1
|
Schulz A, Pagerols Raluy L, Kolman JP, Königs I, Trochimiuk M, Appl B, Reinshagen K, Boettcher M, Trah J. The Inhibitory Effect of Curosurf ® and Alveofact ® on the Formation of Neutrophil Extracellular Traps. Front Immunol 2021; 11:582895. [PMID: 33574811 PMCID: PMC7871907 DOI: 10.3389/fimmu.2020.582895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
Background Neutrophil extracellular traps (NETs) are a defense mechanism in which neutrophils cast a net-like structure in response to microbial infection. NETs consist of decondensed chromatin and about 30 enzymes and peptides. Some components, such as neutrophil elastase (NE) and myeloperoxidase (MPO), present antimicrobial but also cytotoxic properties, leading to tissue injury. Many inflammatory diseases are associated with NETs, and their final role has not been identified. Pulmonary surfactant is known to have immunoregulatory abilities that alter the function of adaptive and innate immune cells. The aim of this study was to investigate the hypothesis that natural surfactant preparations inhibit the formation of NETs. Methods The effect of two natural surfactants (Alveofact® and Curosurf®) on spontaneous and phorbol-12-myristate-13-acetate–induced NET formation by neutrophils isolated by magnetic cell sorting from healthy individuals was examined. NETs were quantitatively detected by absorption and fluorometric-based assays for the NET-specific proteins (NE, MPO) and cell-free DNA. Immunofluorescence microscopy images were used for visualization. Results Both surfactant preparations exerted a dose-dependent inhibitory effect on NET formation. Samples treated with higher concentrations and with 30 min pre-incubation prior to stimulation with phorbol-12-myristate-13-acetate had significantly lower levels of NET-specific proteins and cell-free DNA compared to untreated samples. Immunofluorescence microscopy confirmed these findings. Conclusions The described dose-dependent modulation of NET formation ex vivo suggests an interaction between exogenous surfactant supplementation and neutrophil granulocytes. The immunoregulatory effects of surfactant preparations should be considered for further examination of inflammatory diseases.
Collapse
Affiliation(s)
- Annabell Schulz
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Laia Pagerols Raluy
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jan Philipp Kolman
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ingo Königs
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Magdalena Trochimiuk
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Birgit Appl
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Konrad Reinshagen
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Julian Trah
- Department of Pediatric Surgery, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| |
Collapse
|
2
|
Impact of Ozone, Sex, and Gonadal Hormones on Bronchoalveolar Lavage Characteristics and Survival in SP-A KO Mice Infected with Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8091354. [PMID: 32899781 PMCID: PMC7563396 DOI: 10.3390/microorganisms8091354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/30/2020] [Accepted: 09/02/2020] [Indexed: 02/03/2023] Open
Abstract
Surfactant protein A (SP-A) plays an important role in innate immunity. The sex-dependent survival of infected SP-A knockout (KO) mice has been observed. Our goal was to study the impact of ozone (O3) and sex, as well as gonadal hormones, on the bronchoalveolar lavage (BAL) readouts and survival, respectively, of Klebsiella pneumoniae-infected SP-A KO mice. Male and female SP-A KO mice were exposed to O3 or filtered air and infected with K. pneumoniae. We studied markers of inflammation and tissue damage at 4, 24, and 48 h, as well as the survival over 14 days, of gonadectomized (Gx) mice implanted with control pellets (CoP) or hormone (5α-dihydrotestosterone (DHT) in female gonadectomized mice (GxF) or 17β-estradiol (E2) in male gonadectomized mice (GxM)). We observed: (1) an increase in neutrophil and macrophage inflammatory protein-2 levels as time progressed post-infection, and O3 exposure appeared to increase this response; (2) an increase in lactate dehydrogenase, total protein, oxidized protein, and phospholipids in response to O3 with no consistent sex differences in studied parameters; and (3) a reduction in survival of the GxM and CoP mice, the GxM and E2 mice, and the GxF and DHT mice but not for the GxF and CoP mice after O3. Without SP-A, (a) sex was found to have a minimal impact on BAL cellular composition and tissue damage markers, and (b) the impact of gonadal hormones on survival was found to involve different mechanisms than in the presence of SP-A.
