1
|
Lade JM, Andrade MR, Undem C, Walker J, Jiang H, Yun X, Shimoda LA. Hypoxia enhances interactions between Na +/H + exchanger isoform 1 and actin filaments via ezrin in pulmonary vascular smooth muscle. Front Physiol 2023; 14:1108304. [PMID: 36926194 PMCID: PMC10011449 DOI: 10.3389/fphys.2023.1108304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/24/2023] [Indexed: 03/08/2023] Open
Abstract
Exposure to hypoxia, due to high altitude or chronic lung disease, leads to structural changes in the pulmonary vascular wall, including hyperplasia and migration of pulmonary arterial smooth muscle cells (PASMCs). Previous studies showed that hypoxia upregulates the expression of Na+/H+ exchanger isoform 1 (NHE1) and that inhibition or loss of NHE1 prevents hypoxia-induced PASMC migration and proliferation. The exact mechanism by which NHE1 controls PASMC function has not been fully delineated. In fibroblasts, NHE1 has been shown to act as a membrane anchor for actin filaments, via binding of the adaptor protein, ezrin. Thus, in this study, we tested the role of ezrin and NHE1/actin interactions in controlling PASMC function. Using rat PASMCs exposed to in vitro hypoxia (4% O2, 24 h) we found that hypoxic exposure increased phosphorylation (activation) of ezrin, and promoted interactions between NHE1, phosphorylated ezrin and smooth muscle specific α-actin (SMA) as measured via immunoprecipitation and co-localization. Overexpression of wild-type human NHE1 in the absence of hypoxia was sufficient to induce PASMC migration and proliferation, whereas inhibiting ezrin phosphorylation with NSC668394 suppressed NHE1/SMA co-localization and migration in hypoxic PASMCs. Finally, overexpressing a version of human NHE1 in which amino acids were mutated to prevent NHE1/ezrin/SMA interactions was unable to increase PASMC migration and proliferation despite exhibiting normal Na+/H+ exchange activity. From these results, we conclude that hypoxic exposure increases ezrin phosphorylation in PASMCs, leading to enhanced ezrin/NHE1/SMA interaction. We further speculate that these interactions promote anchoring of the actin cytoskeleton to the membrane to facilitate the changes in cell movement and shape required for migration and proliferation.
Collapse
Affiliation(s)
- Julie M Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Manuella R Andrade
- Department of Physiology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Baltimore, MD, United States
| |
Collapse
|
2
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
3
|
Sun H, Paudel O, Sham JSK. Increased intracellular Cl - concentration in pulmonary arterial myocytes is associated with chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 2021; 321:C297-C307. [PMID: 34161154 DOI: 10.1152/ajpcell.00172.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chloride channels play an important role in regulating smooth muscle contraction and proliferation, and contribute to the enhanced constriction of pulmonary arteries (PAs) in pulmonary hypertension (PH). The intracellular Cl- concentration ([Cl-]i), tightly regulated by various Cl- transporters, determines the driving force for Cl- conductance, thereby the functional outcome of Cl- channel activation. This study characterizes for the first time the expression profile of Cl- transporters/exchangers in PA smooth muscle and provides the first evidence that the intracellular Cl- homeostasis is altered in PA smooth muscle cells (PASMCs) associated with chronic hypoxic PH (CHPH). Quantitative RT-PCR revealed that the endothelium-denuded intralobar PA of rats expressed Slc12a gene family-encoded Na-K-2Cl cotransporter 1 (NKCC1), K-Cl cotransporters (KCC) 1, 3, and 4, and Slc4a gene family-encoded Na+-independent and Na+-dependent Cl-/HCO3- exchangers. Exposure of rats to chronic hypoxia (10% O2, 3 wk) caused CHPH and selectively increased the expression of Cl--accumulating NKCC1 and reduced the Cl--extruding KCC4. The intracellular Cl- concentration ([Cl-]i) averaged at 45 mM and 47 mM in normoxic PASMCs as determined by fluorescent indicator MEQ and by gramicidin-perforated patch-clamp technique, respectively. The ([Cl-]i was increased by ∼10 mM in PASMCs of rats with CHPH. Future studies are warranted to further establish the hypothesis that the altered intracellular Cl- homeostasis contributes to the pathogenesis of CHPH.
Collapse
Affiliation(s)
- Hui Sun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Shimoda LA. Cellular Pathways Promoting Pulmonary Vascular Remodeling by Hypoxia. Physiology (Bethesda) 2021; 35:222-233. [PMID: 32490752 DOI: 10.1152/physiol.00039.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Exposure to hypoxia increases pulmonary vascular resistance, leading to elevated pulmonary arterial pressure and, potentially, right heart failure. Vascular remodeling is an important contributor to the increased pulmonary vascular resistance. Hyperproliferation of smooth muscle, endothelial cells, and fibroblasts, and deposition of extracellular matrix lead to increased wall thickness, extension of muscle into normally non-muscular arterioles, and vascular stiffening. This review highlights intrinsic and extrinsic modulators contributing to the remodeling process.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
5
|
The Role and Regulation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. Int J Hypertens 2020; 2020:1478291. [PMID: 32850144 PMCID: PMC7441461 DOI: 10.1155/2020/1478291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is one of the most devastating cardiovascular diseases worldwide and it draws much attention from numerous scientists. As an indispensable part of pulmonary artery, smooth muscle cells are worthy of being carefully investigated. To elucidate the pathogenesis of PH, several theories focusing on pulmonary artery smooth muscle cells (PASMC), such as hyperproliferation, resistance to apoptosis, and cancer theory, have been proposed and widely studied. Here, we tried to summarize the studies, concentrating on the role of PASMC in the development of PH, feasible molecular basis to intervene, and potential treatment to PH.
