1
|
Yuui K, Kudo R, Kasuda S. Arterial thromboxane A2-induced transient contraction after IL-1β exposure. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221077946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The involvement of thromboxane A2 (TXA2) in systemic inflammation and infection is well recognized. However, there are few reports on the involvement of prostanoids in warm shock (the initial pathology of sepsis). Previous studies showed that interleukin (IL)-1β causes a rapid inducible nitric oxide synthase/nitric oxide (iNOS/NO)-mediated relaxation in peripheral blood vessels during warm shock. Furthermore, a transient contraction was seen before this relaxation occurred. The present study aimed to elucidate the mechanism of this transient contraction. We measured isometric tension changes in the superior mesenteric arteries from normal male Wistar rats by adding IL-1β at the point of maximum contraction by phenylephrine (Ph). The same study was performed for each vessel pretreated with various inhibitors, including SQ29548, a TXA2 receptor antagonist, 30 min before Ph contraction. In addition, the concentration of thromboxane B2 (TXB2) in SMA was measured by probe electrospray ionization. Treatment of endothelial vessels with cyclooxygenase 1 (COX1)/2 inhibitors SC560/NS398 and TXA2 receptor antagonist SQ29548 suppressed IL-1β–induced transient contractions. This transient contraction reaction was derived from TXA2. Additionally, gene expression of COX2/TXA2 synthetase and the concentration of TXB2 were significantly increased in IL-1β-exposed vessels. It was demonstrated for the first time in inflamed blood vessels that endothelial cell-derived COX2/TXA2 is induced before iNOS and causes transient contractions. TXA2 may be considered an early sign of warm shock or as a biological defense mechanism in the early stages of septic shock.
Collapse
Affiliation(s)
- Katsuya Yuui
- Department of Legal Medicine, Nara Medical University, Nara, Japan
| | - Risa Kudo
- Department of Legal Medicine, Nara Medical University, Nara, Japan
| | - Shogo Kasuda
- Department of Legal Medicine, Nara Medical University, Nara, Japan
| |
Collapse
|
2
|
Cui X, Xu W, Neupane P, Weiser-Schlesinger A, Weng R, Pockros B, Li Y, Moayeri M, Leppla SH, Fitz Y, Eichacker PQ. Bacillus anthracis lethal toxin, but not edema toxin, increases pulmonary artery pressure and permeability in isolated perfused rat lungs. Am J Physiol Heart Circ Physiol 2019; 316:H1076-H1090. [PMID: 30767685 DOI: 10.1152/ajpheart.00685.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although lethal toxin (LT) and edema toxin (ET) contribute to lethality during Bacillus anthracis infection, whether they increase vascular permeability and the extravascular fluid accumulation characterizing this infection is unclear. We employed an isolated perfused Sprague-Dawley rat lung model to investigate LT and ET effects on pulmonary vascular permeability. Lungs (n ≥ 6 per experimental group) were isolated, ventilated, suspended from a force transducer, and perfused. Lung weight and pulmonary artery (Ppa) and left atrial pressures were measured over 4 h, after which pulmonary capillary filtration coefficients (Kf.c) and lung wet-to-dry weight ratios (W/D) were determined. When compared with controls, LT increased Ppa over 4 h and Kf.c and W/D at 4 h (P < 0.0001). ET decreased Ppa in a significant trend (P = 0.09) but did not significantly alter Kf.c or W/D (P ≥ 0.29). Edema toxin actually blocked LT increases in Ppa but not LT increases in Kf.c and W/D. When Ppa was maintained at control levels, LT still increased Kf.c and W/D (P ≤ 0.004). Increasing the dose of each toxin five times significantly increased and a toxin-directed monoclonal antibody decreased the effects of each toxin (P ≤ 0.05). Two rho-kinase inhibitors (GSK269962 and Y27632) decreased LT increases in Ppa (P ≤ 0.02) but actually increased Kf.c and W/D in LT and control lungs (P ≤ 0.05). A vascular endothelial growth factor receptor inhibitor (ZM323881) had no significant effect (P ≥ 0.63) with LT. Thus, LT but not ET can increase pulmonary vascular permeability independent of increased Ppa and could contribute to pulmonary fluid accumulation during anthrax infection. However, pulmonary vascular dilation with ET could disrupt protective hypoxic vasoconstriction. NEW & NOTEWORTHY The most important findings from the present study are that Bacillus anthracis lethal toxin increases pulmonary artery pressure and pulmonary permeability independently in the isolated rat lung, whereas edema toxin decreases the former and does not increase permeability. Each effect could be a basis for organ dysfunction in patients with this lethal infection. These findings further support the need for adjunctive therapies that limit the effects of both toxins during infection.