Collapse
|
3
|
Foligno S, Loi B, Pezza L, Piastra M, Autilio C, De Luca D. Extrapulmonary Surfactant Therapy: Review of Available Data and Research/Development Issues. J Clin Pharmacol 2020; 60:1561-1572. [PMID: 32578234 DOI: 10.1002/jcph.1675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/21/2020] [Indexed: 11/07/2022]
Abstract
Since the discovery of surfactant, a large amount of knowledge has been accumulated about its biology and pharmacology. Surfactant is the cornerstone of neonatal respiratory critical care, but its proteins and phospholipids are produced in various tissues and organs, with possible roles only partially similar to that played in the alveoli. As surfactant research is focused mainly on its respiratory applications, knowledge about the possible role of surfactant in extrapulmonary disorders has never been summarized. Here we aim to comprehensively review the data about surfactant biology and pharmacology in organs other than the lung, especially focusing in the more promising surfactant extrapulmonary roles. We also review any preclinical or clinical data available about the therapeutic use of surfactant in these contexts. We offer a summary of knowledge and research/development milestones, as possible useful guidance for researchers of multidisciplinary background.
Collapse
Affiliation(s)
- Silvia Foligno
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Barbara Loi
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France
| | - Lucilla Pezza
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco Piastra
- Pediatric Intensive Care Unit, Department of Anesthesia and Critical Care, University Hospital "A.Gemelli"-IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Autilio
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institut-Hospital "12 de Octubre,", Complutense University, Madrid, Spain
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center, "A. Béclère," South Paris University Hospitals, Assistance Publique-Hopitaux de Paris (APHP), Paris, France.,Physiopathology and Therapeutic Innovation Unit-INSERM U999, South Paris/Saclay University, Paris, France
| |
Collapse
|
4
|
Mirastschijski U, Schwab I, Coger V, Zier U, Rianna C, He W, Maedler K, Kelm S, Radtke A, Belge G, Lindner P, Stahl F, Scharpenberg M, Lasota L, Timm J. Lung Surfactant Accelerates Skin Wound Healing: A Translational Study with a Randomized Clinical Phase I Study. Sci Rep 2020; 10:2581. [PMID: 32054903 PMCID: PMC7018835 DOI: 10.1038/s41598-020-59394-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 01/10/2023] Open
Abstract
Lung surfactants are used for reducing alveolar surface tension in preterm infants to ease breathing. Phospholipid films with surfactant proteins regulate the activity of alveolar macrophages and reduce inflammation. Aberrant skin wound healing is characterized by persistent inflammation. The aim of the study was to investigate if lung surfactant can promote wound healing. Preclinical wound models, e.g. cell scratch assays and full-thickness excisional wounds in mice, and a randomized, phase I clinical trial in healthy human volunteers using a suction blister model were used to study the effect of the commercially available bovine lung surfactant on skin wound repair. Lung surfactant increased migration of keratinocytes in a concentration-dependent manner with no effect on fibroblasts. Significantly reduced expression levels were found for pro-inflammatory and pro-fibrotic genes in murine wounds. Because of these beneficial effects in preclinical experiments, a clinical phase I study was initiated to monitor safety and tolerability of surfactant when applied topically onto human wounds and normal skin. No adverse effects were observed. Subepidermal wounds healed significantly faster with surfactant compared to control. Our study provides lung surfactant as a strong candidate for innovative treatment of chronic skin wounds and as additive for treatment of burn wounds to reduce inflammation and prevent excessive scarring.
Collapse
Affiliation(s)
- Ursula Mirastschijski
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany.
| | - Igor Schwab
- Department of Plastic, Reconstructive and Aesthetic Surgery, Klinikum Bremen-Mitte, Bremen, Germany
| | - Vincent Coger
- Department of Experimental Plastic Surgery, Kerstin Reimers Laboratory for Regeneration Biology, Hannover Medical School, Hannover, Germany
| | - Ulrich Zier
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Carmela Rianna
- Institute of Biophysics, University of Bremen, Bremen, Germany
| | - Wei He
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Kathrin Maedler
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Sørge Kelm
- Center for Biomolecular Interactions Bremen, Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Arlo Radtke
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Patrick Lindner
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Frank Stahl
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Martin Scharpenberg
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| | - Lukas Lasota
