1
|
Adams D, Choi CS, Sayner SL. Pulmonary endothelial cells from different vascular segments exhibit unique recovery from acidification and Na+/H+ exchanger isoform expression. PLoS One 2022; 17:e0266890. [PMID: 35503765 PMCID: PMC9064095 DOI: 10.1371/journal.pone.0266890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/29/2022] [Indexed: 12/29/2022] Open
Abstract
Sodium-hydrogen exchangers (NHEs) tightly regulate intracellular pH (pHi), proliferation, migration and cell volume. Heterogeneity exists between pulmonary endothelial cells derived from different vascular segments, yet the activity and isoform expression of NHEs between these vascular segments has not been fully examined. Utilizing the ammonium-prepulse and recovery from acidification technique in a buffer lacking bicarbonate, pulmonary microvascular and pulmonary artery endothelial cells exhibited unique recovery rates from the acid load dependent upon the concentration of the sodium transport inhibitor, amiloride; further, pulmonary artery endothelial cells required a higher dose of amiloride to inhibit sodium-dependent acid recovery compared to pulmonary microvascular endothelial cells, suggesting a unique complement of NHEs between the different endothelial cell types. While NHE1 has been described in pulmonary endothelial cells, all NHE isoforms have not been accounted for. To address NHE expression in endothelial cells, qPCR was performed. Using a two-gene normalization approach, Sdha and Ywhag were identified for qPCR normalization and analysis of NHE isoforms between pulmonary microvascular and pulmonary artery endothelial cells. NHE1 and NHE8 mRNA were equally expressed between the two cell types, but NHE5 expression was significantly higher in pulmonary microvascular versus pulmonary artery endothelial cells, which was confirmed at the protein level. Thus, pulmonary microvascular and pulmonary artery endothelial cells exhibit unique NHE isoform expression and have a unique response to acid load revealed through recovery from cellular acidification.
Collapse
Affiliation(s)
- Dylan Adams
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
| | - Sarah L. Sayner
- Department of Physiology and Cell Biology, University South Alabama, College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
2
|
Role of Ion Channel Remodeling in Endothelial Dysfunction Induced by Pulmonary Arterial Hypertension. Biomolecules 2022; 12:biom12040484. [PMID: 35454073 PMCID: PMC9031742 DOI: 10.3390/biom12040484] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction is a key player in advancing vascular pathology in pulmonary arterial hypertension (PAH), a disease essentially characterized by intense remodeling of the pulmonary vasculature, vasoconstriction, endothelial dysfunction, inflammation, oxidative stress, and thrombosis in situ. These vascular features culminate in an increase in pulmonary vascular resistance, subsequent right heart failure, and premature death. Over the past years, there has been a great development in our understanding of pulmonary endothelial biology related to the genetic and molecular mechanisms that modulate the endothelial response to direct or indirect injury and how their dysregulation can promote PAH pathogenesis. Ion channels are key regulators of vasoconstriction and proliferative/apoptotic phenotypes; however, they are poorly studied at the endothelial level. The current review will describe and categorize different expression, functions, regulation, and remodeling of endothelial ion channels (K+, Ca2+, Na+, and Cl− channels) in PAH. We will focus on the potential pathogenic role of ion channel deregulation in the onset and progression of endothelial dysfunction during the development of PAH and its potential therapeutic role.
Collapse
|
3
|
Shimoda LA. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2021; 35:222-233. [PMID: 32490752 DOI: 10.1152/physiol.00039.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway? Mediators Inflamm 2015; 2015:584758. [PMID: 26491231 PMCID: PMC4600544 DOI: 10.1155/2015/584758] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/28/2014] [Indexed: 12/14/2022] Open
Abstract
Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2), physioxia or physoxia (∼1–13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.