Collapse
|
6
|
Huetsch JC, Walker J, Undem C, Lade J, Yun X, Baksh S, Jiang H, Lai N, Shimoda LA. Rho kinase and Na + /H + exchanger mediate endothelin-1-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2019; 6:e13698. [PMID: 29756391 PMCID: PMC5949284 DOI: 10.14814/phy2.13698] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 01/04/2023] Open
Abstract
Excessive production of endothelin‐1 (ET‐1) has been observed in almost all forms of pulmonary hypertension. ET‐1, a highly potent vasoconstrictor, can also potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. Increasing evidence indicates that alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE), is associated with enhanced PASMC proliferation and migration. We recently demonstrated that application of exogenous ET‐1 increased NHE activity in murine PASMCs via a mechanism requiring Rho kinase (ROCK). However, whether ROCK and/or increased NHE activity mediate ET‐1‐induced migration and proliferation in PASMCs remains unknown. In this study, we used fluorescent microscopy in transiently cultured PASMCs from distal pulmonary arteries of the rat and the pH‐sensitive dye, BCECF‐AM, to measure changes in resting pHi and NHE activity induced by exposure to exogenous ET‐1 (10−8 mol/L) for 24 h. Cell migration and proliferation in response to ET‐1 were also measured using Transwell assays and BrdU incorporation, respectively. We found that application of exogenous ET‐1 had no effect on NHE1 expression, but increased pHi, NHE activity, migration, and proliferation in rat PASMCs. Pharmacologic inhibition of NHE or ROCK prevented the ET‐1‐induced changes in cell function (proliferation and migration). Our results indicate that ET‐1 modulates PASMC migration and proliferation via changes in pHi homeostasis through a pathway involving ROCK.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Syeda Baksh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Ning Lai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
7
|
Maron BA, Machado RF, Shimoda L. Pulmonary vascular and ventricular dysfunction in the susceptible patient (2015 Grover Conference series). Pulm Circ 2016; 6:426-438. [PMID: 28090285 PMCID: PMC5210067 DOI: 10.1086/688315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/21/2016] [Indexed: 12/14/2022] Open
Abstract
Pulmonary blood vessel structure and tone are maintained by a complex interplay between endogenous vasoactive factors and oxygen-sensing intermediaries. Under physiological conditions, these signaling networks function as an adaptive interface between the pulmonary circulation and environmental or acquired perturbations to preserve oxygenation and maintain systemic delivery of oxygen-rich hemoglobin. Chronic exposure to hypoxia, however, triggers a range of pathogenetic mechanisms that include hypoxia-inducible factor 1α (HIF-1α)-dependent upregulation of the vasoconstrictor peptide endothelin 1 in pulmonary endothelial cells. In pulmonary arterial smooth muscle cells, chronic hypoxia induces HIF-1α-mediated upregulation of canonical transient receptor potential proteins, as well as increased Rho kinase-Ca2+ signaling and pulmonary arteriole synthesis of the profibrotic hormone aldosterone. Collectively, these mechanisms contribute to a contractile or hypertrophic pulmonary vascular phenotype. Genetically inherited disorders in hemoglobin structure are also an important etiology of abnormal pulmonary vasoreactivity. In sickle cell anemia, for example, consumption of the vasodilator and antimitogenic molecule nitric oxide by cell-free hemoglobin is an important mechanism underpinning pulmonary hypertension. Contemporary genomic and transcriptomic analytic methods have also allowed for the discovery of novel risk factors relevant to sickle cell disease, including GALNT13 gene variants. In this report, we review cutting-edge observations characterizing these and other pathobiological mechanisms that contribute to pulmonary vascular and right ventricular vulnerability.
Collapse
Affiliation(s)
- Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA; and Department of Cardiology, Boston Veterans Affairs Healthcare System, Boston, Massachusetts, USA
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care Medicine, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Larissa Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Walker J, Undem C, Yun X, Lade J, Jiang H, Shimoda LA. Role of Rho kinase and Na+/H+ exchange in hypoxia-induced pulmonary arterial smooth muscle cell proliferation and migration. Physiol Rep 2016; 4:4/6/e12702. [PMID: 27009277 PMCID: PMC4814889 DOI: 10.14814/phy2.12702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/17/2016] [Indexed: 12/21/2022] Open
Abstract
Abnormal proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs) are hallmark characteristics of vascular remodeling in pulmonary hypertension induced by chronic hypoxia. In this study, we investigated the role of the Na+/H+ exchanger (NHE) and alterations in intracellular pH (pHi) homeostasis in meditating increased proliferation and migration in PASMCs isolated from resistance‐sized pulmonary arteries from chronically hypoxic rats or from normoxic rats that were exposed to hypoxia ex vivo (1% or 4% O2, 24–96 h). We found that PASMCs exposed to either in vivo or ex vivo hypoxia exhibited greater proliferative and migratory capacity, elevated pHi, and enhanced NHE activity. The NHE inhibitor, ethyl isopropyl amiloride (EIPA), normalized pHi in hypoxic PASMCs and reduced migration by 73% and 45% in cells exposed to in vivo and in vitro hypoxia, respectively. Similarly, EIPA reduced proliferation by 97% and 78% in cells exposed to in vivo and in vitro hypoxia, respectively. We previously demonstrated that NHE isoform 1 (NHE1) is the predominant isoform expressed in PASMCs. The development of hypoxia‐induced pulmonary hypertension and alterations in PASMC pHi homeostasis were prevented in mice deficient for NHE1. We found that short‐term (24 h) ex vivo hypoxic exposure did not alter the expression of NHE1, so we tested the role of Rho kinase (ROCK) as a possible means of increasing NHE activity. In the presence of the ROCK inhibitor, Y‐27632, we found that pHi and NHE activity were normalized and migration and proliferation were reduced in PASMCs exposed to either in vivo (by 68% for migration and 22% for proliferation) or ex vivo (by 43% for migration and 17% for proliferation) hypoxia. From these results, we conclude that during hypoxia, activation of ROCK enhances NHE activity and promotes PASMC migration and proliferation.