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| | - Jürgen Timm
- University of Bremen, Competence Center for Clinical Trials Bremen, Bremen, Germany
| |
Collapse
|
5
|
Foligno S, De Luca D. Porcine versus bovine surfactant therapy for RDS in preterm neonates: pragmatic meta-analysis and review of physiopathological plausibility of the effects on extra-pulmonary outcomes. Respir Res 2020; 21:8. [PMID: 31910825 PMCID: PMC6947871 DOI: 10.1186/s12931-019-1267-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND While porcine seems to be superior to bovine surfactants in terms of respiratory outcomes, it is unclear if a surfactant can improve extra-pulmonary outcomes in preterm neonates with respiratory distress syndrome and if there is any physiopathological/biological mechanism linking surfactant therapy to these outcomes. We aim to fill these knowledge gaps. METHODS Systematic and pragmatic review coupled with meta-analysis of randomized controlled trials of bovine or porcine surfactants administered to treat RDS in preterm neonates; common extra-pulmonary neonatal intensive care outcomes were considered. As additional analysis, animal or human translational studies about mechanisms linking surfactant replacement to extra-pulmonary neonatal outcomes were also systematically reviewed. RESULTS Porcine surfactant is associated with lower incidence of patent ductus arteriosus (OR:0.655; 95%CI:0.460-0.931); p = 0.018; 12 trials; 1472 patients); prenatal steroids (coeff.:-0.009, 95%CI:-0.03-0.009, p = 0.323) and gestational age (coeff.:0.079, 95%CI:-0.18-0.34, p = 0.554) did not influence this effect size. No significant differences were found between porcine and bovine surfactants on neonatal intensive care unit length of stay (mean difference (days):-2.977; 95%CI:-6.659-0.705; p = 0.113; 8 trials; 855 patients), intra-ventricular hemorrhage of any grade (OR:0.860; 95%CI:0.648-1.139); p = 0.293; 15 trials; 1703 patients), severe intra-ventricular hemorrhage (OR:0.852; 95%CI:0.624-1.163); p = 0.313; 15 trials; 1672 patients), necrotizing entero-colitis (OR:1.190; 95%CI:0.785-1.803); p = 0.412; 9 trials; 1097 patients) and retinopathy of prematurity (OR:0.801; 95%CI:0.480-1.337); p = 0.396; 10 trials; 962 patients). CONCLUSIONS Physiopathological mechanisms explaining the effect of surfactant have been found for patent ductus arteriosus only, while they are lacking for all other endpoints. Porcine surfactant is associated with lower incidence of PDA than bovine surfactants. As there are no differences in terms of other extra-pulmonary outcomes and no physiopathological plausibility, these endpoints should not be used in future trials. REGISTRATION PROSPERO n.CRD42018100906.
Collapse
Affiliation(s)
- Silvia Foligno
- Division of Pediatrics and Neonatal Critical Care, Medical Center "A. Béclère", Paris Saclay University Hospitals, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France
| | - Daniele De Luca
- Division of Pediatrics and Neonatal Critical Care, Medical Center "A. Béclère", Paris Saclay University Hospitals, Assistance Publique-Hôpitaux de Paris (APHP) and Paris-Saclay University, Paris, France.
| |
Collapse
|
6
|
Fessler MB, Summer RS. Surfactant Lipids at the Host-Environment Interface. Metabolic Sensors, Suppressors, and Effectors of Inflammatory Lung Disease. Am J Respir Cell Mol Biol 2017; 54:624-35. [PMID: 26859434 DOI: 10.1165/rcmb.2016-0011ps] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The lipid composition of pulmonary surfactant is unlike that of any other body fluid. This extracellular lipid reservoir is also uniquely susceptible by virtue of its direct and continuous exposure to environmental oxidants, inflammatory agents, and pathogens. Historically, the greatest attention has been focused on those biophysical features of surfactant that serve to reduce surface tension at the air-liquid interface. More recently, surfactant lipids have also been recognized as bioactive molecules that maintain immune quiescence in the lung but can also be remodeled by the inhaled environment into neolipids that mediate key roles in inflammation, immunity, and fibrosis. This review focuses on the roles in inflammatory and infectious lung disease of two classes of native surfactant lipids, glycerophospholipids and sterols, and their corresponding oxidized species, oxidized glycerophospholipids and oxysterols. We highlight evidence that surfactant composition is sensitive to circulating lipoproteins and that the lipid milieu of the alveolus should thus be recognized as susceptible to diet and common systemic metabolic disorders. We also discuss intriguing evidence suggesting that oxidized surfactant lipids may represent an evolutionary link between immunity and tissue homeostasis that arose in the primordial lung. Taken together, the emerging picture is one in which the unique environmental susceptibility of the lung, together with its unique extracellular lipid requirements, may have made this organ both an evolutionary hub and an engine for lipid-immune cross-talk.