Collapse
Affiliation(s)
- Xizhong Cui
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Wanying Xu
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Pranita Neupane
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Andie Weiser-Schlesinger
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Ray Weng
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Pockros
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Yan Li
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Stephen H Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | - Yvonne Fitz
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Peter Q Eichacker
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Kanoo S, Deshpande SB. Involvement of phospholipase A2 pathway for the Indian red scorpion venom-induced augmentation of cardiopulmonary reflexes elicited by phenyldiguanide. Neurosci Lett 2008; 440:242-5. [DOI: 10.1016/j.neulet.2008.05.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 10/22/2022]
|
4
|
Boer C, Groeneveld ABJ, Scheffer GJ, de Lange JJ, Westerhof N, Sipkema P. Induced nitric oxide impairs relaxation but not contraction in endotoxin-exposed rat pulmonary arteries. J Surg Res 2005; 127:197-202. [PMID: 15921694 DOI: 10.1016/j.jss.2005.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/10/2005] [Accepted: 03/19/2005] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many patients with severe acute lung injury do not respond to nitric oxide (NO) inhalational therapy with alleviation of pulmonary arterial hypertension and hypoxemia, so this treatment remains controversial. MATERIALS AND METHODS.: We investigated in endotoxin-exposed Wistar rat pulmonary arteries whether endogenous NO alters contractile and relaxing responses, by electrochemical NO and isometric force measurements. RESULTS Receptor-independent contraction was similar in control and endotoxin-exposed arteries, while thromboxane analogue (TxA)-dependent contraction was less in the latter. Neither non-selective NO synthase (NOS) inhibition by N(G)-nitro-l-arginine (l-NA) or selective inducible-NOS2 inhibition by aminoguanidine (AG) improved TxA-induced contraction in endotoxin-exposed arteries. Acetylcholine-induced relaxation was impaired in endotoxin-exposed pulmonary arteries, despite a comparable acetylcholine-induced NO release in control arteries. Additionally, NO solution-induced relaxation of endotoxin-exposed arteries was impaired, but could be improved by l-NA or AG. Application of a phosphodiesterase-insensitive cyclic guanosine monophosphate analogue induced similar relaxation in both control and endotoxin-exposed arteries. CONCLUSIONS Endotoxin-associated NOS2-derived NO is thus associated with impaired NO-mediated relaxation, but does not underlie reduced receptor-mediated pulmonary contractile responses. An increased phosphodiesterase activity may underlie the former, so this route can be explored to replace or improve the effect of inhalational NO therapy in severe sepsis-induced acute lung injury in patients.
Collapse
Affiliation(s)
- Christa Boer
- Laboratory for Physiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Persistent pulmonary hypertension of the newborn (PPHN), among the most rapidly progressive and potentially fatal of vasculopathies, is a disorder of vascular transition from fetal to neonatal circulation, manifesting as hypoxemic respiratory failure. PPHN represents a common pathway of vascular injury activated by numerous perinatal stresses: hypoxia, hypoglycemia, cold stress, sepsis, and direct lung injury. As with other multifactorial diseases, a single inciting event may be augmented by multiple concurrent/subsequent phenomena that result in differing courses of disease progression. I review the various mechanisms of vascular injury involved in neonatal pulmonary hypertension: endothelial dysfunction, inflammation, hypoxia, and mechanical strain, in the context of downstream effects on pulmonary vascular endothelial-myocyte interactions and myocyte phenotypic plasticity.