Collapse
|
5
|
Yuen N, Lam TI, Wallace BK, Klug NR, Anderson SE, O'Donnell ME. Ischemic factor-induced increases in cerebral microvascular endothelial cell Na/H exchange activity and abundance: evidence for involvement of ERK1/2 MAP kinase. Am J Physiol Cell Physiol 2014; 306:C931-42. [PMID: 24647544 DOI: 10.1152/ajpcell.00021.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain edema forms rapidly in the early hours of ischemic stroke by increased secretion of Na, Cl, and water into the brain across an intact blood-brain barrier (BBB), together with swelling of astrocytes as they take up the ions and water crossing the BBB. Our previous studies provide evidence that luminal BBB Na-K-Cl cotransport (NKCC) and Na/H exchange (NHE) participate in ischemia-induced edema formation. NKCC1 and two NHE isoforms, NHE1 and NHE2, reside predominantly at the luminal BBB membrane. NKCC and NHE activities of cerebral microvascular endothelial cells (CMEC) are rapidly stimulated by the ischemic factors hypoxia, aglycemia, and AVP, and inhibition of NKCC and NHE activities by bumetanide and HOE642, respectively, reduces brain Na uptake and edema in the rat middle cerebral artery occlusion model of stroke. The present study was conducted to further explore BBB NHE responses to ischemia. We examined whether ischemic factor-stimulated NHE activity is sustained over several hours, when the majority of edema forms during stroke. We also examined whether ischemic factors alter NHE1 and/or NHE2 protein abundance. Finally, we conducted initial studies of ERK1/2 MAP kinase involvement in BBB NHE and NKCC responses to ischemic factors. We found that hypoxia, aglycemia, and AVP increase CMEC NHE activity through 5 h and that NHE1, but not NHE2, abundance is increased by 1- to 5-h exposures to these factors. Furthermore, we found that these factors rapidly increase BBB ERK1/2 activity and that ERK1/2 inhibition reduces or abolishes ischemic factor stimulation of NKCC and NHE activities.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Tina I Lam
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Breanna K Wallace
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Nicholas R Klug
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Steven E Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - Martha E O'Donnell
- Department of Physiology and Membrane Biology, University of California, Davis, California
| |
Collapse
|
6
|
Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 2013; 91:297-309. [PMID: 23334338 DOI: 10.1007/s00109-013-0998-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.
Collapse
|
7
|
Yu L, Hales CA. Silencing of sodium-hydrogen exchanger 1 attenuates the proliferation, hypertrophy, and migration of pulmonary artery smooth muscle cells via E2F1. Am J Respir Cell Mol Biol 2011; 45:923-30. [PMID: 21454803 DOI: 10.1165/rcmb.2011-0032oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously found that deficiency of the sodium-hydrogen exchanger 1 (NHE1) gene prevented hypoxia-induced pulmonary hypertension and vascular remodeling in mice, which were accompanied by a significantly reduced proliferation of pulmonary artery smooth muscle cells (PASMCs), and which decreased the medial-wall thickness of pulmonary arteries. That finding indicated the involvement of NHE1 in the proliferation and hypertrophy of PASMCs, but the underlying mechanism was not fully understood. To define the mechanism by which the inhibition of NHE1 decreases hypoxic pulmonary hypertension and vascular remodeling, we investigated the role of E2F1, a nuclear transcription factor, in silencing the NHE1 gene-induced inhibition of the proliferation, hypertrophy, and migration of human PASMCs. We found that: (1) silencing of NHE1 by short, interfering RNA (siRNA) significantly inhibited PASMC proliferation and cell cycle progression, decreased hypoxia-induced hypertrophy (in terms of cell size and protein/DNA ratio) and migration (in terms of the wound-healing and migration chamber assays); (2) hypoxia induced the expression of E2F1, which was reversed by NHE1 siRNA; and (3) the overexpression of E2F1 blocked the inhibitory effect of NHE1 siRNA on the proliferation, hypertrophy, and migration of PASMCs. The present study determined that silencing the NHE1 gene significantly inhibited the hypoxia-induced proliferation, hypertrophy, and migration of human PASMCs via repression of the nuclear transcription factor E2F1. This study revealed a novel mechanism underlying the regulation of hypoxic pulmonary hypertension and vascular remodeling via NHE1.
