1
|
Tabuchi A, Poole DC, Kano Y. Intracellular Ca 2+ After Eccentric Muscle Contractions: Key Role for Ryanodine Receptors. Exerc Sport Sci Rev 2025; 53:23-30. [PMID: 39262047 DOI: 10.1249/jes.0000000000000348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Eccentric contractions (ECC) induce excessive intracellular calcium ion (Ca 2+ ) accumulation and muscle structural damage in localized regions of the muscle fibers. In this investigation, we present the novel hypothesis that the ryanodine receptor (RyR) plays a central role in evoking a Ca 2+ dynamics profile that is markedly distinguishable from other muscle adaptive responses.
Collapse
Affiliation(s)
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, KS
| | | |
Collapse
|
2
|
Tabuchi A, Kikuchi Y, Takagi R, Tanaka Y, Hoshino D, Poole DC, Kano Y. In vivo intracellular Ca 2+ profiles after eccentric rat muscle contractions: addressing the mechanistic bases for repeated bout protection. J Appl Physiol (1985) 2025; 138:1-12. [PMID: 39546386 DOI: 10.1152/japplphysiol.00164.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Eccentric contractions (ECC) are accompanied by the accumulation of intracellular calcium ions ([Ca2+]i) and induce skeletal muscle damage. Suppressed muscle damage in repeated bouts of ECC is well characterized; however, whether it is mediated by altered Ca2+ profiles remains unknown. We tested the hypothesis that repeated ECC suppresses Ca2+ accumulation via adaptations in Ca2+ regulation. Male Wistar rats were divided into two groups: ECC single bout (ECC-SB) and repeated bout (ECC-RB). Tibialis anterior (TA) muscles were subjected to ECC (40 times, 5 sets) once (ECC-SB) or twice 14 days apart (ECC-RB). Under anesthesia, the TA muscle was loaded with Ca2+ indicator Fura 2-AM, and the 340/380 nm ratio was evaluated as [Ca2+]i. Ca2+ handling proteins were measured by Western blots. ECC induced [Ca2+]i increase in both groups, but ECC-RB evinced a markedly suppressed [Ca2+]i (Time: P < 0.01, Group: P = 0.0357). Five hours post-ECC, in contrast to the localized [Ca2+]i accumulation in ECC-SB, ECC-RB exhibited lower and more uniform [Ca2+]i (P < 0.01). In ECC-RB, mitochondria Ca2+ uniporter complex (MCU) components MCU and MICU2 were significantly increased pre-second ECC bout (P < 0.01), and both SERCA1 and MICU1 were better preserved after contractions (P < 0.01). Fourteen days after novel ECC, skeletal muscle mitochondrial Ca2+ regulating proteins were elevated. Following subsequent ECC, [Ca2+]i accumulation and muscle damage were suppressed and SERCA1 and MICU1 preserved. These findings suggest that tolerance to a subsequent ECC bout is driven, at least in part, by enhanced mitochondrial and sarcoplasmic reticulum Ca2+ regulation.NEW & NOTEWORTHY We demonstrated a reduced [Ca2+]i profile with suppressed muscle damage after a repeated bout of ECC in vivo: the ECC-induced immediate [Ca2+]i increase was suppressed and the persistence of increased [Ca2+]i with localized accumulation was diminished after repeated ECC. This effect occurred consonant with the upregulation of the mitochondrial Ca2+ uniporter complex and better preservation of SERCA1 and MICU1. These findings suggest that the mechanistic bases for repeated bout protection involve adaptation of Ca2+ regulation.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Optics and Engineering Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Yudai Kikuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Ryo Takagi
- Department of Physical Therapy, School of Nursing and Rehabilitation Sciences, Showa University, Kanagawa, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, United States
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
3
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
4
|
Kano R, Tabuchi A, Tanaka Y, Shirakawa H, Hoshino D, Poole DC, Kano Y. In vivo cytosolic H 2O 2 changes and Ca 2+ homeostasis in mouse skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2024; 326:R43-R52. [PMID: 37899753 DOI: 10.1152/ajpregu.00152.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 10/31/2023]
Abstract