Collapse
Affiliation(s)
- Jasmine Walker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Xin Yun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Julie Lade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Huetsch JC, Jiang H, Larrain C, Shimoda LA. The Na+/H+ exchanger contributes to increased smooth muscle proliferation and migration in a rat model of pulmonary arterial hypertension. Physiol Rep 2016; 4:4/5/e12729. [PMID: 26997630 PMCID: PMC4823603 DOI: 10.14814/phy2.12729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Increased muscularity of small pulmonary vessels, involving enhanced proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), is a key component of the vascular remodeling underlying the development of pulmonary hypertension (PH). Stimuli such as growth factors and hypoxia induce PASMC alkalinization, proliferation, and migration through upregulation of the Na+/H+ exchanger (NHE), inhibition of which prevents the development of hypoxia‐induced vascular remodeling and PH. We wanted to explore whether NHE was also necessary for pathologic PASMC proliferation and migration in a model of pulmonary arterial hypertension (PAH), a severe form of PH not associated with persistent hypoxia. PASMCs were isolated from rats exposed to SU5416‐hypoxia (SuHx) followed by return to normoxia and from vehicle controls. We measured resting intracellular pH (pHi) and NHE activity using the pH‐sensitive fluorescent dye BCECF‐AM. PASMC proliferation and migration were assessed using BrdU incorporation and transwell filters, respectively. NHE activity was increased in SuHx PASMCs, although resting pHi was unchanged. SuHx PASMCs also exhibited increased proliferation and migration relative to controls, which was attenuated in the setting of pharmacologic inhibition of NHE. Our findings suggest that increased NHE activity contributes to pathologic PASMC function in the SuHx model of PAH, although this effect does not appear to be mediated by global changes in pHi homeostasis.
Collapse
Affiliation(s)
- John C Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Haiyang Jiang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Carolina Larrain
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Undem C, Luke T, Shimoda LA. Contribution of elevated intracellular calcium to pulmonary arterial myocyte alkalinization during chronic hypoxia. Pulm Circ 2016; 6:93-102. [PMID: 27076907 PMCID: PMC4809666 DOI: 10.1086/685053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the lung, exposure to chronic hypoxia (CH) causes pulmonary hypertension, a debilitating disease. Development of this condition arises from increased muscularity and contraction of pulmonary vessels, associated with increases in pulmonary arterial smooth muscle cell (PASMC) intracellular pH (pHi) and Ca(2+) concentration ([Ca(2+)]i). In this study, we explored the interaction between pHi and [Ca(2+)]i in PASMCs from rats exposed to normoxia or CH (3 weeks, 10% O2). PASMC pHi and [Ca(2+)]i were measured with fluorescent microscopy and the dyes BCECF and Fura-2. Both pHi and [Ca(2+)]i levels were elevated in PASMCs from hypoxic rats. Exposure to KCl increased [Ca(2+)]i and pHi to a similar extent in normoxic and hypoxic PASMCs. Conversely, removal of extracellular Ca(2+) or blockade of Ca(2+) entry with NiCl2 or SKF 96365 decreased [Ca(2+)]i and pHi only in hypoxic cells. Neither increasing pHi with NH4Cl nor decreasing pHi by removal of bicarbonate impacted PASMC [Ca(2+)]i. We also examined the roles of Na(+)/Ca(2+) exchange (NCX) and Na(+)/H(+) exchange (NHE) in mediating the elevated basal [Ca(2+)]i and Ca(2+)-dependent changes in PASMC pHi. Bepridil, dichlorobenzamil, and KB-R7943, which are NCX inhibitors, decreased resting [Ca(2+)]i and pHi only in hypoxic PASMCs and blocked the changes in pHi induced by altering [Ca(2+)]i. Exposure to ethyl isopropyl amiloride, an NHE inhibitor, decreased resting pHi and prevented changes in pHi due to changing [Ca(2+)]i. Our findings indicate that, during CH, the elevation in basal [Ca(2+)]i may contribute to the alkaline shift in pHi in PASMCs, likely via mechanisms involving reverse-mode NCX and NHE.
Collapse
Affiliation(s)
- Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Trevor Luke
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Huetsch J, Shimoda LA. Na(+)/H(+) exchange and hypoxic pulmonary hypertension. Pulm Circ 2015; 5:228-43. [PMID: 26064449 DOI: 10.1086/680213] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/22/2014] [Indexed: 12/24/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is key to the functioning of vascular smooth muscle cells, including pulmonary artery smooth muscle cells (PASMCs). Sodium-hydrogen exchange (NHE) is an important contributor to pHi control in PASMCs. In this review, we examine the role of NHE in PASMC function, in both physiologic and pathologic conditions. In particular, we focus on the contribution of NHE to the PASMC response to hypoxia, considering both acute hypoxic pulmonary vasoconstriction and the development of pulmonary vascular remodeling and pulmonary hypertension in response to chronic hypoxia. Hypoxic pulmonary hypertension remains a disease with limited therapeutic options. Thus, this review explores past efforts at disrupting NHE signaling and discusses the therapeutic potential that such efforts may have in the field of pulmonary hypertension.
Collapse
Affiliation(s)
- John Huetsch
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | - Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| |
Collapse
|
13
|
Abstract
SIGNIFICANCE Although oxygen (O2)-sensing cells and tissues have been known for decades, the identity of the O2-sensing mechanism has remained elusive. Evidence is accumulating that O2-dependent metabolism of hydrogen sulfide (H2S) is this enigmatic O2 sensor. RECENT ADVANCES The elucidation of biochemical pathways involved in H2S synthesis and metabolism have shown that reciprocal H2S/O2 interactions have been inexorably linked throughout eukaryotic evolution; there are multiple foci by which O2 controls H2S inactivation, and the effects of H2S on downstream signaling events are consistent with those activated by hypoxia. H2S-mediated O2 sensing has been demonstrated in a variety of O2-sensing tissues in vertebrate cardiovascular and respiratory systems, including smooth muscle in systemic and respiratory blood vessels and airways, carotid body, adrenal medulla, and other peripheral as well as central chemoreceptors. CRITICAL ISSUES Information is now needed on the intracellular location and stoichometry of these signaling processes and how and which downstream effectors are activated by H2S and its metabolites. FUTURE DIRECTIONS Development of specific inhibitors of H2S metabolism and effector activation as well as cellular organelle-targeted compounds that release H2S in a time- or environmentally controlled way will not only enhance our understanding of this signaling process but also provide direction for future therapeutic applications.