Collapse
Affiliation(s)
- Lunyin Yu
- Pulmonary and Critical Care Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, 02114-2696, USA.
| | | |
Collapse
|
8
|
Martin C, Pedersen SF, Schwab A, Stock C. Intracellular pH gradients in migrating cells. Am J Physiol Cell Physiol 2010; 300:C490-5. [PMID: 21148407 DOI: 10.1152/ajpcell.00280.2010] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell polarization along the axis of movement is required for migration. The localization of proteins and regulators of the migratory machinery to either the cell front or its rear results in a spatial asymmetry enabling cells to simultaneously coordinate cell protrusion and retraction. Protons might function as such unevenly distributed regulators as they modulate the interaction of focal adhesion proteins and components of the cytoskeleton in vitro. However, an intracellular pH (pH(i)) gradient reflecting a spatial asymmetry of protons has not been shown so far. One major regulator of pH(i), the Na(+)/H(+) exchanger NHE1, is essential for cell migration and accumulates at the cell front. Here, we test the hypothesis that the uneven distribution of NHE1 activity creates a pH(i) gradient in migrating cells. Using the pH-sensitive fluorescent dye BCECF, pH(i) was measured in five cell lines (MV3, B16V, NIH3T3, MDCK-F1, EA.hy926) along the axis of movement. Differences in pH(i) between the front and the rear end (ΔpH(i) front-rear) were present in all cell lines, and inhibition of NHE1 either with HOE642 or by absence of extracellular Na(+) caused the pH(i) gradient to flatten or disappear. In conclusion, pH(i) gradients established by NHE1 activity exist along the axis of movement.
Collapse
Affiliation(s)
- Christine Martin
- Institute of Physiology II, II, University of Muenster, Robert-Koch-Str. 27b, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
9
|
Hom S, Fleegal MA, Egleton RD, Campos CR, Hawkins BT, Davis TP. Comparative changes in the blood-brain barrier and cerebral infarction of SHR and WKY rats. Am J Physiol Regul Integr Comp Physiol 2007; 292:R1881-92. [PMID: 17234953 DOI: 10.1152/ajpregu.00761.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hypertension is involved in the exacerbation of stroke. It is unclear how blood-brain barrier (BBB) tight-junction (TJ) and ion transporter proteins critical for maintaining brain homeostasis contribute to cerebral infarction during hypertension development. In the present study, we investigated cerebral infarct volume following permanent 4-h middle cerebral artery occlusion (MCAO) and characterized the expression of BBB TJ and ion transporter proteins in brain microvessels of spontaneously hypertensive rats (SHR) compared with age-matched Wistar-Kyoto (WKY) rats at 5 wk (prehypertension), 10 wk (early-stage hypertension), and 15 wk (later-stage hypertension) of age. Hypertensive SHR show increased infarct volume following MCAO compared with WKY control rats. BBB TJ and ion transporter proteins, known to contribute to edema and fluid volume changes in the brain, show differential protein expression patterns during hypertension development. Western blot analysis of TJ protein zonula occludens-2 (ZO-2) showed decreased expression, while ion transporter, Na+/H+exchanger 1 (NHE-1), was markedly increased in hypertensive SHR. Expression of TJ proteins ZO-1, occludin, actin, claudin-5, and Na+-K+-2Cl−cotransporter remain unaffected in SHR compared with control. Selective inhibition of NHE-1 using dimethylamiloride significantly attenuated ischemia-induced infarct volume in hypertensive SHR following MCAO, suggesting a novel role for NHE-1 in the brain in the regulation of ischemia-induced infarct volume in SHR.