Collapse
Affiliation(s)
- Michael B Fessler
- 1 Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina; and
| | - Ross S Summer
- 2 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Backhaus S, Zakrzewicz A, Richter K, Damm J, Wilker S, Fuchs-Moll G, Küllmar M, Hecker A, Manzini I, Ruppert C, McIntosh JM, Padberg W, Grau V. Surfactant inhibits ATP-induced release of interleukin-1β via nicotinic acetylcholine receptors. J Lipid Res 2017; 58:1055-1066. [PMID: 28404637 PMCID: PMC5454502 DOI: 10.1194/jlr.m071506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/22/2017] [Indexed: 01/04/2023] Open
Abstract
Interleukin (IL)-1β is a potent pro-inflammatory cytokine of innate immunity involved in host defense. High systemic IL-1β levels, however, cause life-threatening inflammatory diseases, including systemic inflammatory response syndrome. In response to various danger signals, the pro-form of IL-1β is synthesized and stays in the cytoplasm unless a second signal, such as extracellular ATP, activates the inflammasome, which enables processing and release of mature IL-1β. As pulmonary surfactant is known for its anti-inflammatory properties, we hypothesize that surfactant inhibits ATP-induced release of IL-1β. Lipopolysaccharide-primed monocytic U937 cells were stimulated with an ATP analog in the presence of natural or synthetic surfactant composed of recombinant surfactant protein (rSP)-C, palmitoylphosphatidylglycerol, and dipalmitoylphosphatidylcholine (DPPC). Both surfactant preparations dose-dependently inhibited IL-1β release from U937 cells. DPPC was the active constituent of surfactant, whereas rSP-C and palmitoylphosphatidylglycerol were inactive. DPPC was also effective in primary mononuclear leukocytes isolated from human blood. Experiments with nicotinic antagonists, siRNA technology, and patch-clamp experiments suggested that stimulation of nicotinic acetylcholine receptors (nAChRs) containing subunit α9 results in a complete inhibition of the ion channel function of ATP receptor, P2X7. In conclusion, the surfactant constituent, DPPC, efficiently inhibits ATP-induced inflammasome activation and maturation of IL-1β in human monocytes by a mechanism involving nAChRs.
Collapse
Affiliation(s)
- Sören Backhaus
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Anna Zakrzewicz
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Katrin Richter
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Jelena Damm
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Sigrid Wilker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Gabriele Fuchs-Moll
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Mira Küllmar
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Andreas Hecker
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Ivan Manzini
- Department of Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Giessen, Giessen, Germany
| | - Clemens Ruppert
- Medical Clinic II, Department of Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Giessen, Germany
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah and George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT
| | - Winfried Padberg
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| | - Veronika Grau
- Laboratory of Experimental Surgery, Department of General and Thoracic Surgery Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
8
|
SP-R210 (Myo18A) Isoforms as Intrinsic Modulators of Macrophage Priming and Activation. PLoS One 2015; 10:e0126576. [PMID: 25965346 PMCID: PMC4428707 DOI: 10.1371/journal.pone.0126576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
The surfactant protein (SP-A) receptor SP-R210 has been shown to increase phagocytosis of SP-A-bound pathogens and to modulate cytokine secretion by immune cells. SP-A plays an important role in pulmonary immunity by enhancing opsonization and clearance of pathogens and by modulating macrophage inflammatory responses. Alternative splicing of the Myo18A gene results in two isoforms: SP-R210S and SP-R210L, with the latter predominantly expressed in alveolar macrophages. In this study we show that SP-A is required for optimal expression of SP-R210L on alveolar macrophages. Interestingly, pre-treatment with SP-A prepared by different methods either enhances or suppresses responsiveness to LPS, possibly due to differential co-isolation of SP-B or other proteins. We also report that dominant negative disruption of SP-R210L augments expression of receptors including SR-A, CD14, and CD36, and enhances macrophages' inflammatory response to TLR stimulation. Finally, because SP-A is known to modulate CD14, we used a variety of techniques to investigate how SP-R210 mediates the effect of SP-A on CD14. These studies revealed a novel physical association between SP-R210S, CD14, and SR-A leading to an enhanced response to LPS, and found that SP-R210L and SP-R210S regulate internalization of CD14 via distinct macropinocytosis-like mechanisms. Together, our findings support a model in which SP-R210 isoforms differentially regulate trafficking, expression, and activation of innate immune receptors on macrophages.