Hydrogen peroxide (H2O2) and calcium ions (Ca2+) are functional regulators of skeletal muscle contraction and metabolism. Although H2O2 is one of the activators of the type-1 ryanodine receptor (RyR1) in the Ca2+ release channel, the interdependence between H2O2 and Ca2+ dynamics remains unclear. This study tested the following hypotheses using an in vivo model of mouse tibialis anterior (TA) skeletal muscle. 1) Under resting conditions, elevated cytosolic H2O2 concentration ([H2O2]cyto) leads to a concentration-dependent increase in cytosolic Ca2+ concentration ([Ca2+]cyto) through its effect on RyR1; and 2) in hypoxia (cardiac arrest) and muscle contractions (electrical stimulation), increased [H2O2]cyto induces Ca2+ accumulation. Cytosolic H2O2 (HyPer7) and Ca2+ (Fura-2) dynamics were resolved by TA bioimaging in young C57BL/6J male mice under four conditions: 1) elevated exogenous H2O2; 2) cardiac arrest; 3) twitch (1 Hz, 60 s) contractions; and 4) tetanic (30 s) contractions. Exogenous H2O2 (0.1-100 mM) induced a concentration-dependent increase in [H2O2]cyto (+55% at 0.1 mM; +280% at 100 mM) and an increase in [Ca2+]cyto (+3% at 1.0 mM; +8% at 10 mM). This increase in [Ca2+]cyto was inhibited by pharmacological inhibition of RyR1 by dantrolene. Cardiac arrest-induced hypoxia increased [H2O2]cyto (+33%) and [Ca2+]cyto (+20%) 50 min postcardiac arrest. Compared with the exogenous 1.0 mM H2O2 condition, [H2O2]cyto after tetanic muscle contractions rose less than one-tenth as much, whereas [Ca2+]cyto was 4.7-fold higher. In conclusion, substantial increases in [H2O2]cyto levels evoke only modest Ca2+ accumulation via their effect on the sarcoplasmic reticulum RyR1. On the other hand, contrary to hypoxia secondary to cardiac arrest, increases in [H2O2]cyto from muscle contractions are small, indicating that H2O2 generation is unlikely to be a primary factor driving the significant Ca2+ accumulation after, especially tetanic, muscle contractions.NEW & NOTEWORTHY We developed an in vivo mouse myocyte H2O2 imaging model during exogenous H2O2 loading, ischemic hypoxia induced by cardiac arrest, and muscle contractions. In this study, the interrelationship between cytosolic H2O2 levels and Ca2+ homeostasis during muscle contraction and hypoxic conditions was revealed. These results contribute to the elucidation of the mechanisms of muscle fatigue and exercise adaptation.
Collapse
Affiliation(s)
- Ryotaro Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
5
|
Sato T, Umebayashi S, Senoo N, Akahori T, Ichida H, Miyoshi N, Yoshida T, Sugiura Y, Goto-Inoue N, Kawana H, Shindou H, Baba T, Maemoto Y, Kamei Y, Shimizu T, Aoki J, Miura S. LPGAT1/LPLAT7 regulates acyl chain profiles at the sn-1 position of phospholipids in murine skeletal muscles. J Biol Chem 2023:104848. [PMID: 37217003 PMCID: PMC10285227 DOI: 10.1016/j.jbc.2023.104848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
Skeletal muscle consists of both fast- and slow-twitch fibers. Phospholipids are important structural components of cellular membranes, and the diversity of their fatty acid composition affects membrane fluidity and permeability. Although some studies have shown that acyl chain species in phospholipids differ among various muscle fiber types, the mechanisms underlying these differences are unclear. To investigate this, we analyzed phosphatidylcholine (PC) and phosphatidylethanolamine (PE) molecules in the murine extensor digitorum longus (EDL; fast-twitch) and soleus (slow-twitch) muscles. In the EDL muscle, the vast majority (93.6%) of PC molecules was palmitate-containing PC (16:0-PC), whereas in the soleus muscle, in addition to 16:0-PC, 27.9% of PC molecules was stearate-containing PC (18:0-PC). Most palmitate and stearate were bound at the sn-1 position of 16:0- and 18:0-PC, respectively, and 18:0-PC was found in type I and IIa fibers. The amount of 18:0-PE was higher in the soleus than in the EDL muscle. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) increased the amount of 18:0-PC in the EDL. Lysophosphatidylglycerol acyltransferase 1 (LPGAT1) was highly expressed in the soleus compared with that in the EDL muscle and was upregulated by PGC-1α. LPGAT1 knockout decreased the incorporation of stearate into PC and PE in vitro and ex vivo and the amount of 18:0-PC and 18:0-PE in murine skeletal muscle with an increase in the level of 16:0-PC and 16:0-PE. Moreover, knocking out LPGAT1 decreased the amount of stearate-containing-phosphatidylserine (18:0-PS), suggesting that LPGAT1 regulated the acyl chain profiles of phospholipids, namely PC, PE, and PS, in the skeletal muscle.
