Eugene V Agapov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Susan Gilfillan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Yong Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
19
|
Early-Life Respiratory Syncytial Virus Infection, Trained Immunity and Subsequent Pulmonary Diseases. Viruses 2020; 12:v12050505. [PMID: 32375305 PMCID: PMC7290378 DOI: 10.3390/v12050505] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is often the first clinically relevant pathogen encountered in life, with nearly all children infected by two years of age. Many studies have also linked early-life severe respiratory viral infection with more pathogenic immune responses later in life that lead to pulmonary diseases like childhood asthma. This phenomenon is thought to occur through long-term immune system alterations following early-life respiratory viral infection and may include local responses such as unresolved inflammation and/or direct structural or developmental modifications within the lung. Furthermore, systemic responses that could impact the bone marrow progenitors may be a significant cause of long-term alterations, through inflammatory mediators and shifts in metabolic profiles. Among these alterations may be changes in transcriptional and epigenetic programs that drive persistent modifications throughout life, leaving the immune system poised toward pathogenic responses upon secondary insult. This review will focus on early-life severe RSV infection and long-term alterations. Understanding these mechanisms will not only lead to better treatment options to limit initial RSV infection severity but also protect against the development of childhood asthma linked to severe respiratory viral infections.
Collapse
|
20
|
Wan J, Huang L, Ji X, Yao S, Hamed Abdelaziz M, Cai W, Wang H, Cheng J, Dineshkumar K, Aparna V, Su Z, Wang S, Xu H. HMGB1-induced ILC2s activate dendritic cells by producing IL-9 in asthmatic mouse model. Cell Immunol 2020; 352:104085. [PMID: 32201004 DOI: 10.1016/j.cellimm.2020.104085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/20/2023]
Abstract
Asthma is a disease of the respiratory system that is commonly considered a T-helper 2 (Th2) cell-associated inflammatory disease. Group 2 innate lymphoid cells (ILC2s) promote the inflammatory responses in asthma by secreting type 2 cytokines. Interleukin (IL)-9 also serves as a promoting factor in asthma and it is well known that ILC2s have an autocrine effect of IL-9 to sustain their survival and proliferation. However, the specific role of ILC2-derived IL-9 in asthma remains unclear. HMGB1 (High-Mobility Group Box-1) is a nuclear protein, and Previous studies have shown that HMGB1 can regulate the differentiation of T-helper cells and participate in the development of asthma. But whether HMGB1 can regulate the innate lymphocytes in the pathological process of asthma is unknown. In this study we have shown increased presence of HMGB1 protein in the lung of mice with asthma, which was associated with increased secretion of IL-9 by ILC2s. This led to the activation of dendritic cells (DCs) that can accelerate the differentiation of Th2 cells and worsen the severity of asthma. Taken together, our study provides a complementary understanding of the asthma development and highlights a novel inflammatory pathway in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Jie Wan
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Lan Huang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoyun Ji
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Shun Yao
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | | | - Wei Cai
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Huixuan Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Jianjun Cheng
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | | | - Vasudevan Aparna
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; The Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shengjun Wang
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China; Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang 212001, China
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
21
|
Lo BC, Canals Hernaez D, Scott RW, Hughes MR, Shin SB, Underhill TM, Takei F, McNagny KM. The Transcription Factor RORα Preserves ILC3 Lineage Identity and Function during Chronic Intestinal Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:3209-3215. [PMID: 31676672 DOI: 10.4049/jimmunol.1900781] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Abstract
Innate lymphoid cells (ILCs) are critical for host defense and tissue repair but can also contribute to chronic inflammatory diseases. The transcription factor RORα is required for ILC2 development but is also highly expressed by other ILC subsets where its function remains poorly defined. We previously reported that Rorasg/sg bone marrow chimeric mice (C57BL/6J) were protected from Salmonella-induced intestinal fibrosis due to defective ILC3 responses. In this study, single-cell RNA analysis of ILCs isolated from inflamed tissues indicates that RORα perturbation led to a reduction in ILC3 lineages. Furthermore, residual Rorasg/sg ILC3s have decreased expression of key signature genes, including Rorc and activating cytokine receptors. Collectively, our data suggest that RORα plays a key role in preserving functional ILC3s by modulating their ability to integrate environmental cues to efficiently produce cytokines.