Collapse
Affiliation(s)
- S Dakshinamurti
- Department of Pediatrics, University of Manitoba, Manitoba Institute of Child Health, Winnipeg, Canada.
| |
Collapse
|
6
|
Xu H, Korneszczuk K, Karaa A, Lin T, Clemens MG, Zhang JX. Thromboxane A2 from Kupffer cells contributes to the hyperresponsiveness of hepatic portal circulation to endothelin-1 in endotoxemic rats. Am J Physiol Gastrointest Liver Physiol 2005; 288:G277-83. [PMID: 15647606 DOI: 10.1152/ajpgi.00256.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We examined the role of thromboxane A2 (TXA2) in LPS-induced hyperresponsiveness of hepatic portal circulation to endothelins (ETs) and whether Kupffer cells are the primary source of TXA2 release in response to ET-1 in endotoxemia. After 6 h of LPS (1 mg/kg body wt ip) or saline (control), liver was isolated and perfused with recirculating Krebs-Henseleit bicarbonate buffer at a constant flow rate (100 ml.min(-1).kg body wt(-1)). ET-1 (10 pmol/min) was infused for 10 min. Portal pressure (PP) was continuously monitored during perfusion. Perfusate was sampled for enzyme immunoassay of thromboxane B2 (TXB2; the stable metabolite of TXA2) and lactate dehydrogenase (LDH) assay. ET-1 infusion resulted in a significantly greater increase of PP in the LPS group than in controls. Both TXA2 synthase inhibitor furegrelate (Fureg) and TXA2 receptor antagonist SQ-29548 (SQ) substantially blocked enhanced increase of PP in the LPS group (4.9 +/- 0.4 vs. 3.6 +/- 0.5 vs. 2.6 +/- 0.6 mmHg for LPS alone, LPS + Fureg, and LPS + SQ, respectively; P < 0.05) while having no significant effect on controls. GdCl3 for inhibition of Kupffer cells had similar effects (4.9 +/- 0.4 mmHg vs. 2.9 +/- 0.4 mmHg for LPS alone and GdCl3 + LPS, respectively; P < 0.05). In addition, the attenuated PP after ET-1 was found concomitantly with significantly decreased releases of TXB2 and LDH in LPS rats treated with Fureg, SQ, and GdCl3 (886.6 +/- 73.4 vs. 110.8 +/- 0.8 vs. 114.8 +/- 54.7 vs. 135.2 +/- 45.2 pg/ml, respectively; P < 0.05). After 6 h of LPS, Kupffer cells in isolated cell preparations released a significant amount of TXA2 in response to ET-1. These results clearly indicate that hyperresponsiveness of hepatic portal circulation to ET-1 in endotoxemia is mediated at least in part by TXA2-induced receptor activation, and Kupffer cells are likely the primary source of increased TXA2 release.
Collapse
Affiliation(s)
- Hongzhi Xu
- Department of Biology, University of North Carolina at Charlotte, 9201 Univ. City Blvd., Charlotte, NC 28223, USA
| | | | | | | | | | | |
Collapse
|
7
|
Hernanz R, Alonso MJ, Briones AM, Vila E, Simonsen U, Salaices M. Mechanisms involved in the early increase of serotonin contraction evoked by endotoxin in rat middle cerebral arteries. Br J Pharmacol 2004; 140:671-80. [PMID: 14534151 PMCID: PMC1574084 DOI: 10.1038/sj.bjp.0705501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The present study investigated the mechanisms involved in the increased 5-hydroxytryptamine (5-HT) vasoconstriction observed in rat middle cerebral arteries exposed in vitro to lipopolysaccharide (LPS, 10 microg x ml-1) for 1-5 h. Functional, immunohistochemical and Western blot analysis and superoxide anion measurements by ethidium fluorescence were performed. LPS exposure increased 5-HT (10 microm) vasoconstriction only during the first 4 h. In contrast to control tissue, indomethacin (10 microm), the COX-2 inhibitor NS 398 (10 microm), the TXA2/PGH2 receptor antagonist SQ 29548 (1 microm) and the TXA2 synthase inhibitor furegrelate (1 microm) reduced 5-HT contraction of LPS-treated arteries from hour one. The iNOS inhibitor aminoguanidine (0.1 mm) increased 5-HT contraction from hour three of LPS incubation. The superoxide anion scavenger superoxide dismutase (SOD, 100 U ml-1) and the H2O2 scavenger catalase (1000 U ml-1), as well as the respective inhibitors of NAD(P)H oxidase and xanthine oxidase, apocynin (0.3 mm) and allopurinol (0.3 mm), reduced 5-HT contraction after LPS incubation. LPS induced an increase in superoxide anion levels that was abolished by PEG-SOD. Subthreshold concentrations of the TXA2 analogue U 46619, xanthine/xanthine oxidase and H2O2 potentiated, whereas those of sodium nitroprusside inhibited, the 5-HT contraction. COX-2 expression was increased at 1 and 5 h of LPS incubation, while that of iNOS, Cu/Zn-SOD and Mn-SOD was only increased after 5 h. All the three vascular layers expressed COX-2 and Cu/Zn-SOD. iNOS expression was detected in the endothelium and adventitia after LPS. In conclusion, increased production of TXA2 from COX-2, superoxide anion and H2O2 enhanced vasoconstriction to 5-HT during the first few hours of LPS exposure; iNOS and SOD expression counteracted that increase at 5 h. These changes can contribute to the disturbance of cerebral blood flow in endotoxic shock.