Collapse
Affiliation(s)
- Tomoki Sato
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Shuhei Umebayashi
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Senoo
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Akahori
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiyori Ichida
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Takuya Yoshida
- Laboratory of Clinical Nutrition, Graduate School of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto, 862-8502, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, 252-0880, Japan
| | - Hiroki Kawana
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Hideo Shindou
- Department of Lipid Life Science, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takashi Baba
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yuki Maemoto
- Laboratory of Molecular Cell Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, 192-0392, Japan
| | - Yasutomi Kamei
- Laboratory of Molecular Nutrition, Graduate School of Environmental and Life Science, Kyoto Prefectural University, Kyoto, 606-8522, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan; Institute of Microbial Chemistry, Tokyo, 141-0021, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; Advanced Research & Development Programs for Medical Innovation (AMED-LEAP), Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| |
Collapse
|
6
|
Yamamoto H, Eshima H, Kakehi S, Kawamori R, Watada H, Tamura Y. Impaired fatigue resistance, sarcoplasmic reticulum function, and mitochondrial activity in soleus muscle of db/db mice. Physiol Rep 2022; 10:e15478. [PMID: 36117307 PMCID: PMC9483406 DOI: 10.14814/phy2.15478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by reduced exercise tolerance due to increased fatigability in skeletal muscle. In this study, we investigated muscle fatigue resistance of soleus (SOL) muscle in obese type 2 diabetic model mice (db/db). No differences in muscle volume, absolute force, or specific force in SOL muscle were observed between db/db mice and control mice (db/+), while fatigue resistance evaluated by repeated tetanic contractions was significantly lower in db/db mice (30th tetani, db/+: 63.7 ± 4.7%, db/db: 51.3 ± 4.8%). The protein abundance related to Ca2+ release from the sarcoplasmic reticulum (SR) in SOL muscle was not different between db/db mice and db/+ mice, while SR Ca2+ -ATPase (Ca2+ reuptake to SR) protein was decreased in db/db mice compared to db/+ mice (db/+: 1.00 ± 0.17, db/db: 0.60 ± 0.04, relative units). In addition, mitochondrial oxidative enzyme activity (succinate dehydrogenase) was decreased in the SOL muscle of db/db mice (p < 0.05). These data suggest that fatigue resistance in slow-twitch dominant muscle is impaired in mice with T2DM. Decreased mitochondrial oxidative enzyme activity and impairment of Ca2+ uptake to SR, or both might be involved in the mechanisms.
Collapse
Affiliation(s)
- Hiro Yamamoto
- Department of International TourismNagasaki International UniversityNagasakiJapan
| | - Hiroaki Eshima
- Department of International TourismNagasaki International UniversityNagasakiJapan
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Saori Kakehi
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Ryuzo Kawamori
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| | - Hirotaka Watada
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
- Center for Therapeutic Innovations in DiabetesJuntendo University Graduate School of MedicineTokyoJapan
- Center for Identification of Diabetic Therapeutic TargetsJuntendo University Graduate School of MedicineTokyoJapan
| | - Yoshifumi Tamura
- Department of Metabolism & EndocrinologyJuntendo University Graduate School of MedicineTokyoJapan
- Sportology CenterJuntendo University Graduate School of MedicineTokyoJapan
| |
Collapse
|
7
|
Greer LK, Meilleur KG, Harvey BK, Wires ES. Identification of ER/SR resident proteins as biomarkers for ER/SR calcium depletion in skeletal muscle cells. Orphanet J Rare Dis 2022; 17:225. [PMID: 35698232 PMCID: PMC9195201 DOI: 10.1186/s13023-022-02368-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aberrations to endoplasmic/sarcoplasmic reticulum (ER/SR) calcium concentration can result in the departure of endogenous proteins in a phenomenon termed exodosis. Redistribution of the ER/SR proteome can have deleterious effects to cell function and cell viability, often contributing to disease pathogenesis. Many proteins prone to exodosis reside in the ER/SR via an ER retention/retrieval sequence (ERS) and are involved in protein folding, protein modification, and protein trafficking. While the consequences of their extracellular presence have yet to be fully delineated, the proteins that have undergone exodosis may be