Collapse
Affiliation(s)
- Sharon Hom
- Dept of Pharmacology, College of Medicine, Univ of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | | | |
Collapse
|
10
|
Rentsch ML, Ossum CG, Hoffmann EK, Pedersen SF. Roles of Na+/H+ exchange in regulation of p38 mitogen-activated protein kinase activity and cell death after chemical anoxia in NIH3T3 fibroblasts. Pflugers Arch 2007; 454:649-62. [PMID: 17334779 DOI: 10.1007/s00424-007-0233-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Revised: 01/24/2007] [Accepted: 02/08/2007] [Indexed: 01/31/2023]
Abstract
Activation of Na(+)/H(+) exchange (NHE) plays a major role in cell death following ischemia/hypoxia in many cell types, yet counteracts apoptotic cell death after other stimuli. To address the role of NHE activity in regulation of cell death/survival, we examined the causal relationship between NHE, p38 mitogen-activated protein kinase (MAPK), ERK1/2, p53, and Akt activity, and cell death, after chemical anoxia in NIH3T3 fibroblasts. The NHE1 inhibitor 5'-(N-ethyl-N-isopropyl) amiloride (EIPA) (5 muM), as well as removal of extracellular Na(+) [replaced by N-methyl-D: -glucamine (NMDG(+))], prevented recovery of intracellular pH (pH(i)) during chemical anoxia (10 mM NaN(3) +/- 10 mM glucose), indicating that activation of NHE was the dominating mechanism of pH(i) regulation under these conditions. NHE activation by chemical anoxia was unaffected by inhibitors of p38 MAPK (SB203580) and extracellular signal-regulated kinase (ERK) (PD98059). In contrast, chemical anoxia activated p38 MAPK in an NHE-dependent manner, while ERK1/2 activity was unaffected. Anoxia-induced cell death was caspase-3-independent, mildly attenuated by EIPA, potently exacerbated by SB203580, and unaffected by PD98059. Ser(15) phosphorylation of p53 was increased by anoxia in an NHE- and p38 MAPK-independent manner, while Akt activity was unaffected. It is suggested that after chemical anoxia in NIH3T3 fibroblasts, NHE activity is required for activation of p38 MAPK, which in turn protects the cells against anoxia-induced death. In spite of this, NHE inhibition slightly attenuates anoxia-induced cell death, likely due to the involvement of NHE in other anoxia-induced death pathways.
Collapse
Affiliation(s)
- Maria L Rentsch
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, 13 Universitetsparken, 2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
11
|
Bouvry D, Planès C, Malbert-Colas L, Escabasse V, Clerici C. Hypoxia-Induced Cytoskeleton Disruption in Alveolar Epithelial Cells. Am J Respir Cell Mol Biol 2006; 35:519-27. [PMID: 16741163 DOI: 10.1165/rcmb.2005-0478oc] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Alveolar hypoxia, a common feature of many respiratory disorders, has been previously reported to induce functional changes, particularly a decrease of transepithelial Na and fluid transport. In polarized epithelia, cytoskeleton plays a regulatory role in transcellular and paracellular transport of ions and fluid. We hypothesized that exposure to hypoxia could damage cytoskeleton organization, which in turn, may adversely affect ion and fluid transport. Primary rat alveolar epithelial cells (AEC) were exposed to either mild (3% O(2)) or severe (0.5% O(2)) hypoxia for 18 h or to normoxia (21% O(2)). First, mild and severe hypoxia induced a disorganization of actin, a major protein of the cytoskeleton, reflected by disruption of F-actin filaments. Second, alpha-spectrin, an apical cytoskeleton protein, which binds to actin cytoskeleton and Na transport proteins, was cleaved by hypoxia. Pretreatment of AEC by a caspase inhibitor (z-VAD-fmk; 90 microM) blunted hypoxia-induced spectrin cleavage as well as hypoxia-induced decrease in surface membrane alpha-ENaC and concomitantly induced a partial recovery of hypoxia-induced decrease of amiloride-sensitive Na transport at 3% O(2). Finally, tight junctions (TJs) proteins, which are linked to actin and are a determinant of paracellular permeability, were altered by mild and severe hypoxia: hypoxia induced a mislocalization of occludin from the TJ to cytoplasm and a decrease in zonula occludens-1 protein level. These modifications were associated with modest changes in paracellular permeability at 0.5% O(2,) as assessed by small 4-kD dextran flux and transepithelial resistance measurements. Together, these findings indicate that hypoxia disrupted cytoskeleton and TJ organization in AEC and may participate, at least in part, to hypoxia-induced decrease in Na transport.