Collapse
Affiliation(s)
- Kenneth R Olson
- Department of Physiology, Indiana University School of Medicine-South Bend , South Bend, India na
| |
Collapse
|
14
|
Pickerodt PA, Francis RC, Höhne C, Neubert F, Telalbasic S, Boemke W, Swenson ER. Pulmonary vasodilation by acetazolamide during hypoxia: impact of methyl-group substitutions and administration route in conscious, spontaneously breathing dogs. J Appl Physiol (1985) 2014; 116:715-23. [PMID: 24481964 DOI: 10.1152/japplphysiol.01235.2013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetazolamide (ACZ) prevents hypoxic pulmonary vasoconstriction (HPV) in isolated lungs, animals, and humans, but not by carbonic anhydrase (CA) inhibition. We studied administration routes in, and certain structural aspects of, ACZ critical to HPV inhibition. Analogs of ACZ during acute hypoxia were tested in unanesthetized dogs. Dogs breathed normoxic gas for 1 h (inspired O2 fraction = 0.21), followed by 10% O2 for 2 h (hypoxia) in these protocols: 1) controls; 2) ACZ intravenously (2 mg · kg(-1) · h(-1)); 3) ACZ orally (5 mg/kg, 12 and 1 h before the experiment); 4) inhaled ACZ (750 mg); 5) methazolamide (MTZ) intravenously (3 mg · kg(-1) · h(-1)); and 6) N-methyl-acetazolamide (NMA) intravenously (10 mg · kg(-1) · h(-1)). In controls, mean pulmonary arterial pressure (MPAP) increased 7 mmHg, and pulmonary vascular resistance (PVR) 224 dyn · s · cm(-5) with hypoxia (P < 0.05). With intravenous and inhaled ACZ, MPAP and PVR did not change during hypoxia. With oral ACZ, HPV was only slightly suppressed; MPAP increased 5 mmHg and PVR by 178 dyn · s · cm(-5) during hypoxia. With MTZ and NMA, the MPAP rise (4 ± 2 mmHg) was reduced, and PVR did not increase during hypoxia compared with normoxia (MTZ intravenous: 81 ± 77 and 68 ± 82 dyn · s · cm(-5) with NMA intravenous). Inhaled ACZ prevents HPV, but not without causing systemic CA inhibition. NMA, a compound lacking CA inhibiting effects by methylation at the sulfonamide moiety, and MTZ, a CA-inhibiting analog methylated at the thiadiazole ring, are only slightly less effective than ACZ in reducing HPV.
Collapse
Affiliation(s)
- Philipp A Pickerodt
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité-University Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
15
|
Vascular remodeling in pulmonary hypertension. J Mol Med (Berl) 2013; 91:297-309. [PMID: 23334338 DOI: 10.1007/s00109-013-0998-0] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/04/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
Pulmonary hypertension is a complex, progressive condition arising from a variety of genetic and pathogenic causes. Patients present with a spectrum of histologic and pathophysiological features, likely reflecting the diversity in underlying pathogenesis. It is widely recognized that structural alterations in the vascular wall contribute to all forms of pulmonary hypertension. Features characteristic of the remodeled vasculature in patients with pulmonary hypertension include increased stiffening of the elastic proximal pulmonary arteries, thickening of the intimal and/or medial layer of muscular arteries, development of vaso-occlusive lesions, and the appearance of cells expressing smooth muscle-specific markers in normally non-muscular small diameter vessels, resulting from proliferation and migration of pulmonary arterial smooth muscle cells and cellular transdifferentiation. The development of several animal models of pulmonary hypertension has provided the means to explore the mechanistic underpinnings of pulmonary vascular remodeling, although none of the experimental models currently used entirely replicates the pulmonary arterial hypertension observed in patients. Herein, we provide an overview of the histological abnormalities observed in humans with pulmonary hypertension and in preclinical models and discuss insights gained regarding several key signaling pathways contributing to the remodeling process. In particular, we will focus on the roles of ion homeostasis, endothelin-1, serotonin, bone morphogenetic proteins, Rho kinase, and hypoxia-inducible factor 1 in pulmonary arterial smooth muscle and endothelial cells, highlighting areas of cross-talk between these pathways and potentials for therapeutic targeting.