useful for biomarker development. Skeletal muscle cells rely upon tightly coordinated ER/SR calcium release for muscle contractions, and perturbations to calcium homeostasis can result in myopathies. Ryanodine receptor type-1 (RYR1) is a calcium release channel located in the SR. Mutations to the RYR1 gene can compromise calcium homeostasis leading to a vast range of clinical phenotypes encompassing hypotonia, myalgia, respiratory insufficiency, ophthalmoplegia, fatigue and malignant hyperthermia (MH). There are currently no FDA approved treatments for RYR1-related myopathies (RYR1-RM). RESULTS Here we examine the exodosis profile of skeletal muscle cells following ER/SR calcium depletion. Proteomic analysis identified 4,465 extracellular proteins following ER/SR calcium depletion with 1,280 proteins significantly different than vehicle. A total of 54 ERS proteins were identified and 33 ERS proteins significantly increased following ER/SR calcium depletion. Specifically, ERS protein, mesencephalic astrocyte-derived neurotrophic factor (MANF), was elevated following calcium depletion, making it a potential biomarker candidate for human samples. Despite no significant elevation of MANF in plasma levels among healthy volunteers and RYR1-RM individuals, MANF plasma levels positively correlated with age in RYR1-RM individuals, presenting a potential biomarker of disease progression. Selenoprotein N (SEPN1) was also detected only in extracellular samples following ER/SR calcium depletion. This protein is integral to calcium handling and SEPN1 variants have a causal role in SEPN1-related myopathies (SEPN1-RM). Extracellular presence of ER/SR membrane proteins may provide new insight into proteomic alterations extending beyond ERS proteins. Pre-treatment of skeletal muscle cells with bromocriptine, an FDA approved drug recently found to have anti-exodosis effects, curbed exodosis of ER/SR resident proteins. CONCLUSION Changes to the extracellular content caused by intracellular calcium dysregulation presents an opportunity for biomarker development and drug discovery.
Collapse
Affiliation(s)
- Lacey K Greer
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | | | - Brandon K Harvey
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Emily S Wires
- National Institute On Drug Abuse, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
8
|
Takeda R, Nonaka Y, Kakinoki K, Miura S, Kano Y, Hoshino D. Effect of endurance training and PGC-1α overexpression on calculated lactate production volume during exercise based on blood lactate concentration. Sci Rep 2022; 12:1635. [PMID: 35102189 PMCID: PMC8803982 DOI: 10.1038/s41598-022-05593-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 11/29/2022] Open
Abstract
Lactate production is an important clue for understanding metabolic and signal responses to exercise but its measurement is difficult. Therefore, this study aimed (1) to develop a method of calculating lactate production volume during exercise based on blood lactate concentration and compare the effects between endurance exercise training (EX) and PGC-1α overexpression (OE), (2) to elucidate which proteins and enzymes contribute to changes in lactate production due to EX and muscle PGC-1α OE, and (3) to elucidate the relationship between lactate production volume and signaling phosphorylations involved in mitochondrial biogenesis. EX and PGC-1α OE decreased muscle lactate production volume at the absolute same-intensity exercise, but only PGC-1α OE increased lactate production volume at the relative same-intensity exercise. Multiple linear regression revealed that phosphofructokinase, monocarboxylate transporter (MCT)1, MCT4, and citrate synthase equally contribute to the lactate production volume at high-intensity exercise within physiological adaptations, such as EX, not PGC-1α OE. We found that an exercise intensity-dependent increase in the lactate production volume was associated with a decrease in glycogen concentration and an increase in P-AMPK/T-AMPK. This suggested that the calculated lactate production volume was appropriate and reflected metabolic and signal responses but further modifications are needed for the translation to humans.
Collapse
Affiliation(s)
- Reo Takeda
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
| | - Yudai Nonaka
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
- Institute of Liberal Arts and Science, Kanazawa University, Ishikawa, Japan
| | | | - Shinji Miura
- Laboratory of Nutritional Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan
| | - Daisuke Hoshino
- Bioscience and Technology Program, Department of Engineering Science, The University of Electro-Communications, 1-5-1 Chofugaoka, Tokyo, 182-8585, Chofu, Japan.