Collapse
|
9
|
Effect of natural porcine surfactant in Staphylococcus aureus induced pro-inflammatory cytokines and reactive oxygen species generation in monocytes and neutrophils from human blood. Int Immunopharmacol 2014; 21:369-74. [DOI: 10.1016/j.intimp.2014.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
|
10
|
Mikerov AN, Phelps DS, Gan X, Umstead TM, Haque R, Wang G, Floros J. Effect of ozone exposure and infection on bronchoalveolar lavage: sex differences in response patterns. Toxicol Lett 2014; 230:333-344. [PMID: 24769259 DOI: 10.1016/j.toxlet.2014.04.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/04/2014] [Accepted: 04/10/2014] [Indexed: 10/25/2022]
Abstract
Female mice exhibit a better survival rate than males after infection, but if infection follows an ozone-induced oxidative stress, male survival exceeds that of females. Our goal was to study bronchoalveolar lavage factors that contribute to these sex differences in outcome. We studied parameters at 4, 24, and 48 h after ozone exposure and infection, including markers of inflammation, oxidative stress, and tissue damage, and surfactant phospholipids and surfactant protein A (SP-A). A multianalyte immunoassay at the 4h time point measured 59 different cytokines, chemokines, and other proteins. We found that: (1) Although some parameters studied revealed sex differences, no sex differences were observed in LDH, total protein, MIP-2, and SP-A. Males showed more intragroup significant differences in SP-A between filtered air- and ozone-exposed mice compared to females. (2) Oxidized dimeric SP-A was higher in FA-exposed female mice. (3) Surfactant phospholipids were typically higher in males. (4) The multianalyte data revealed differences in the exuberance of responses under different conditions - males in response to infection and females in response to oxidative stress. These more exuberant, and presumably less well-controlled responses associate with the poorer survival. We postulate that the collective effects of these sex differences in response patterns of lung immune cells may contribute to the clinical outcomes previously observed.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of General Hygiene and Ecology, Saratov State Medical University, Saratov, Russia
| | - David S Phelps
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Xiaozhuang Gan
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Todd M Umstead
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Rizwanul Haque
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Guirong Wang
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Joanna Floros
- The Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA, USA.,Department of Obstetrics and Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
11
|
Evans CR, Karnovsky A, Kovach MA, Standiford TJ, Burant CF, Stringer KA. Untargeted LC-MS metabolomics of bronchoalveolar lavage fluid differentiates acute respiratory distress syndrome from health. J Proteome Res 2013; 13:640-9. [PMID: 24289193 DOI: 10.1021/pr4007624] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Acute respiratory distress syndrome (ARDS) remains a significant hazard to human health and is clinically challenging because there are no prognostic biomarkers and no effective pharmacotherapy. The lung compartment metabolome may detail the status of the local environment that could be useful in ARDS biomarker discovery and the identification of drug target opportunities. However, neither the utility of bronchoalveolar lavage fluid (BALF) as a biofluid for metabolomics nor the optimal analytical platform for metabolite identification is established. To address this, we undertook a study to compare metabolites in BALF samples from patients with ARDS and healthy controls using a newly developed liquid chromatography (LC)-mass spectroscopy (MS) platform for untargeted metabolomics. Following initial testing of three different high-performance liquid chromatography (HPLC) columns, we determined that reversed phase (RP)-LC and hydrophilic interaction chromatography (HILIC) were the most informative chromatographic methods because they yielded the most and highest quality data. Following confirmation of metabolite identification, statistical analysis resulted in 37 differentiating metabolites in the BALF of ARDS compared with health across both analytical platforms. Pathway analysis revealed networks associated with amino acid metabolism, glycolysis and gluconeogenesis, fatty acid biosynthesis, phospholipids, and purine metabolism in the ARDS BALF. The complementary analytical platforms of RPLC and HILIC-LC generated informative, insightful metabolomics data of the ARDS lung environment.
Collapse
Affiliation(s)
- Charles R Evans
- Department of Internal Medicine, University of Michigan School of Medicine , Ann Arbor, Michigan, United States
| | | | | | | | | | | |
Collapse
|
12
|
Willems CH, Urlichs F, Seidenspinner S, Kunzmann S, Speer CP, Kramer BW. Poractant alfa (Curosurf®) increases phagocytosis of apoptotic neutrophils by alveolar macrophages in vivo. Respir Res 2012; 13:17. [PMID: 22405518 PMCID: PMC3310829 DOI: 10.1186/1465-9921-13-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/09/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clearance of apoptotic neutrophils in the lung is an essential process to limit inflammation, since they could become a pro-inflammatory stimulus themselves. The clearance is partially mediated by alveolar macrophages, which phagocytose these apoptotic cells. The phagocytosis of apoptotic immune cells by monocytes in vitro has been shown to be augmented by several constituents of pulmonary surfactant, e.g. phospholipids and hydrophobic surfactant proteins. In this study, we assessed the influence of exogenous poractant alfa (Curosurf®) instillation on the in vivo phagocytosis of apoptotic neutrophils by alveolar macrophages. METHODS Poractant alfa (200 mg/kg) was instilled intratracheally in the lungs of three months old adult male C57/Black 6 mice, followed by apoptotic neutrophil instillation. Bronchoalveloar lavage was performed and alveolar macrophages and neutrophils were counted. Phagocytosis of apoptotic neutrophils was quantified by determining the number of apoptotic neutrophils per alveolar macrophages. RESULTS Exogenous surfactant increased the number of alveolar macrophages engulfing apoptotic neutrophils 2.6 fold. The phagocytosis of apoptotic neutrophils was increased in the presence of exogenous surfactant by a 4.7 fold increase in phagocytosed apoptotic neutrophils per alveolar macrophage. CONCLUSIONS We conclude that the anti-inflammatory properties of surfactant therapy may be mediated in part by increased numbers of alveolar macrophages and increased phagocytosis of apoptotic neutrophils by alveolar macrophages.