Collapse
Affiliation(s)
- Raquel Hernanz
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
| | - María J Alonso
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
| | - Ana M Briones
- Departament de Farmacologia i Terapéutica, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Elisabet Vila
- Departament de Farmacologia i Terapéutica, Facultat de Medicina, Universitat Autònoma de Barcelona, Spain
| | - Ulf Simonsen
- Department of Pharmacology, Faculty of Health Science, University of Aarhus, Denmark
| | - Mercedes Salaices
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, Madrid 28029, Spain
- Author for correspondence:
| |
Collapse
|
8
|
Mittra S, Hyvelin JM, Shan Q, Tang F, Bourreau JP. Role of cyclooxygenase in ventricular effects of adrenomedullin: is adrenomedullin a double-edged sword in sepsis? Am J Physiol Heart Circ Physiol 2004; 286:H1034-42. [PMID: 14766677 DOI: 10.1152/ajpheart.00337.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adrenomedullin (ADM) is upregulated in cardiac tissue under various pathophysiological conditions. However, the direct inotropic effect of ADM on normal and compromised cardiomyocytes is not clear. In rat ventricular myocytes, ADM produced an initial (<30 min) increase in cell shortening and Ca2+ transient and, on prolonged incubation (>1 h), a marked decrease in cell shortening and Ca2+ transient. Both effects were sensitive to inhibition by the ADM antagonist ADM-(22–52). The increase and decrease in cell shortening and Ca2+ transient were attenuated by pretreatment with indomethacin [a nonspecific cyclooxygenase (COX) inhibitor], nimesulide and SC-236 (specific COX-2 inhibitors), and tranylcypromine (a prostacyclin synthase inhibitor); SQ-29548 (a thromboxane receptor antagonist) was without effect. Cells isolated from LPS-treated rats that were in the late, hypodynamic phase of septic shock also showed a marked decrease in cell shortening and Ca2+ transient. Because ADM is overexpressed in sepsis, we repeated the above protocol in cells isolated from LPS-treated rats. At 4 h after LPS injection, ADM levels markedly increased in plasma, ventricles, and freshly isolated ventricular myocytes. Decreases in cell shortening and Ca2+ transient in LPS-treated cells were reversed by pretreatment with ADM-(22–52). Anti-ADM (rat) IgG also reversed the decrease in cell shortening and other parameters of cell kinetics. Indomethacin, SC-236, and tranylcypromine restored cell contractility and the decrease in Ca2+ transient, whereas SQ-29548 had no effect, implying that prostacyclin played a role in both effects. However, with regard to cell-shortening kinetics, indomethacin and SQ-29548 decreased the amount of time taken by the cells to return to baseline, whereas SC-236 and tranylcypromine did not, implying that not only prostacyclin, but also thromboxane, is involved. The results indicate that ADM interacts with COX to yield prostanoids, which mediate its negative inotropic effect in LPS-treated rat ventricular myocytes.