| |
Collapse
|
9
|
Tabuchi A, Tanaka Y, Takagi R, Shirakawa H, Shibaguchi T, Sugiura T, Poole DC, Kano Y. Ryanodine receptors mediate high intracellular Ca 2+ and some myocyte damage following eccentric contractions in rat fast-twitch skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2022; 322:R14-R27. [PMID: 34755549 DOI: 10.1152/ajpregu.00166.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022]
Abstract
Eccentric contractions (ECC) facilitate cytosolic calcium ion (Ca2+) release from the sarcoplasmic reticulum (SR) and Ca2+ influx from the extracellular space. Ca2+ is a vital signaling messenger that regulates multiple cellular processes via its spatial and temporal concentration ([Ca2+]i) dynamics. We hypothesized that 1) a specific pattern of spatial/temporal intramyocyte Ca2+ dynamics portends muscle damage following ECC and 2) these dynamics would be regulated by the ryanodine receptor (RyR). [Ca2+]i in the tibialis anterior muscles of anesthetized adult Wistar rats was measured by ratiometric (i.e., ratio, R, 340/380 nm excitation) in vivo bioimaging with Fura-2 pre-ECC and at 5 and 24 h post-ECC (5 × 40 contractions). Separate groups of rats received RyR inhibitor dantrolene (DAN; 10 mg/kg ip) immediately post-ECC (+DAN). Muscle damage was evaluated by histological analysis on hematoxylin-eosin stained muscle sections. Compared with control (CONT, no ECC), [Ca2+]i distribution was heterogeneous with increased percent total area of high [Ca2+]i sites (operationally defined as R ≥ 1.39, i.e., ≥1 SD of mean control) 5 h post-ECC (CONT, 14.0 ± 8.0; ECC5h: 52.0 ± 7.4%, P < 0.01). DAN substantially reduced the high [Ca2+]i area 5 h post-ECC (ECC5h + DAN: 6.4 ± 3.1%, P < 0.01) and myocyte damage (ECC24h, 63.2 ± 1.0%; ECC24h + DAN: 29.1 ± 2.2%, P < 0.01). Temporal and spatially amplified [Ca2+]i fluctuations occurred regardless of DAN (ECC vs. ECC + DAN, P > 0.05). These results suggest that the RyR-mediated local high [Ca2+]i itself is related to the magnitude of muscle damage, whereas the [Ca2+]i fluctuation is an RyR-independent phenomenon.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| | - Ryo Takagi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideki Shirakawa
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
| | - Tsubasa Shibaguchi
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
| | - Takao Sugiura
- Department of Exercise and Health Sciences, Faculty of Education, Yamaguchi University, Yamaguchi, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Japan
- Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Japan
| |
Collapse
|
10
|
Eshima H. Influence of Obesity and Type 2 Diabetes on Calcium Handling by Skeletal Muscle: Spotlight on the Sarcoplasmic Reticulum and Mitochondria. Front Physiol 2021; 12:758316. [PMID: 34795598 PMCID: PMC8592904 DOI: 10.3389/fphys.2021.758316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 12/25/2022] Open
Abstract
Obesity and diabetes have been shown to interfere with energy metabolism and cause peripheral insulin resistance in skeletal muscle. However, recent studies have focused on the effect metabolic insult has on the loss of muscle size, strength, and physical function. Contractile dysfunction has been linked to impaired intracellular Ca2+ concentration ([Ca2+]i) regulation. In skeletal muscle, [Ca2+]i homeostasis is highly regulated by Ca2+ transport across the sarcolemma/plasma membrane, the golgi apparatus, sarcoplasmic reticulum (SR), and mitochondria. Particularly, the SR and or mitochondria play an important role in the fine-tuning of this metabolic process. Recent studies showed that obesity and insulin resistance are associated with interactions between the SR and mitochondrial networks (the dynamic tubular reticulum formed by mitochondria), suggesting that metabolic disorders alter Ca2+ handling by these organelles. These interactions are facilitated by specific membrane proteins, including ion channels. This review considers the impact of metabolic disorders, such as obesity and type 2 diabetes, on the regulation of [Ca2+]i in skeletal muscle. It also discusses the mechanisms by which this occurs, focusing chiefly on the SR and mitochondria networks. A deeper understanding of the effect of metabolic disorders on calcium handling might be useful for therapeutic strategies.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of International Tourism, Nagasaki International University, Nagasaki, Japan
| |
Collapse
|
11
|