Collapse
Affiliation(s)
- Diane Bouvry
- INSERM U773 Centre de Recherche Biomédicale Bichat-Beaujon (CRB3), Université Paris 7 Denis Diderot, UFR de Médecine, Site Bichat, France
| | | | | | | | | |
Collapse
|
12
|
Taylor CJ, Nicola PA, Wang S, Barrand MA, Hladky SB. Transporters involved in regulation of intracellular pH in primary cultured rat brain endothelial cells. J Physiol 2006; 576:769-85. [PMID: 16916905 PMCID: PMC1890423 DOI: 10.1113/jphysiol.2006.117374] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fluid secretion across the blood-brain barrier, critical for maintaining the correct fluid balance in the brain, entails net secretion of HCO(3)(-), which is brought about by the combined activities of ion transporters situated in brain microvessels. These same transporters will concomitantly influence intracellular pH (pH(i)). To analyse the transporters that may be involved in the maintenance of pH(i) and hence secretion of HCO(3)(-), we have loaded primary cultured endothelial cells derived from rat brain microvessels with the pH indicator BCECF and suspended them in standard NaCl solutions buffered with Hepes or Hepes plus 5% CO(2)/HCO(3)(-). pH(i) in the standard solutions showed a slow acidification over at least 30 min, the rate being less in the presence of HCO(3)(-) than in its absence. However, after accounting for the difference in buffering, the net rates of acid loading with and without HCO(3)(-) were similar. In the nominal absence of HCO(3)(-) the rate of acid loading was increased equally by removal of external Na(+) or by inhibition of Na(+)/H(+) exchange by ethylisopropylamiloride (EIPA). By contrast, in the presence of HCO(3)(-) the increase in the rate of acid loading when Na(+) was removed was much larger and the rate was then also significantly greater than the rate observed in the absence of both Na(+) and HCO(3)(-). Removal of Cl(-) in the presence of HCO(3)(-) produced an alkalinization followed by a resumption of the slow acid gain. Removal of Na(+) following removal of Cl(-) increased the rate of acid gain. In the presence of HCO(3)(-) and initial presence of Na(+) and Cl(-), DIDS inhibited the changes in pH(i) produced by removal of either Na(+) or Cl(-). These are the expected results if these cells possess an AE-like Cl(-)/HCO(3)(-) exchanger, a 'channel-like' permeability allowing slow influx of acid (or efflux of HCO(3)(-)), a NBC-like Cl(-)-independent Na(+)-HCO(3)(-) cotransporter, and a NHE-like Na(+)/H(+) exchanger. The in vitro rates of HCO(3)(-) loading via the Na(+)-HCO(3)(-) cotransporter could, if the transporter is located on the apical, blood-facing side of the cells, account for the net secretion of HCO(3)(-) into the brain.
Collapse
Affiliation(s)
- Caroline J Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | | | | | | | |
Collapse
|
13
|
Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291:L941-9. [PMID: 16766575 DOI: 10.1152/ajplung.00528.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vascular remodeling resulting from altered pulmonary arterial smooth muscle cell (PASMC) growth is a contributing factor to the pathogenesis of hypoxic pulmonary hypertension. PASMC growth requires an alkaline shift in intracellular pH (pH(i)) and we previously showed that PASMCs isolated from mice exposed to chronic hypoxia exhibited increased Na(+)/H(+) exchanger (NHE) expression and activity, which resulted in increased pH(i). However, the mechanism by which hypoxia caused these changes was unknown. In this study we tested the hypothesis that hypoxia-induced changes in PASMC pH homeostasis are mediated by the transcriptional regulator hypoxia-inducible factor 1 (HIF-1). Consistent with previous results, increased NHE isoform 1 (NHE1) mRNA and protein, enhanced NHE activity, and an alkaline shift in pH(i) were observed in PASMCs isolated from wild-type mice exposed to chronic hypoxia (3 wk at 10% O(2)). In contrast, these changes were absent in PASMCs isolated from chronically hypoxic mice with partial deficiency for HIF-1. Exposure of PASMCs to hypoxia ex vivo (48 h at 4% O(2)) or overexpression of HIF-1 in the absence of hypoxia also increased NHE1 mRNA and protein expression. Our results indicate that full expression of HIF-1 is essential for hypoxic induction of NHE1 expression and changes in PASMC pH homeostasis and suggest a novel mechanism by which HIF-1 mediates pulmonary vascular remodeling during the pathogenesis of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, JHAAC 4A.52, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
14
|