Collapse
|
16
|
Undem C, Rios EJ, Maylor J, Shimoda LA. Endothelin-1 augments Na⁺/H⁺ exchange activity in murine pulmonary arterial smooth muscle cells via Rho kinase. PLoS One 2012; 7:e46303. [PMID: 23029469 PMCID: PMC3460862 DOI: 10.1371/journal.pone.0046303] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Excessive production of endothelin-1 (ET-1), a potent vasoconstrictor, occurs with several forms of pulmonary hypertension. In addition to modulating vasomotor tone, ET-1 can potentiate pulmonary arterial smooth muscle cell (PASMC) growth and migration, both of which contribute to the vascular remodeling that occurs during the development of pulmonary hypertension. It is well established that changes in cell proliferation and migration in PASMCs are associated with alkalinization of intracellular pH (pHi), typically due to activation of Na+/H+ exchange (NHE). In the systemic vasculature, ET-1 increases pHi, Na+/H+ exchange activity and stimulates cell growth via a mechanism dependent on protein kinase C (PKC). These results, coupled with data describing elevated levels of ET-1 in hypertensive animals/humans, suggest that ET-1 may play an important role in modulating pHi and smooth muscle growth in the lung; however, the effect of ET-1 on basal pHi and NHE activity has yet to be examined in PASMCs. Thus, we used fluorescent microscopy in transiently (3–5 days) cultured rat PASMCs and the pH-sensitive dye, BCECF-AM, to measure changes in basal pHi and NHE activity induced by increasing concentrations of ET-1 (10−10 to 10−8 M). We found that application of exogenous ET-1 increased pHi and NHE activity in PASMCs and that the ET-1-induced augmentation of NHE was prevented in PASMCs pretreated with an inhibitor of Rho kinase, but not inhibitors of PKC. Moreover, direct activation of PKC had no effect on pHi or NHE activity in PASMCs. Our results indicate that ET-1 can modulate pH homeostasis in PASMCs via a signaling pathway that includes Rho kinase and that, in contrast to systemic vascular smooth muscle, activation of PKC does not appear to be an important regulator of PASMC pHi.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dose-Response Relationship, Drug
- Endothelin-1/pharmacology
- Enzyme Activation/drug effects
- Fluoresceins
- Fluorescent Dyes
- Hydrogen-Ion Concentration
- Male
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Protein Kinase C/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Signal Transduction/drug effects
- Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors
- Sodium-Potassium-Exchanging ATPase/metabolism
- rho-Associated Kinases/antagonists & inhibitors
- rho-Associated Kinases/metabolism
Collapse
Affiliation(s)
- Clark Undem
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Eon J. Rios
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Julie Maylor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
17
|
Shimoda LA. 55th Bowditch Lecture: Effects of chronic hypoxia on the pulmonary circulation: role of HIF-1. J Appl Physiol (1985) 2012; 113:1343-52. [PMID: 22923506 DOI: 10.1152/japplphysiol.00843.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When exposed to chronic hypoxia (CH), the pulmonary circulation responds with enhanced contraction and vascular remodeling, resulting in elevated pulmonary arterial pressures. Our work has identified CH-induced alterations in the expression and activity of several ion channels and transporters in pulmonary vascular smooth muscle that contribute to the development of hypoxic pulmonary hypertension and uncovered a critical role for the transcription factor hypoxia-inducible factor-1 (HIF-1) in mediating these responses. Current work is focused on the regulation of HIF in the chronically hypoxic lung and evaluation of the potential for pharmacological inhibitors of HIF to prevent, reverse, or slow the progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA.
| |
Collapse
|
18
|
Abstract
It has been known for more than 60 years, and suspected for over 100, that alveolar hypoxia causes pulmonary vasoconstriction by means of mechanisms local to the lung. For the last 20 years, it has been clear that the essential sensor, transduction, and effector mechanisms responsible for hypoxic pulmonary vasoconstriction (HPV) reside in the pulmonary arterial smooth muscle cell. The main focus of this review is the cellular and molecular work performed to clarify these intrinsic mechanisms and to determine how they are facilitated and inhibited by the extrinsic influences of other cells. Because the interaction of intrinsic and extrinsic mechanisms is likely to shape expression of HPV in vivo, we relate results obtained in cells to HPV in more intact preparations, such as intact and isolated lungs and isolated pulmonary vessels. Finally, we evaluate evidence regarding the contribution of HPV to the physiological and pathophysiological processes involved in the transition from fetal to neonatal life, pulmonary gas exchange, high-altitude pulmonary edema, and pulmonary hypertension. Although understanding of HPV has advanced significantly, major areas of ignorance and uncertainty await resolution.
Collapse
Affiliation(s)
- J T Sylvester
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, The Johns Hopkins University School ofMedicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
19
|
Hypoxic regulation of ion channels and transporters in pulmonary vascular smooth muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:221-35. [PMID: 20204733 DOI: 10.1007/978-1-60761-500-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Exposure to prolonged alveolar hypoxia, as occurs with many chronic lung diseases or residence at high altitude, results in the development of pulmonary hypertension, significantly worsening patient prognosis. While the structural and functional changes that occur in the pulmonary vasculature in response to chronic hypoxia have been well characterized, less is known regarding the cellular mechanisms underlying this process. The use of animals models of hypoxic pulmonary hypertension have provided important insights into the changes that occur in the pulmonary vascular smooth muscle cells and some of the mediators involved. In this chapter, the effect of chronic hypoxia on various pulmonary arterial smooth muscle cell ion channels and transporters, and the role of the transcription factor, hypoxia-inducible factor 1, in regulating these changes, will be discussed.
Collapse
|
20
|
Madden JA, Dantuma MW, Sorokina EA, Weihrauch D, Kleinman JG. Telokin expression and the effect of hypoxia on its phosphorylation status in smooth muscle cells from small and large pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2008; 294:L1166-73. [PMID: 18375742 DOI: 10.1152/ajplung.00375.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small pulmonary arteries (SPA), <500 microm diameter of the cat, constrict when exposed to hypoxia, whereas larger arteries (large pulmonary arteries; LPA), >800 microm diameter, show little or no response. It is unknown why different contractile responses occur within the same vascular bed, but activator or repressor proteins within the smooth muscle cell (SMC) can modify myosin phosphatase and myosin light chain kinase (MLCK), thereby influencing the phosphorylation state of myosin light chain (MLC) and ultimately, contraction. Telokin, a protein with a sequence identical to the COOH-terminal domain of MLCK, is expressed in smooth muscle where in its phosphorylated state it inhibits myosin phosphatase, binds to unphosphorylated myosin, and helps maintain smooth muscle relaxation. We measured telokin mRNA and telokin protein in smooth muscle from different diameter feline pulmonary arteries and sought to determine whether changes in the phosphorylation status of telokin and MLC occurred during hypoxia. In pulmonary arteries, telokin expression varied inversely with artery diameter, but cerebral arteries showed neither telokin protein nor telokin mRNA. Although telokin and MLC were distributed uniformly throughout the SPA muscle cell cytoplasm, they were not colocalized. During hypoxia, telokin dephosphorylated, and MLC became increasingly phosphorylated in SPA SMC, whereas in LPA SMC there was no change in either telokin or MLC phosphorylation. When LPA SMC were exposed to phenylephrine, MLC phosphorylation increased with no change in telokin phosphorylation. These results suggest that in SPA, phosphorylated telokin may help maintain relaxation under unstimulated conditions, whereas in LPA, telokin's function remains undetermined.