Collapse
Affiliation(s)
- Shivani Mittra
- Dept. of Physiology, 4/F, Laboratory Block, Faculty of Medicine Bldg., Univ. of Hong Kong, 21 Sassoon Rd., Hong Kong, SAR, China
| | | | | | | | | |
Collapse
|
9
|
Muzaffar S, Shukla N, Lobo C, Angelini GD, Jeremy JY. Iloprost inhibits superoxide formation and gp91phox expression induced by the thromboxane A2 analogue U46619, 8-isoprostane F2alpha, prostaglandin F2alpha, cytokines and endotoxin in the pig pulmonary artery. Br J Pharmacol 2004; 141:488-96. [PMID: 14718263 PMCID: PMC1574209 DOI: 10.1038/sj.bjp.0705626] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since the roles of thromboxane A2 (TXA2), prostacyclin (PGI2) and 8-isoprostane F2alpha in mediating vascular O2*- formation and its relation to adult respiratory distress syndrome (ARDS) is unknown, the effects of these eicosanoids on the expression of gp91phox (catalytic subunit of NADPH oxidase) and O2*- release from cultured pig pulmonary artery (PA) segments, PA vascular smooth muscle cells (PAVSMCs) and PA endothelial cells (PAECs) were investigated. PA segments, PAVSMCs and PAECs were incubated with the TXA2 analogue, U46619, (+/-LPS, tumour necrosing factor-alpha (TNF-alpha) or IL-1alpha), 8-isoprostane F2alpha and+/-iloprost (a stable PGI2 analogue) for 16 h. The formation of superoxide dismutase-inhibitable O2*- was then measured spectrophotometrically and gp91phox expression assessed using Western blotting. In parallel experiments, whole PA segments were treated with LPS, TNF-alpha and IL-alpha after which time TXA2, PGI2, PGF2alpha and 8-isoprostane F2alpha formation was measured using enzyme-linked immunoassays. U46619, PGF2alpha and 8-isoprostane F2alpha promoted the formation of O2*- in PA segments, PAVSMCs and PAECs, an effect inhibited by diphenyleneiodonium and apocynin (both NADPH oxidase inhibitors) and upregulated the expression of gp91phox in PAECs and PAVSMCs. These effects were augmented by LPS, TNF-alpha and IL-1alpha but inhibited by iloprost. Under identical incubation conditions, IL-1alpha, LPS and TNF-alpha all induced an increase in the formation of TXA2, PGF2alpha and 8-isoprostane F2alpha but reduced the concomitant formation of PGI2. These data demonstrate that LPS and cytokines influence the relative balance of TXA2, PGI2, PGF2alpha and 8-isoprostane F2alpha in pig PA, which in turn alter NADPH oxidase expression and O2*- formation. These novel findings have implications in devising effective strategies for treating ARDS.British Journal of Pharmacology (2004) 141, 488-496. doi:10.1038/sj.bjp.0705626
Collapse
Affiliation(s)
- Saima Muzaffar
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol
| | - Nilima Shukla
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol
| | - Clinton Lobo
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol
| | - Gianni D Angelini
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol
| | - Jamie Y Jeremy
- Department of Cardiac Surgery, Bristol Heart Institute, Bristol Royal Infirmary, University of Bristol
- Author for correspondence:
| |
Collapse
|
10
|
Marcet-Palacios M, Graham K, Cass C, Befus AD, Mayers I, Radomski MW. Nitric oxide and cyclic GMP increase the expression of matrix metalloproteinase-9 in vascular smooth muscle. J Pharmacol Exp Ther 2003; 307:429-36. [PMID: 12954809 DOI: 10.1124/jpet.103.050385] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Interactions and possible cross talk between inducible nitricoxide synthase (iNOS), cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9), were studied in rat aortic vascular smooth muscle cells stimulated with bacterial lipopolysaccharide (LPS), interferon-gamma (IFN-gamma), and phorbol 12-myristate13-acetate (PMA). The expression and activity of iNOS, COX-2, and MMP-9 were characterized at the transcriptional, protein, and enzyme activity levels. The NOS inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME) was used to investigate the effects of NO on COX-2 and MMP-9 at the transcriptional level. The measurements of mRNAs for these enzymes using real-time polymerase chain reaction (PCR) showed that COX-2 mRNA was up-regulated 2.3-fold, whereas MMP-9 mRNA up-regulation was 11.7-fold in the presence of LPS, IFN-gamma, and PMA. Real-time PCR results indicated that L-NAME exerted an inhibitory effect on COX-2 and MMP-9 mRNA synthesis. Both superoxide dismutase (SOD) and the SOD mimetic Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (MnTMPyP) did not modify significantly the up-regulation of these enzymes, indicating that neither superoxide nor peroxynitrite are involved in this mechanism. Furthermore, NO-mediated up-regulation of MMP-9 was cGMP-dependent since 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase, blocked, in a concentration-dependent manner, the increased expression of MMP-9, an effect reversed by 8-bromo-cGMP, a soluble analog of cGMP. Our findings suggest that NO and cGMP are necessary to up-regulate the expression of MMP-9.