Smith IC, Ostertag C, O'Reilly JJ, Rios JL, Klancic T, MacDonald GZ, Collins KH, Reimer RA, Herzog W. Contractility of permeabilized rat vastus intermedius muscle fibres following high-fat, high-sucrose diet consumption. Appl Physiol Nutr Metab 2021; 46:1389-1399. [PMID: 34139131 DOI: 10.1139/apnm-2021-0238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Obesity is a worldwide health concern associated with impaired physical function. It is not clear if contractile protein dysfunction contributes to the impairment of muscle function observed with obesity. The purpose of this study was to examine if diet-induced obesity affects contractile function of chemically permeabilized vastus intermedius fibres of male Sprague-Dawley rats expressing fast myosin heavy chain (MHC) IIa or slow MHC I. Rats consumed either a high-fat, high sucrose (HFHS) diet or a standard (CHOW) diet beginning as either weanlings (7-week duration: WEAN7 cohort, or 14-week duration: WEAN14 cohort) or young adults (12-week duration: ADULT12 cohort, 24-week duration: ADULT24 cohort). HFHS-fed rats had higher (P < 0.05) whole-body adiposity (derived from dual-energy X-ray absorptiometry) than CHOW-fed rats in all cohorts. Relative to CHOW diet groups, the HFHS diet was associated with impaired force production in (a) MHC I fibres in the ADULT24 cohort; and (b) MHC IIa fibres in the ADULT12 and ADULT24 cohorts combined. However, the HFHS diet did not significantly affect the Ca2+-sensitivity of force production, unloaded shortening velocity, or ratio of active force to active stiffness in any cohort. We conclude that diet-induced obesity can impair force output of permeabilized muscle fibres of adult rats. Novelty: We assessed contractile function of permeabilized skeletal muscle fibres in a rat model of diet-induced obesity. The high-fat, high-sucrose diet was associated with impaired force output of fibres expressing MHC I or MHC IIa in some cohorts of rats. Other measures of contractile function were not significantly affected by diet.
Collapse
Affiliation(s)
- Ian C Smith
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Curtis Ostertag
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer J O'Reilly
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jaqueline L Rios
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Teja Klancic
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Graham Z MacDonald
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Kelsey H Collins
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
12
|
Mitochondrial Dysfunction Contributes to Aging-Related Atrial Fibrillation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5530293. [PMID: 34007402 PMCID: PMC8102104 DOI: 10.1155/2021/5530293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/04/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
The incidence of atrial fibrillation (AF) increases with age, and telomere length gradually shortens with age. However, whether telomere length is related to AF is still inconclusive, and the exact mechanism by which aging causes the increased incidence of AF is still unclear. We hypothesize that telomere length is correlated with aging-related AF and that mitochondrial dysfunction plays a role in this. This research recruited 96 elderly male patients with AF who were admitted to the Second Medical Center of Chinese PLA General Hospital from April to October 2018. After matching by age and gender, 96 non-AF elderly male patients who were admitted to the hospital for physical examination during the same period were selected as controls. Anthropometric, clinical, and laboratory analyses were performed on all subjects. The mitochondrial membrane potential (MMP) of peripheral blood leukocytes was detected as the indicator of mitochondrial function. Compared with the control group, the leukocyte telomere length (LTL) was significantly shorter (P < 0.001), and the level of PGC-1α in serum was significantly lower in AF patients. Additionally, in subjects without any other diseases, the AF patients had lower MMP when compared with the control. Multivariate logistic regression confirmed that LTL (OR 0.365; 95% CI 0.235-0.568; P < 0.001) and serum PGC-1α (OR 0.993; 95% CI 0.988-0.997; P = 0.002) were inversely associated with the presence of AF. In addition, ROC analysis indicated the potential diagnostic value of LTL and serum PGC-1α with AUC values of 0.734 and 0.633, respectively. This research concludes that LTL and serum PGC-1α are inversely correlated with the occurrence of aging-related AF and that mitochondrial dysfunction plays a role in this.