Collapse
Affiliation(s)
- Coen Hmp Willems
- Department of Pediatrics, School for Mental Health and Neuroscience (NUTRIM), School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Ehehalt R, Braun A, Karner M, Füllekrug J, Stremmel W. Phosphatidylcholine as a constituent in the colonic mucosal barrier--physiological and clinical relevance. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:983-93. [PMID: 20595010 DOI: 10.1016/j.bbalip.2010.05.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 02/09/2023]
Abstract
Phosphatidylcholine (PC) is an important constituent of the gastrointestinal tract. PC molecules are not only important in intestinal cell membranes but also receiving increasing attention as protective agents in the gastrointestinal barrier. They are largely responsible for establishing the hydrophobic surface of the colon. Decreased phospholipids in colonic mucus could be linked to the pathogenesis of ulcerative colitis, a chronic inflammatory bowel disease. Clinical studies revealed that therapeutic addition of PC to the colonic mucus of these patients alleviated the inflammatory activity. This positive role is still elusive, however, we hypothesized that luminal PC has two possible functions: first, it is essential for surface hydrophobicity, and second, it is integrated into the plasma membrane of enterocytes and it modulates the signaling state of the mucosa. The membrane structure and lipid composition of cells is a regulatory component of the inflammatory signaling pathways. In this perspective, we will shortly summarize what is known about the localization and protective properties of PC in the colonic mucosa before turning to its evident medical importance. We will discuss how PC contributes to our understanding of the pathogenesis of ulcerative colitis and how reinforcing the luminal phospholipid monolayer can be used as a therapeutic concept in humans.
Collapse
Affiliation(s)
- Robert Ehehalt
- Department of Gastroenterology, University hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SK. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res 2010; 51:334-44. [PMID: 19648651 PMCID: PMC2803235 DOI: 10.1194/jlr.m000513] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 08/01/2009] [Indexed: 01/24/2023] Open
Abstract
In addition to providing mechanical stability, growing evidence suggests that surfactant lipid components can modulate inflammatory responses in the lung. However, little is known of the molecular mechanisms involved in the immunomodulatory action of surfactant lipids. This study investigates the effect of the lipid-rich surfactant preparations Survanta, Curosurf, and the major surfactant phospholipid dipalmitoylphosphatidylcholine (DPPC) on interleukin-8 (IL-8) gene and protein expression in human A549 lung epithelial cells using immunoassay and PCR techniques. To examine potential mechanisms of the surfactant lipid effects, Toll-like receptor 4 (TLR4) expression was analyzed by flow cytometry, and membrane lipid raft domains were separated by density gradient ultracentrifugation and analyzed by immunoblotting with anti-TLR4 antibody. The lipid-rich surfactant preparations Survanta, Curosurf, and DPPC, at physiological concentrations, significantly downregulated lipopolysaccharide (LPS)-induced IL-8 expression in A549 cells both at the mRNA and protein levels. The surfactant preparations did not affect the cell surface expression of TLR4 or the binding of LPS to the cells. However, LPS treatment induced translocation of TLR4 into membrane lipid raft microdomains, and this translocation was inhibited by incubation of the cells with the surfactant lipid. This study provides important mechanistic details of the immune-modulating action of pulmonary surfactant lipids.