Collapse
|
11
|
Aikio O, Saarela T, Pokela ML, Hallman M. Nitric oxide treatment and acute pulmonary inflammatory response in very premature infants with intractable respiratory failure shortly after birth. Acta Paediatr 2003; 92:65-9. [PMID: 12650302 DOI: 10.1111/j.1651-2227.2003.tb00471.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM Premature infants with respiratory failure and early-onset pneumonia have low inducible nitric oxide synthase (NOS2) and no evidence of nitric oxide (NO) toxicity. However, inhalation of NO may not be indicated in sepsis because excessive NO generation has been reported. This prospective study was designed to test the hypothesis that inhaled NO is effective in a select group of small premature infants and that the responsiveness to NO is associated with low NOS2 enzyme. METHODS 246 very low birthweight infants (birthweight <1500 g, VLBW) were screened for severe, intractable respiratory failure (oxygenation index >40, arterial-alveolar ratio for oxygen tension <0.10) that does not respond to two doses of surfactant within 5 h from birth. Infants with severe cardiac failure or a bleeding disorder were excluded. Five of the nine eligible cases received inhaled NO. They all had prolonged rupture of foetal membranes, early-onset pneumonia and persistent pulmonary hypertension. RESULTS All five responded strikingly, survived and appeared normal in follow-up. Airway specimens during the first day of life revealed very low NOS2, interleukin-1beta and surfactant protein A, compared with VLBW infants who had no acute infection despite histological chorioamnionitis. In early-onset pneumonia, NOS2 and other inflammatory mediators increased first during the recovery 1-2 d after birth. CONCLUSION VLBW infants with progressive respiratory failure and infection at birth have deficient pulmonary NOS2 and cytokine response. After surfactant therapy, these infants responded strikingly to inhaled NO. An acute pulmonary inflammatory response may contribute to respiratory adaptation in early-onset pneumonia.
Collapse
Affiliation(s)
- O Aikio
- Department of Paediatrics, University of Oulu, Oulu, Finland
| | | | | | | |
Collapse
|
12
|
Ermert M, Kuttner D, Eisenhardt N, Dierkes C, Seeger W, Ermert L. Cyclooxygenase-2-dependent and thromboxane-dependent vascular and bronchial responses are regulated via p38 mitogen-activated protein kinase in control and endotoxin-primed rat lungs. J Transl Med 2003; 83:333-47. [PMID: 12649334 DOI: 10.1097/01.lab.0000059924.47118.88] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are part of an intracellular signaling machinery consisting of three known distinct pathways, each leading to activation of a different protein kinase: p38, ERK (extracellular signal-regulated kinase), or JNK (c-Jun N-terminal kinase). We investigated the role of the p38 MAPK pathway in the phenomenon of lung endotoxin "priming": incubation of perfused rat lungs with lipopolysaccharide (LPS) for 2 hours results in drastically enhanced cyclooxygenase-2-dependent and thromboxane synthase-dependent vasoconstriction and bronchoconstriction, including edema formation in response to a second inflammatory stimulus, such as arachidonic acid application. Two unrelated selective inhibitors of p38 (SB203580 and SC-68376) dose dependently suppressed the arachidonic acid-induced pulmonary artery pressor response, edema formation, and bronchoconstrictor response in both control lungs and lungs that underwent preceding endotoxin priming. In parallel, thromboxane, but not prostacyclin, released into the lung perfusate was dose dependently inhibited. Using immunohistochemical techniques in combination with quantitative microdensitometry, p38 was detected in nearly all cell types in control lungs, whereas the activated form p-p38 was only expressed in certain cell types, eg, bronchial epithelial cells, endothelial cells, alveolar macrophages, and vascular smooth muscle cells (SMC) of small vessels. In response to endotoxin, p-p38 expression was additionally observed in septal cells, bronchial SMC, and vascular SMC of larger pulmonary vessels and was increased in most other cell types including small-vessel SMC. We conclude that both immunolocalization of p38 activity and pharmacologic interventions support a strong role of the p38 MAPK pathway in establishing an active cyclooxygenase-2/thromboxane synthase axis in vascular and bronchial SMC, with up-regulation of this signaling cascade occurring in LPS priming and being responsible for enhanced pulmonary artery pressor response, edema formation, and bronchoconstriction. Moreover, LPS induces or increases phosphorylation of p38 in other lung cell types. The physiologic consequences of these events remain to be established.