Collapse
|
13
|
Liu Z, Zhu H, He C, He T, Pan S, Zhao N, Zhu L, Guan G, Liu P, Zhang Y, Wang J. Nicorandil attenuates high glucose-induced insulin resistance by suppressing oxidative stress-mediated ER stress PERK signaling pathway. BMJ Open Diabetes Res Care 2021; 9:9/1/e001884. [PMID: 33888540 PMCID: PMC8070885 DOI: 10.1136/bmjdrc-2020-001884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/03/2021] [Accepted: 03/28/2021] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Glucose-induced insulin resistance is a typical character of diabetes. Nicorandil is now widely used in ischemic heart disease. Nicorandil shows protective effects against oxidative and endoplasmic reticulum (ER) stress, which are involved in insulin resistance. Here, we investigated mechanisms of nicorandil's novel pharmacological activity on insulin resistance in diabetes. RESEARCH DESIGN AND METHODS Nicorandil was administrated to streptozotocin-induced animals with diabetes and high glucose exposed skeletal muscle cells. Insulin resistance and glucose tolerance were evaluated. Molecular mechanisms concerning oxidative stress, ER stress signaling activation and glucose uptake were assessed. RESULTS Nicorandil attenuated high glucose-induced insulin resistance without affecting fasting blood glucose and glucose tolerance in whole body and skeletal muscle in rats with diabetes. Nicorandil treatment suppressed protein kinase C/nicotinamide adenine dinucleotide phosphate oxidases system activities by reducing cytoplasmic free calcium level in skeletal muscle cells exposed to high glucose. As a result, the oxidative stress-mediated ER stress protein kinase RNA-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2α/activating transcription factor 4/CEBP homologous protein/tribbles homolog (TRB)3 signaling pathway activation was inhibited. Nicorandil downregulated expression of TRB3 and thus facilitated Akt phosphorylation in response to insulin stimulation, leading to glucose transporter4 plasma membrane translocation which promoted glucose uptake capability of skeletal muscle cells. CONCLUSIONS By reducing cytoplasmic calcium, nicorandil alleviated high glucose-induced insulin resistance by inhibiting oxidative stress-mediated ER stress PERK pathway.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Haitao Zhu
- Department of Pediatrics, Northwest Women's and Children's Hospital, Xi'an, China
| | - Chunhui He
- Department of Cardiology, Fuwai Hospital State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Ting He
- Department of Cardiology, Fuwai Hospital State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Shuo Pan
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Na Zhao
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Ling Zhu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Gongchang Guan
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Peng Liu
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Yong Zhang
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| | - Junkui Wang
- Department of Cardiology, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
14
|
Eshima H, Tamura Y, Kakehi S, Kakigi R, Kawamori R, Watada H. Maintenance of contractile force and increased fatigue resistance in slow-twitch skeletal muscle of mice fed a high-fat diet. J Appl Physiol (1985) 2021; 130:528-536. [PMID: 33270511 DOI: 10.1152/japplphysiol.00218.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Consumption of a high-fat diet (HFD) significantly increases exercise endurance performance during treadmill running. However, whether HFD consumption increases endurance capacity via enhanced muscle fatigue resistance has not been clarified. In this study, we investigated the effects of HFDs on contractile force and fatigue resistance of slow-twitch dominant muscles. The soleus (SOL) muscle of male C57BL/6J mice fed an HFD (60% kcal from fat) or a low-fat diet (LFD) for 12 wk was analyzed. Muscle contractile force was measured under resting conditions and during fatigue induced by repeated tetanic contractions (100 Hz, 50 contractions, and 2-s intervals). Differences in muscle twitch or tetanic force were not evident between HFD and LFD groups, whereas fatigue resistance was higher in the HFD groups. The SOL muscle of HFD-fed mice showed increased levels of markers related to oxidative capacity such as succinate dehydrogenase (SDH) and citrate synthase (CS) activity. In addition, electron microscopy analyses indicated that the total number of mitochondria and mitochondrial volume density increased in the SOL muscle of the HFD groups. These findings suggest that HFD consumption induces increased muscle fatigue resistance in slow-twitch dominant muscle fibers. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.NEW & NOTEWORTHY In this study, we examined the effects of HFDs on muscle contractile force and fatigue resistance of slow-twitch dominant muscles ex vivo. We found that contractile function was comparable between the HFD groups and the LFD group, whereas fatigue resistance was higher in the HFD groups. This effect of HFD may be related to elevated oxidative enzyme activity, high mitochondrial content, or both.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,The Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Yang Y, Du J, Xu R, Shen Y, Yang D, Li D, Hu H, Pei H, Yang Y. Melatonin alleviates angiotensin-II-induced cardiac hypertrophy via activating MICU1 pathway. Aging (Albany NY) 2020; 13:493-515. [PMID: 33259334 PMCID: PMC7834983 DOI: 10.18632/aging.202159] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
Mitochondrial calcium uptake 1 (MICU1) is a pivotal molecule in maintaining mitochondrial homeostasis under stress conditions. However, it is unclear whether MICU1 attenuates mitochondrial stress in angiotensin II (Ang-II)-induced cardiac hypertrophy or if it has a role in the function of melatonin. Here, small-interfering RNAs against MICU1 or adenovirus-based plasmids encoding MICU1 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) for 48 h. MICU1 expression was depressed in hypertrophic myocardia and MICU1 knockdown aggravated Ang-II-induced cardiac hypertrophy in vivo and in vitro. In contrast, MICU1 upregulation decreased cardiomyocyte susceptibility to hypertrophic stress. Ang-II administration, particularly in NMVMs with MICU1 knockdown, led to significantly increased reactive oxygen species (ROS) overload, altered mitochondrial morphology, and suppressed mitochondrial function, all of which were reversed by MICU1 supplementation. Moreover, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α)/MICU1 expression in hypertrophic myocardia increased with melatonin. Melatonin ameliorated excessive ROS generation, promoted mitochondrial function, and attenuated cardiac hypertrophy in control but not MICU1 knockdown NMVMs or mice. Collectively, our results demonstrate that MICU1 attenuates Ang-II-induced cardiac hypertrophy by inhibiting mitochondria-derived oxidative stress. MICU1 activation may be the mechanism underlying melatonin-induced protection against myocardial hypertrophy.