Collapse
Affiliation(s)
- Jane A Madden
- Department of Neurology, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295, USA.
| | | | | | | | | |
Collapse
|
21
|
Li Q, Liao Y, Zhang H, Jiang Y, Wangas Y. Inhibitory effect and mechanism of chuanxiongzine on multiplication of VSMC. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s1007-4376(07)60020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Shimoda LA, Luke T, Sylvester JT, Shih HW, Jain A, Swenson ER. Inhibition of hypoxia-induced calcium responses in pulmonary arterial smooth muscle by acetazolamide is independent of carbonic anhydrase inhibition. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1002-12. [PMID: 17209136 DOI: 10.1152/ajplung.00161.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic pulmonary vasoconstriction (HPV) occurs with ascent to high altitude and can contribute to development of high altitude pulmonary edema (HAPE). Vascular smooth muscle contains carbonic anhydrase (CA), and acetazolamide (AZ), a CA inhibitor, blunts HPV and might be useful in the prevention of HAPE. The mechanism by which AZ impairs HPV is uncertain. Originally developed as a diuretic, AZ also has direct effects on systemic vascular smooth muscle, including modulation of pH and membrane potential; however, the effect of AZ on pulmonary arterial smooth muscle cells (PASMCs) is unknown. Since HPV requires Ca2+ influx into PASMCs and can be modulated by pH, we hypothesized that AZ alters hypoxia-induced changes in PASMC intracellular pH (pH(i)) or Ca2+ concentration ([Ca2+](i)). Using fluorescent microscopy, we tested the effect of AZ as well as two other potent CA inhibitors, benzolamide and ethoxzolamide, which exhibit low and high membrane permeability, respectively, on hypoxia-induced responses in PASMCs. Hypoxia caused a significant increase in [Ca2+](i) but no change in pH(i). All three CA inhibitors slightly decreased basal pH(i), but only AZ caused a concentration-dependent decrease in the [Ca2+](i) response to hypoxia. AZ had no effect on the KCl-induced increase in [Ca2+](i) or membrane potential. N-methyl-AZ, a synthesized compound lacking the unsubstituted sulfonamide group required for CA inhibition, had no effect on pH(i) but inhibited hypoxia-induced Ca2+ responses. These results suggest that AZ attenuates HPV by selectively inhibiting hypoxia-induced Ca2+ responses via a mechanism independent of CA inhibition, changes in pH(i), or membrane potential.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Smith MP, Dombkowski RA, Wincko JT, Olson KR. Effect of pH on trout blood vessels and gill vascular resistance. J Exp Biol 2006; 209:2586-94. [PMID: 16788041 DOI: 10.1242/jeb.02290] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
pH is recognized as a modulator of vascular smooth muscle (VSM) tone in mammalian vessels, but little is known about its effects on fish VSM. We investigated the effects of extracellular and intracellular pH (pHoand pHi, respectively) on isolated vessels from steelhead and rainbow trout (Oncorhynchus mykiss, Skamania and Kamloops strains,respectively) and of pHo on perfused gills from rainbow trout. In otherwise unstimulated (resting) efferent branchial (EBA) and coeliaco-mesenteric arteries (CMA), anterior cardinal veins (ACV) and perfused gills, increasing pHo from 6.8 to 8.8–9.0 produced a dose-dependent contraction or increase in gill resistance(RGILL) with an estimated half-maximal response of 8.0–8.2. pHo interactions with other contractile stimuli were agonist specific; more force was developed at low pHo in ligand-mediated (arginine vasotocin) contractions, whereas depolarization-mediated (40–80 mmol l–1 KCl)contractions were greatest at high pHo. Increasing pHiby application of 40 mmol l–1 NH4Cl produced sustained contraction in afferent branchial arteries (ABA) suggesting that these vessels could not readily restore pHi. NH4Cl application only transiently contracted EBA and CMA in Hepes buffer, whereas it produced a slight, but prolonged, relaxation of EBA and CMA in Cortland buffer. The buffer effect was due to the presence of Hepes and in this environment EBA and CMA appeared to readily restore pHi. Increasing pHi in KCl-contracted EBA in Hepes produced an additional contraction, whereas ligand-contracted (thromboxane A2 analog,U-46619) EBA relaxed. Reducing pHi (NH4Cl washout)transiently contracted resting EBA and CMA in both Hepes and Cortland buffer. NH4Cl washout produced an additional, transient contraction of both KCl- and U-46619-contracted EBA in Hepes. EBA contractions produced by increased pHi depend primarily on intracellular Ca2+,whereas both intracellular and extracellular Ca2+ contributed to the response to decreased pHi. Three cycles of perfusate acidification (pHo 7.8 to 6.2 and back to 7.8) reproducibly halved,then restored RGILL with no adverse effects, indicating that this was not a pathophysiological response. These studies show that the general effects of pH on VSM are phylogenetically conserved from fish to mammals but even within a species there are vessel-specific differences. Furthermore, as fish are exposed to substantial fluctuations in environmental(and therefore plasma) pH, the obligatory response of fish VSM to these changes may have substantial impact on cardiovascular homeostasis.
Collapse
Affiliation(s)
- Michael P Smith
- Indiana University School of Medicine-South Bend Center, 1234 Notre Dame Avenue, South Bend, IN 46617, USA
| | | | | | | |
Collapse
|
24
|
Shimoda LA, Fallon M, Pisarcik S, Wang J, Semenza GL. HIF-1 regulates hypoxic induction of NHE1 expression and alkalinization of intracellular pH in pulmonary arterial myocytes. Am J Physiol Lung Cell Mol Physiol 2006; 291:L941-9. [PMID: 16766575 DOI: 10.1152/ajplung.00528.2005] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Vascular remodeling resulting from altered pulmonary arterial smooth muscle cell (PASMC) growth is a contributing factor to the pathogenesis of hypoxic pulmonary hypertension. PASMC growth requires an alkaline shift in intracellular pH (pH(i)) and we previously showed that PASMCs isolated from mice exposed to chronic hypoxia exhibited increased Na(+)/H(+) exchanger (NHE) expression and activity, which resulted in increased pH(i). However, the mechanism by which hypoxia caused these changes was unknown. In this study we tested the hypothesis that hypoxia-induced changes in PASMC pH homeostasis are mediated by the transcriptional regulator hypoxia-inducible factor 1 (HIF-1). Consistent with previous results, increased NHE isoform 1 (NHE1) mRNA and protein, enhanced NHE activity, and an alkaline shift in pH(i) were observed in PASMCs isolated from wild-type mice exposed to chronic hypoxia (3 wk at 10% O(2)). In contrast, these changes were absent in PASMCs isolated from chronically hypoxic mice with partial deficiency for HIF-1. Exposure of PASMCs to hypoxia ex vivo (48 h at 4% O(2)) or overexpression of HIF-1 in the absence of hypoxia also increased NHE1 mRNA and protein expression. Our results indicate that full expression of HIF-1 is essential for hypoxic induction of NHE1 expression and changes in PASMC pH homeostasis and suggest a novel mechanism by which HIF-1 mediates pulmonary vascular remodeling during the pathogenesis of hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, 5501 Hopkins Bayview Circle, JHAAC 4A.52, Baltimore, MD 21224, USA.