Rios EJ, Fallon M, Wang J, Shimoda LA. Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L867-74. [PMID: 15964895 DOI: 10.1152/ajplung.00455.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH), caused by many lung diseases, results in pulmonary hypertension due, in part, to increased muscularity of small pulmonary vessels. Pulmonary arterial smooth muscle cell (PASMC) proliferation in response to growth factors requires increased intracellular pH (pHi) mediated by activation of Na+/H+ exchange (NHE); however, the effect of CH on PASMC pHi homeostasis is unknown. Thus we measured basal pHi and NHE activity and expression in PASMCs isolated from mice exposed to normoxia or CH (3 wk/10% O2). pHi was measured using the pH-sensitive fluorescent dye BCECF-AM. NHE activity was determined from Na+-dependent recovery from NH4-induced acidosis, and NHE expression was determined by RT-PCR and immunoblot. PASMCs from chronically hypoxic mice exhibited elevated basal pHi and increased NHE activity. NHE1 was the predominate isoform present in mouse PASMCs, and both gene and protein expression of NHE1 was increased following exposure to CH. Our findings indicate that exposure to CH caused increased pHi, NHE activity, and NHE1 expression, changes that may contribute to the development of pulmonary hypertension, in part, via pH-dependent induction of PASMC proliferation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Chronic Disease
- Gene Expression
- Hydrogen-Ion Concentration
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- In Vitro Techniques
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Sodium-Hydrogen Exchanger 1
- Sodium-Hydrogen Exchangers/genetics
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Eon J Rios
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Univ., Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
15
|
Németh ZH, Deitch EA, Lu Q, Szabó C, Haskó G. NHE blockade inhibits chemokine production and NF-kappaB activation in immunostimulated endothelial cells. Am J Physiol Cell Physiol 2002; 283:C396-403. [PMID: 12107048 DOI: 10.1152/ajpcell.00491.2001] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Na(+)/H(+) exchanger (NHE) activation has been documented to contribute to endothelial cell injury caused by inflammatory states. However, the role of NHEs in regulation of the endothelial cell inflammatory response has not been investigated. The present study tested the hypothesis that NHEs contribute to endothelial cell inflammation induced by endotoxin or interleukin (IL)-1beta. NHE inhibition using amiloride, 5-(N-ethyl-N-isopropyl)-amiloride, and 5-(N-methyl-N-isobutyl)amiloride as well as the non-amiloride NHE inhibitors cimetidine, clonidine, and harmaline suppressed endotoxin-induced IL-8 and monocyte chemoattractant protein (MCP)-1 production by human umbilical endothelial vein cells (HUVECs). The suppressive effect of amiloride on endotoxin-induced IL-8 production was associated with a decreased accumulation of IL-8 mRNA. NHE inhibitors suppressed both inhibitory (I)kappaB degradation and nuclear factor (NF)-kappaB DNA binding, suggesting that a decrease in activation of the IkappaB-NF-kappaB system contributed to the suppression of HUVEC inflammatory response by NHE blockade. NHE inhibition decreased also the IL-1beta-induced HUVEC inflammatory response, because amiloride suppressed IL-1beta-induced E-selectin expression on HUVECs. These results demonstrate that maximal activation of the HUVEC inflammatory response requires a functional NHE.
Collapse
Affiliation(s)
- Zoltán H Németh
- Department of Surgery, University of Medicine and Dentistry-New Jersey Medical School, Newark, New Jersey 07103, USA
| | | | | | | | | |
Collapse
|
16
|
Gumina RJ, Moore J, Schelling P, Beier N, Gross GJ. Na(+)/H(+) exchange inhibition prevents endothelial dysfunction after I/R injury. Am J Physiol Heart Circ Physiol 2001; 281:H1260-6. [PMID: 11514295 DOI: 10.1152/ajpheart.2001.281.3.h1260] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Whereas inhibition of the Na(+)/H(+) exchanger (NHE) has been demonstrated to reduce myocardial infarct size in response to ischemia-reperfusion injury, the ability of NHE inhibition to preserve endothelial cell function has not been examined. This study examined whether NHE inhibition could preserve endothelial cell function after 90 min of regional ischemia and 180 min of reperfusion and compared this inhibition with ischemic preconditioning (IPC). In a canine model either IPC, produced by one 5-min coronary artery occlusion (1 x 5'), or the specific NHE-1 inhibitor eniporide (EMD-96785, 3.0 mg/kg) was administered 15 min before a 90-min coronary artery occlusion followed by 3 h of reperfusion. Infarct size (IS) was determined by 2,3,5-triphenyl tetrazolium chloride staining and expressed as a percentage of the area-at-risk (IS/AAR). Endothelial cell function was assessed by measurement of coronary blood flow in response to intracoronary acetylcholine infusion at the end of reperfusion. Whereas neither control nor IPC-treated animals exhibited a significant reduction in IS/AAR or preservation of endothelial cell function, animals treated with the NHE inhibitor eniporide showed a marked reduction in IS/AAR and a significantly preserved endothelial cell function (P < 0.05). Thus NHE-1 inhibition is more efficacious than IPC at reducing IS/AAR and at preserving endothelial cell function in dogs.