Collapse
Affiliation(s)
- Wondwossen Abate
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| | | | - Joan Parton
- Department of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, UK
| | - Kenneth P. Jones
- School of Applied Sciences, University of Wales Institute Cardiff, Cardiff, UK
| | - Simon K. Jackson
- Centre for Research in Biomedicine, Faculty of Health and Life Science, University of the West of England, Bristol, UK
| |
Collapse
|
15
|
Peshavariya H, Dusting GJ, Di Bartolo B, Rye KA, Barter PJ, Jiang F. Reconstituted high-density lipoprotein suppresses leukocyte NADPH oxidase activation by disrupting lipid rafts. Free Radic Res 2010; 43:772-82. [DOI: 10.1080/10715760903045304] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Chroneos ZC, Sever-Chroneos Z, Shepherd VL. Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 2009; 25:13-26. [PMID: 20054141 DOI: 10.1159/000272047] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Pulmonary surfactant has two crucial roles in respiratory function; first, as a biophysical entity it reduces surface tension at the air water interface, facilitating gas exchange and alveolar stability during breathing, and, second, as an innate component of the lung's immune system it helps maintain sterility and balance immune reactions in the distal airways. Pulmonary surfactant consists of 90% lipids and 10% protein. There are four surfactant proteins named SP-A, SP-B, SP-C, and SP-D; their distinct interactions with surfactant phospholipids are necessary for the ultra-structural organization, stability, metabolism, and lowering of surface tension. In addition, SP-A and SP-D bind pathogens, inflict damage to microbial membranes, and regulate microbial phagocytosis and activation or deactivation of inflammatory responses by alveolar macrophages. SP-A and SP-D, also known as pulmonary collectins, mediate microbial phagocytosis via SP-A and SP-D receptors and the coordinated induction of other innate receptors. Several receptors (SP-R210, CD91/calreticulin, SIRPalpha, and toll-like receptors) mediate the immunological functions of SP-A and SP-D. However, accumulating evidence indicate that SP-B and SP-C and one or more lipid constituents of surfactant share similar immuno-regulatory properties as SP-A and SP-D. The present review discusses current knowledge on the interaction of surfactant with lung innate host defense.
Collapse
Affiliation(s)
- Zissis C Chroneos
- The Center of Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708-3154, USA.
| | | | | |
Collapse
|
17
|
Ras-induced reactive oxygen species promote growth factor-independent proliferation in human CD34+ hematopoietic progenitor cells. Blood 2009; 115:1238-46. [PMID: 20007804 DOI: 10.1182/blood-2009-06-222869] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Excessive production of reactive oxygen species (ROS) is a feature of human malignancy and is often triggered by activation of oncogenes such as activated Ras. ROS act as second messengers and can influence a variety of cellular process including growth factor responses and cell survival. We have examined the contribution of ROS production to the effects of N-Ras(G12D) and H-Ras(G12V) on normal human CD34(+) progenitor cells. Activated Ras strongly up-regulated the production of both superoxide and hydrogen peroxide through the stimulation of NADPH oxidase (NOX) activity, without affecting the expression of endogenous antioxidants or the production of mitochondrially derived ROS. Activated Ras also promoted both the survival and the growth factor-independent proliferation of CD34(+) cells. Using oxidase inhibitors and antioxidants, we found that excessive ROS production by these cells did not contribute to their enhanced survival; rather, ROS promoted their growth factor-independent proliferation. Although Ras-induced ROS production specifically activated the p38(MAPK) oxidative stress response, this failed to induce expression of the cell-cycle inhibitor, p16(INK4A); instead, ROS promoted the expression of D cyclins. These data are the first to show that excessive ROS production in the context of oncogene activation can promote proliferative responses in normal human hematopoietic progenitor cells.
Collapse
|
18
|
Morris RHK, Tonks AJ, Jones KP, Ahluwalia MK, Thomas AW, Tonks A, Jackson SK. DPPC regulates COX-2 expression in monocytes via phosphorylation of CREB. Biochem Biophys Res Commun 2008; 370:174-8. [PMID: 18355441 DOI: 10.1016/j.bbrc.2008.03.052] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 03/12/2008] [Indexed: 01/08/2023]
Abstract
The major phospholipid in pulmonary surfactant dipalmitoyl phosphatidylcholine (DPPC) has been shown to modulate inflammatory responses. Using human monocytes, this study demonstrates that DPPC significantly increased PGE(2) (P<0.05) production by 2.5-fold when compared to untreated monocyte controls. Mechanistically, this effect was concomitant with an increase in COX-2 expression which was abrogated in the presence of a COX-2 inhibitor. The regulation of COX-2 expression was independent of NF-kappaB activity. Further, DPPC increased the phosphorylation of the cyclic AMP response element binding protein (CREB; an important nuclear transcription factor important in regulating COX-2 expression). In addition, we also show that changing the fatty acid groups of PC (e.g. using l-alpha-phosphatidylcholine beta-arachidonoyl-gamma-palmitoyl (PAPC)) has a profound effect on the regulation of COX-2 expression and CREB activation. This study provides new evidence for the anti-inflammatory activity of DPPC and that this activity is at least in part mediated via CREB activation of COX-2.