| | | | | | | | | |
Collapse
|
25
|
Rios EJ, Fallon M, Wang J, Shimoda LA. Chronic hypoxia elevates intracellular pH and activates Na+/H+ exchange in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2005; 289:L867-74. [PMID: 15964895 DOI: 10.1152/ajplung.00455.2004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia (CH), caused by many lung diseases, results in pulmonary hypertension due, in part, to increased muscularity of small pulmonary vessels. Pulmonary arterial smooth muscle cell (PASMC) proliferation in response to growth factors requires increased intracellular pH (pHi) mediated by activation of Na+/H+ exchange (NHE); however, the effect of CH on PASMC pHi homeostasis is unknown. Thus we measured basal pHi and NHE activity and expression in PASMCs isolated from mice exposed to normoxia or CH (3 wk/10% O2). pHi was measured using the pH-sensitive fluorescent dye BCECF-AM. NHE activity was determined from Na+-dependent recovery from NH4-induced acidosis, and NHE expression was determined by RT-PCR and immunoblot. PASMCs from chronically hypoxic mice exhibited elevated basal pHi and increased NHE activity. NHE1 was the predominate isoform present in mouse PASMCs, and both gene and protein expression of NHE1 was increased following exposure to CH. Our findings indicate that exposure to CH caused increased pHi, NHE activity, and NHE1 expression, changes that may contribute to the development of pulmonary hypertension, in part, via pH-dependent induction of PASMC proliferation.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cation Transport Proteins/genetics
- Cation Transport Proteins/metabolism
- Chronic Disease
- Gene Expression
- Hydrogen-Ion Concentration
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertrophy, Right Ventricular/genetics
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/pathology
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia/pathology
- In Vitro Techniques
- Male
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Sodium-Hydrogen Exchanger 1
- Sodium-Hydrogen Exchangers/genetics
- Sodium-Hydrogen Exchangers/metabolism
Collapse
Affiliation(s)
- Eon J Rios
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins Univ., Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
26
|
Höhne C, Krebs MO, Seiferheld M, Boemke W, Kaczmarczyk G, Swenson ER. Acetazolamide prevents hypoxic pulmonary vasoconstriction in conscious dogs. J Appl Physiol (1985) 2005; 97:515-21. [PMID: 15247196 DOI: 10.1152/japplphysiol.01217.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acute hypoxia increases pulmonary arterial pressure and vascular resistance. Previous studies in isolated smooth muscle and perfused lungs have shown that carbonic anhydrase (CA) inhibition reduces the speed and magnitude of hypoxic pulmonary vasoconstriction (HPV). We studied whether CA inhibition by acetazolamide (Acz) is able to prevent HPV in the unanesthetized animal. Ten chronically tracheotomized, conscious dogs were investigated in three protocols. In all protocols, the dogs breathed 21% O(2) for the first hour and then 8 or 10% O(2) for the next 4 h spontaneously via a ventilator circuit. The protocols were as follows: protocol 1: controls given no Acz, inspired O(2) fraction (Fi(O(2))) = 0.10; protocol 2: Acz infused intravenously (250-mg bolus, followed by 167 microg.kg(-1).min(-1) continuously), Fi(O(2)) = 0.10; protocol 3: Acz given as above, but with Fi(O(2)) reduced to 0.08 to match the arterial Po(2) (Pa(O(2))) observed during hypoxia in controls. Pa(O(2)) was 37 Torr during hypoxia in controls, mean pulmonary arterial pressure increased from 17 +/- 1 to 23 +/- 1 mmHg, and pulmonary vascular resistance increased from 464 +/- 26 to 679 +/- 40 dyn.s(-1).cm(-5) (P < 0.05). In both Acz groups, mean pulmonary arterial pressure was 15 +/- 1 mmHg, and pulmonary vascular resistance ranged between 420 and 440 dyn.s(-1).cm(-5). These values did not change during hypoxia. In dogs given Acz at 10% O(2), the arterial Pa(O(2)) was 50 Torr owing to hyperventilation, whereas in those breathing 8% O(2) the Pa(O(2)) was 37 Torr, equivalent to controls. In conclusion, Acz prevents HPV in conscious spontaneously breathing dogs. The effect is not due to Acz-induced hyperventilation and higher alveolar Po(2), nor to changes in plasma endothelin-1, angiotensin-II, or potassium, and HPV suppression occurs despite the systemic acidosis with CA inhibition.