Collapse
Affiliation(s)
- R J Gumina
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic and Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
17
|
Madden JA, Ray DE, Keller PA, Kleinman JG. Ion exchange activity in pulmonary artery smooth muscle cells: the response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2001; 280:L264-71. [PMID: 11159005 DOI: 10.1152/ajplung.2001.280.2.l264] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purposes of this study were to determine 1) the presence of the major ion transport activities that regulate cytoplasmic pH (pH(c)) in cat pulmonary artery smooth muscle cells, i.e., Na+/H+ and the Na+-dependent and -independent Cl-/HCO3- exchange, 2) whether pH(c) changes in cells from small (SPAs) and large (LPAs) pulmonary arteries during hypoxia, and 3) whether changes in pH(c) are due to changes in the balance of exchange activities. Exchange activities as defined by physiological maneuvers rather than molecular identity were ascertained with fluorescence microscopy to document changes in the ratio of the pH(c) indicator 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein. Steady-state pH(c) was higher in LPA than in SPA normoxic smooth muscle cells. SPAs and LPAs possessed all three transport activities; in HCO3- containing normoxic solutions, Cl-/HCO3- exchange rather than Na+/H+ exchange set the level of pH(c); in HCO3- containing hypoxic solutions, pH(c) increased in SPA and decreased in LPA cells; altering the baseline pH(c) of a cell type to that of the other did not change the direction of the pH(c) response during hypoxia. The absence of Na+ prevented hypoxia-induced alkalinization in SPA cells; in both cell types, inhibiting the Cl-/HCO3- exchange activities reversed the normal direction of pH(c) changes during hypoxia.
Collapse
Affiliation(s)
- J A Madden
- Department of Neurology, The Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | |
Collapse
|
18
|
Cutaia M, Tollefson K, Kroczynski J, Parks N, Rounds S. Role of the Na/H antiport in pH-dependent cell death in pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 278:L536-44. [PMID: 10710526 DOI: 10.1152/ajplung.2000.278.3.l536] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the role of intracellular pH (pH(i)) and Na/H exchange in cell death in human pulmonary artery endothelial cells (HPAEC) following a metabolic insult (inhibition-oxidative phosphorylation, glycolysis). Metabolic inhibition in medium at pH 7. 4 decreased viability (0-15% live cells) over 6 h. Cell death was attenuated by maneuvers that decreased pH(i) and inhibited Na/H exchange (acidosis, Na/H antiport inhibitors). In contrast, cell death was potentiated by maneuvers that elevated pH(i) or increased Na/H exchange (monensin, phorbol ester treatment) before the insult. HPAEC demonstrated a biphasic pH(i) response following a metabolic insult. An initial decrease in pH(i) was followed by a return to baseline over 60 min. Maneuvers that protected HPAEC and inhibited Na/H exchange (acidosis, Na(+)-free medium, antiport inhibitors) altered this pattern. pH(i) decreased, but no recovery was observed, suggesting that the return of pH(i) to normal was mediated by antiport activation. Although Na/H antiport activity was reduced (55-60% of control) following a metabolic insult, the cells still demonstrated active Na/H exchange despite significant ATP depletion. Phorbol ester pretreatment, which potentiated cell death, increased Na/H antiport activity above the level observed in monolayers subjected to a metabolic insult alone. These results demonstrate that HPAEC undergo a pH-dependent loss of viability linked to active Na/H exchange following a metabolic insult. Potentiation of cell death with phorbol ester treatment suggests that this cell death pathway involves protein kinase C-mediated phosphorylation events.
Collapse
Affiliation(s)
- M Cutaia
- Pulmonary Disease Division, Department of Medicine, Veterans Affairs Medical Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | |
Collapse
|