Collapse
Affiliation(s)
- Monika Ermert
- Departments of Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Davidson KG, Bersten AD, Barr HA, Dowling KD, Nicholas TE, Doyle IR. Endotoxin induces respiratory failure and increases surfactant turnover and respiration independent of alveolocapillary injury in rats. Am J Respir Crit Care Med 2002; 165:1516-25. [PMID: 12045126 DOI: 10.1164/rccm.2012030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Although endotoxin-induced acute lung injury is associated with inflammation, alveolocapillary injury, surfactant dysfunction, and altered lung mechanics, the precise sequence of these changes is polemic. We have studied the early pathogenesis of acute lung injury in spontaneously breathing anesthetized rats after intravenous infusion of Salmonella abortus equi endotoxin. The animals became hypoxic, and airway resistance, tissue resistance, lung elastance, and static compliance all deteriorated well before any change in alveolar neutrophils, macrophages, lung fluid (99mTc-labeled diethylenetriamine pentaacetic acid), or 125I-albumin flux, which were only appreciably increased at 8.5 hours. Lung elastance deteriorated before airway resistance, indicating that the compliance change was specific rather than caused by reduced lung volume. The subcellular and alveolar content of surfactant proteins A and B, cholesterol, disaturated phospholipids, and phospholipid classes remained normal in the face of a dramatic increase in the synthesis and turnover of 3H-disaturated phosphatidylcholine. Our findings indicate that the increase in surfactant disaturated phospholipid turnover reflects, at least in part, an approximately five-fold increase in "sigh frequency." We suggest that endotoxin has direct effects on tissue resistance and lung elastance independent of surfactant composition and that the initial respiratory failure results primarily from endotoxin-induced ventilation/perfusion mismatch independent of edema or alveolocapillary injury per se.
Collapse
Affiliation(s)
- Kate G Davidson
- Department of Human Physiology, School of Medicine, Flinders University, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Tomomasa T, Ogawa T, Hikima A, Tabata M, Kaneko H, Morikawa A. Developmental changes in cyclooxygenase mRNA expression in the gastric mucosa of rats. J Pediatr Gastroenterol Nutr 2002; 34:169-73. [PMID: 11840035 DOI: 10.1097/00005176-200202000-00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND In newborn rats, gastric mucosa is more susceptible to various damaging agents and recovers from injury more quickly than in older animals. To determine whether metabolism of prostaglandins is responsible for this mucosal protective mechanism in developing rats, we studied cyclooxygenase (COX) mRNA expression in the mucosa using quantitative real-time polymerase chain reaction (PRC). METHODS Cyclooxygenase-1 and COX-2 mRNA was extracted from the gastric mucosa of rats of various ages and quantitatively analyzed using real-time PCR with dual-labeled fluorogenic probes. The copy numbers of cDNA for COX-1 and COX-2 were standardized to glyceraldehyde-3-phosphate dehydrogenase from the same sample. RESULTS Cyclooxygenase-1 mRNA expression was lowest in 1-week-old rats and highest in 4-week-old rats. Mucosal damage produced by 150 mmol/L HCl and 60% ethyl alcohol did not increase COX-1 mRNA expression in any age group. Cyclooxygenase-2 mRNA expression increased significantly with age. Mucosal injury increased COX-2 mRNA in each age group, especially in 1-week-old rats. Intraperitoneal lipopolysaccharide also increased COX-2 mRNA in both 1- and 4-week old rats. CONCLUSION The high level of COX-2 mRNA expression in the gastric mucosa of 1-week-old rats may be responsible for the physiologic characteristics of gastric mucosal defenses in this age group.
Collapse
Affiliation(s)
- Takeshi Tomomasa
- Department of Pediatrics, Gunma University School of Medicine, Maebashi, Japan.
| | | | | | | | | | | |
Collapse
|