Collapse
Affiliation(s)
- R H K Morris
- Cardiff School of Health Sciences, University of Wales Institute Cardiff, Western Avenue, Llandaff, Cardiff, Wales CF5 2YB, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Blanco O, Pérez-Gil J. Biochemical and pharmacological differences between preparations of exogenous natural surfactant used to treat Respiratory Distress Syndrome: role of the different components in an efficient pulmonary surfactant. Eur J Pharmacol 2007; 568:1-15. [PMID: 17543939 DOI: 10.1016/j.ejphar.2007.04.035] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 12/01/2022]
Abstract
The pharmaceutical application of exogenous natural pulmonary surfactant preparations has shown its efficiency in the therapeutical treatment of infants with Respiratory Distress Syndrome. At the same time, the use of these preparations in patients with Acute Respiratory Distress Syndrome, although not still an effective therapy, shows promising results. The analysis of composition, structure and surface activity of some of the different natural surfactant preparations available today for clinical use reveals important differences, a fact that opens horizons in the optimization of new effective formulations in the treatment of the Acute Respiratory Distress Syndrome. The purpose of this review is to carry out an updating of the current models interpreting the role of the main components of pulmonary surfactant as a reference to evaluate the biochemical composition of the preparations of exogenous natural pulmonary surfactant currently in use and their apparent pharmacological effect.
Collapse
Affiliation(s)
- Odalys Blanco
- Chemical-Pharmacology-Toxicology Group, Direction of Health and Animal Production, National Center of Agropecuary Sanity, Havana, Cuba
| | | |
Collapse
|
20
|
Hashioka S, Han YH, Fujii S, Kato T, Monji A, Utsumi H, Sawada M, Nakanishi H, Kanba S. Phosphatidylserine and phosphatidylcholine-containing liposomes inhibit amyloid beta and interferon-gamma-induced microglial activation. Free Radic Biol Med 2007; 42:945-54. [PMID: 17349923 DOI: 10.1016/j.freeradbiomed.2006.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/16/2006] [Accepted: 12/05/2006] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that microglial activation is one of the major pathogenic factors for Alzheimer's disease (AD) and the inhibition of the inflammatory activation of the microglia thus appears to be neuroprotective and a potentially useful treatment for AD. Phospholipids such as phosphatidylserine (PS) and phosphatidylcholine (PC) have been reported to modulate the immune function of phagocytes. In addition, PS has been reported to be a nootropics that can be used as nonprescription memory or cognitive enhancers. We therefore evaluated the effects of liposomes, which comprise both PS and PC (PS/PC liposomes), on the microglial production of tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO), and superoxide (*O(2)-) induced by amyloid beta (Abeta) and interferon-gamma (IFN-gamma). Pretreatment of microglia with PS/PC liposomes considerably inhibited the TNF-alpha, NO and *O(2)- production induced by Abeta/IFN-gamma. These results suggest that PS/PC liposomes have both neuroprotective and antioxidative properties through the inhibition of microglial activation, thus supporting the nootropic and antidementia effect of PS.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hashioka S, Han YH, Fujii S, Kato T, Monji A, Utsumi H, Sawada M, Nakanishi H, Kanba S. Phospholipids modulate superoxide and nitric oxide production by lipopolysaccharide and phorbol 12-myristate-13-acetate-activated microglia. Neurochem Int 2006; 50:499-506. [PMID: 17126953 DOI: 10.1016/j.neuint.2006.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 10/12/2006] [Accepted: 10/19/2006] [Indexed: 11/16/2022]
Abstract
Microglial activation and inflammatory processes have been implicated in the pathogenesis of a number of neurodegenerative disorders. Recently, peroxynitrite (ONOO(-)), the reaction product of superoxide (O(2)(-)) and nitric oxide (NO) both of which can be generated by activated microglia, has been demonstrated to act as a major mediator in the neurotoxicity induced by activated microglia. On the other hand, phospholipids such as phosphatidylserine (PS) and phosphatidylcholine (PC) have been reported to modulate the immune function of phagocytes. We therefore evaluated the effects of liposomes which comprise both PS and PC (PS/PC liposomes) or PC only (PC liposomes) regarding the production of both O(2)(-) and NO by lipopolysaccharide (LPS)/phorbol 12-myristate-13-acetate (PMA)-activated microglia using electron spin resonance (ESR) spin trap technique with a DEPMPO and Griess reaction, respectively. Pretreatment with PS/PC liposomes or PC liposomes considerably inhibited the signal intensity of O(2)(-) adduct associated with LPS/PMA-activated microglia in a dose-dependent manner. In addition, pretreatment with PS/PC liposomes also significantly reduced LPS/PMA-induced microglial NO production. In contrast, pretreatment with PC liposomes had no effect on the NO production. These results indicate that PS/PC liposomes can inhibit the microglial production of both NO and O(2)(-), and thus presumably prevent a subsequent formation of ONOO(-). Therefore, PS/PC liposomes appear to have both neuroprotective and anti-oxidative properties through the inhibition of microglial activation.
Collapse
Affiliation(s)
- Sadayuki Hashioka
- Department of Neuropsychiatry, Graduate School of Medicine, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|