Collapse
Affiliation(s)
- Bernard C Lo
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Diana Canals Hernaez
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - R Wilder Scott
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Michael R Hughes
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Samuel B Shin
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - T Michael Underhill
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| | - Fumio Takei
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada
| | - Kelly M McNagny
- The Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; and
| |
Collapse
|
22
|
Wan J, Cai W, Wang H, Cheng J, Su Z, Wang S, Xu H. Role of type 2 innate lymphoid cell and its related cytokines in tumor immunity. J Cell Physiol 2019; 235:3249-3257. [PMID: 31625163 DOI: 10.1002/jcp.29287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jie Wan
- Department of Immunology Jiangsu University Zhenjiang China
| | - Wei Cai
- Department of Immunology Jiangsu University Zhenjiang China
| | - Huixuan Wang
- Department of Immunology Jiangsu University Zhenjiang China
| | - Jianjun Cheng
- Department of Immunology Jiangsu University Zhenjiang China
| | - Zhaoliang Su
- Department of Immunology Jiangsu University Zhenjiang China
- The Central Laboratory The Fourth Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Shengjun Wang
- Department of Immunology Jiangsu University Zhenjiang China
- Department of Laboratory Medicine, The Affiliated People's Hospital Jiangsu University Zhenjiang China
| | - Huaxi Xu
- Department of Immunology Jiangsu University Zhenjiang China
| |
Collapse
|
23
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
24
|
Ren H, Ji W, Yu X, Ge D, Dong R, Wang Q, Liu M. Mahuang Xixin Fuzi decoction protects against ovalbumin-induced allergic rhinitis by inhibiting type 2 innate lymphoid cells in mice. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2019. [DOI: 10.1016/j.jtcms.2019.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Huang W, Song Y, Wang L. Wenshen decoction suppresses inflammation in IL-33-induced asthma murine model via inhibiting ILC2 activation. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:570. [PMID: 31807551 DOI: 10.21037/atm.2019.09.34] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Wenshen decoction, consisting of Epimedium brevicornu Maxim, Morinda officinalis How and Cnidium monnieri (L.) Cusson, has favorable efficacy in the treatment of asthma in China. Methods The present study investigated the potential immunomodulatory mechanism underlying the therapeutic effects of Wenshen decoction on mouse asthma. Results Oral Wenshen decoction could ameliorate the production of IL-4, IL-5, IL-13 in the bronchoalveolar lavage fluid (BALF), reduce serum IgE, and improve the airway hyperresponsiveness (AHR) and airway inflammation in the BALB/c mice after intranasal treatment with recombinant IL-33. Moreover, Wenshen decoction reduced ILC2 and RORα mRNA expression, decreased the mRNA expression of ICOS and ST2 in the lung, but significantly increased the production of IFN-γ. Conclusions Our study indicates that Wenshen decoction may inhibit the activation of ILC2 through the IL-33/ST2/ICOS pathway to further suppress airway inflammation and AHR in the asthmatic mice, and the increased IFN-γ might be related to the effects of Wenshen decoction on ILC2.
Collapse
Affiliation(s)
- Weiling Huang
- Department of Respiration, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Ying Song
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lixin Wang
- Department of Integrated TCM and Western Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| |
Collapse
|
26
|
Han M, Rajput C, Hershenson MB. Rhinovirus Attributes that Contribute to Asthma Development. Immunol Allergy Clin North Am 2019; 39:345-359. [PMID: 31284925 PMCID: PMC6624084 DOI: 10.1016/j.iac.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Early-life wheezing-associated infections with human rhinovirus (HRV) are strongly associated with the inception of asthma. The immune system of immature mice and humans is skewed toward a type 2 cytokine response. Thus, HRV-infected 6-day-old mice but not adult mice develop augmented type 2 cytokine expression, eosinophilic inflammation, mucous metaplasia, and airway hyperresponsiveness. This asthma phenotype depends on interleukin (IL)-13-producing type 2 innate lymphoid cells, the expansion of which in turn depends on release of the innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin from the airway epithelium. In humans, certain genetic variants may predispose to HRV-induced childhood asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Medical Sciences Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Medical Sciences Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI, USA
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Medical Sciences Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI, USA; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Medical Sciences Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Pulmonary group 2 innate lymphoid cells: surprises and challenges. Mucosal Immunol 2019; 12:299-311. [PMID: 30664706 PMCID: PMC6436699 DOI: 10.1038/s41385-018-0130-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 02/04/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a recently described subset of innate lymphocytes with important immune and homeostatic functions at multiple tissue sites, especially the lung. These cells expand locally after birth and during postnatal lung maturation and are present in the lung and other peripheral organs. They are modified by a variety of processes and mediate inflammatory responses to respiratory pathogens, inhaled allergens and noxious particles. Here, we review the emerging roles of ILC2s in pulmonary homeostasis and discuss recent and surprising advances in our understanding of how hormones, age, neurotransmitters, environmental challenges, and infection influence ILC2s. We also review how these responses may underpin the development, progression and severity of pulmonary inflammation and chronic lung diseases and highlight some of the remaining challenges for ILC2 biology.
Collapse
|
28
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
29
|
Kinetics of the accumulation of group 2 innate lymphoid cells in IL-33-induced and IL-25-induced murine models of asthma: a potential role for the chemokine CXCL16. Cell Mol Immunol 2018; 16:75-86. [PMID: 30467418 DOI: 10.1038/s41423-018-0182-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/01/2023] Open
Abstract
ILC2s are implicated in asthma pathogenesis, but little is known about the mechanisms underlying their accumulation in airways. We investigated the time course of ILC2 accumulation in different tissues in murine models of asthma induced by a serial per-nasal challenge with ovalbumin (OVA), house dust mice (HDM), IL-25 and IL-33 and explored the potential roles of ILC2-attracting chemokines in this phenomenon. Flow cytometry was used to enumerate ILC2s at various time points. The effects of cytokines and chemokines on ILC2 migration were measured in vitro using a chemotaxis assay and in vivo using small animal imaging. Compared with saline and OVA challenge, both IL-25 and IL-33 challenge alone induced significant accumulation of ILC2s in the mediastinal lymph nodes, lung tissue and bronchoalveolar lavage fluid of challenged animals, but with a distinct potency and kinetics. In vitro, IL-33 and CXCL16, but not IL-25 or CCL25, directly induced ILC2 migration. Small animal in vivo imaging further confirmed that a single intranasal provocation with IL-33 or CXCL16 was sufficient to induce the accumulation of ILC2s in the lungs following injection via the tail vein. Moreover, IL-33-induced ILC2 migration involved the activation of ERK1/2, p38, Akt, JNK and NF-κB, while CXCL16-induced ILC2 migration involved the activation of ERK1/2, p38 and Akt. These data support the hypothesis that epithelium-derived IL-25 and IL-33 induce lung accumulation of ILC2s, while IL-33 exerts a direct chemotactic effect in this process. Although ILC2s express the chemokine receptors CXCR6 and CCR9, only CXCL16, the ligand of CXCR6, exhibits a direct chemoattractant effect.
Collapse
|