Collapse
Affiliation(s)
- Claudia Höhne
- Experimentelle Anaesthesie, Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
27
|
Eichler W, Bechtel MJF, Klaus S, Heringlake M, Hernandez M, Toerber K, Klotz KF, Bartels C. Na /H+ exchange inhibitor cariporide: effects on respiratory dysfunction after cardiopulmonary bypass. Perfusion 2004; 19:33-40. [PMID: 15072253 DOI: 10.1191/0267659104pf712oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The purpose of the present study was to evaluate the potential of the Na+/H+ exchange inhibitor cariporide to protect the lung from injury after cardiopulmonary bypass (CPB). In a randomized placebo-controlled study, 16 pigs were subjected to CPB for 75 min. Administration of vehicle or cariporide (bolus 180 mg, 40 mg/hour) began 30 min pre-CPB and was continued throughout the protocol. The alveolo-arterial O2-gradient (AaDO2), the pulmonary shunt (Qs/Qt), the compliance (Cpl), haemodynamic variables and glycerol and water content in lung tissue were measured 10 min before and up to 180 min post-CPB. All animals in the control versus 75% in the cariporide group survived the experiment. At 5 and 60 min post-CPB, the mean AaDO2 and at 5, 60 and 180 min post-CPB, the mean pulmonary vascular resistance index were higher in the cariporide group (p < 0.05), respectively. More lung water accumulation was found in the cariporide group (p < 0.05). Mean Cpl decreased; the Qs/ Qt and glycerol in lung tissue increased without significant intergroup difference. In this model, the inhibitor of the Na+/H+ antiporter showed no protective effect on lung injury after CPB and might even have harmful effects on pulmonary vascular tone and function.
Collapse
|
28
|
Nozik-Grayck E, Huang YCT, Carraway MS, Piantadosi CA. Bicarbonate-dependent superoxide release and pulmonary artery tone. Am J Physiol Heart Circ Physiol 2003; 285:H2327-35. [PMID: 12842815 DOI: 10.1152/ajpheart.00507.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.
Collapse
Affiliation(s)
- Eva Nozik-Grayck
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710,USA.
| | | | | | | |
Collapse
|
29
|
Shimoda LA, Sham JSK, Liu Q, Sylvester JT. Acute and chronic hypoxic pulmonary vasoconstriction: a central role for endothelin-1? Respir Physiol Neurobiol 2002; 132:93-106. [PMID: 12126698 DOI: 10.1016/s1569-9048(02)00052-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the pulmonary circulation, a decrease in oxygen tension results in the development of hypoxic pulmonary vasoconstriction (HPV), although the exact mechanism by which HPV occurs remains unclear. Evidence gathered from many laboratories suggests that while pulmonary arterial smooth muscle cells (PASMCs) can sense and respond to changes in oxygen tension, full expression of HPV requires modulating influences from the endothelium. In this review, we propose a model of HPV, based on recent studies from our laboratory, in which endothelin-1 (ET-1), a vasoactive peptide released from the endothelium, plays a central role and discuss how this model may be involved in the long-term adaptation to hypoxia.
Collapse
Affiliation(s)
- Larissa A Shimoda
- Division of Pulmonary and Critical Care Medicine, The Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, JHAAC 4A.52, Baltimore, MD 21224, USA.
| | | | | | | |
Collapse
|
30
|
Dai Y, Zhang JH. Manipulation of chloride flux affects histamine-induced contraction in rabbit basilar artery. Am J Physiol Heart Circ Physiol 2002; 282:H1427-36. [PMID: 11893580 DOI: 10.1152/ajpheart.00837.2001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cl(-) efflux induces depolarization and contraction of smooth muscle cells. This study was undertaken to explore the role of Cl(-) flux in histamine-induced contraction in the rabbit basilar artery. Male New Zealand White rabbits (n = 16) weighing 1.8-2.5 kg were euthanized by an overdose of pentobarbital sodium. The basilar arteries were removed for isometric tension recording. Histamine produced a concentration-dependent contraction that was attenuated by the H(1) receptor antagonist chlorpheniramine (10(-8) M) but not by the H(2) receptor antagonist cimetidine (3 x 10(-6) M) in normal Cl(-) Krebs-Henseleit bicarbonate solution (123 mM Cl(-)). The histamine-induced contraction was reduced by the following manipulations: 1) inhibition of Na(+)-K(+)-2Cl(-) cotransporter with bumetanide (3 x 10(-5) and 10(-4) M), 2) bicarbonate-free HEPES solution to disable Cl(-)/HCO exchanger, and 3) blockade of Cl(-) channels with the use of niflumic acid, 5-nitro-2-(3-phenylpropylamino) benzoic acid, and indoleacetic acid 94 R-(+)-methylindazone. In addition, substitution of extracellular Cl(-) (10 mM) with methanesulfonate acid (113 mM) transiently enhanced histamine-induced contraction. Manipulation of Cl(-) flux affects histamine-induced contraction in the rabbit basilar artery.
Collapse
Affiliation(s)
- Yun Dai
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
31
|
Morio Y, McMurtry IF. Ca(2+) release from ryanodine-sensitive store contributes to mechanism of hypoxic vasoconstriction in rat lungs. J Appl Physiol (1985) 2002; 92:527-34. [PMID: 11796660 DOI: 10.1152/jappl.2002.92.2.527] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Studies of thapsigargin, cyclopiazonic acid, and ryanodine in isolated pulmonary arteries and smooth muscle cells suggest that release of Ca(2+) from inositol 1,4,5-trisphosphate (IP(3))- and/or ryanodine-sensitive sarcoplasmic reticulum Ca(2+) stores is a component of the mechanism of acute hypoxic pulmonary vasoconstriction (HPV). However, the actions of these agents on HPV in perfused lungs have not been reported. Thus we tested effects of thapsigargin and cyclopiazonic acid, inhibitors of sarcoplasmic reticulum Ca(2+)-ATPase, and of ryanodine, an agent that either locks the ryanodine receptor open or blocks it, on HPV in salt solution-perfused rat lungs. After inhibition of cyclooxygenase and nitric oxide synthase, thapsigargin (10 nM) and cyclopiazonic acid (5 microM) augmented the vasoconstriction to 0% but not to 3% inspired O(2). Relatively high concentrations of ryanodine (100 and 300 microM) blunted HPV in nitric oxide synthase-inhibited lungs. The results indicate that release of Ca(2+) from the ryanodine-sensitive, but not the IP(3)-sensitive, store, contributes to the mechanism of HPV in perfused rat lungs and that Ca(2+)-ATPase-dependent Ca(2+) buffering moderates the response to severe hypoxia.
Collapse
Affiliation(s)
- Yoshiteru Morio
- Cardiovascular Pulmonary Research Laboratory, Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA.
| | | |
Collapse
|