Collapse
Affiliation(s)
- Yi Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Jin Du
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Rui Xu
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yang Shen
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Dachun Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - De Li
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Yongjian Yang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
16
|
Abstract
Significance: Regular contractile activity plays a critical role in maintaining skeletal muscle morphological integrity and physiological function. If the muscle is forced to stop contraction, such as during limb immobilization (IM), the IGF/Akt/mTOR signaling pathway that normally stimulates protein synthesis and inhibits proteolysis will be suppressed, whereas the FoxO-controlled catabolic pathways such as ubiquitin-proteolysis and autophagy/mitophagy will be activated and dominate, resulting in muscle fiber atrophy. Recent Advances: Mitochondria occupy a central position in the regulation of both protein synthesis and degradation through several redox-sensitive pathways, including peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), mitochondrial fusion and fission proteins, mitophagy, and sirtuins. Prolonged IM downregulates PGC-1α due to AMPK (5'-AMP-activated protein kinase) and FoxO activation, thus decreasing mitochondrial biogenesis and causing oxidative damage. Decrease of mitochondrial inner membrane potential and increase of mitochondrial fission can trigger cascades of mitophagy leading to loss of mitochondrial homeostasis (mitostasis), inflammation, and apoptosis. The phenotypic outcomes of these disorders are compromised muscle function and fiber atrophy. Critical Issues: Given the molecular mechanism of the pathogenesis, it is imperative that the integrity of intracellular signaling be restored to prevent the deterioration. So far, overexpression of PGC-1α via transgene and in vivo DNA transfection has been found to be effective in ameliorating mitostasis and reduces IM-induced muscle atrophy. Nutritional supplementation of select amino acids and phytochemicals also provides mechanistic and practical insights into the prevention of muscle disuse atrophy. Future Directions: In light of the importance of mitochondria in regulating the various critical signaling pathways, future work should focus on exploring new epigenetic strategies to restore mitostasis and redox balance.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Dongwook Yeo
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Chounghun Kang
- Departmet Physical Education, Inha University, Incheon, South Korea
| |
Collapse
|
17
|
Eshima H, Tamura Y, Kakehi S, Kakigi R, Hashimoto R, Funai K, Kawamori R, Watada H. A chronic high-fat diet exacerbates contractile dysfunction with impaired intracellular Ca 2+ release capacity in the skeletal muscle of aged mice. J Appl Physiol (1985) 2020; 128:1153-1162. [PMID: 32213111 DOI: 10.1152/japplphysiol.00530.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obesity and aging reduce skeletal muscle contractile function. However, it remains unclear whether obesity additively promotes muscle contractile dysfunction in the setting of aging. In this study, we investigated skeletal muscle contractile function ex vivo and intracellular Ca2+ release in male C57BL/6J mice fed a low-fat diet (LFD) or a high-fat diet (HFD) for 4 or 20 mo. Tetanic force production in the extensor digitorum longus muscle was decreased by aging or HFD feeding, and the further reduction was observed in aged HFD mice. The 20-mo HFD-fed mice, not the 20-mo LFD-fed mice or 4-mo HFD-fed mice, showed reduced intracellular Ca2+ peak levels by high concentration of caffeine (25 mM) compared with 4-mo LFD mice. Aging and HFD feeding additively increased intramyocellular lipid (IMCL) levels and were associated with the degree of impaired muscle contractile force and peak Ca2+ level. These data suggest that impairment in the contractile force in aged muscle is aggravated by HFD, which may be due, at least in part, to dysfunction in intracellular Ca2+ release. The IMCL level may be a marker for impaired muscle contractile force caused by aging and HFD.NEW & NOTEWORTHY The aim of this study was to examine the effect of high-fat diet (HFD)-induced obesity on contractile function and Ca2+ release capacity in aged skeletal muscle. Not only were the force production and peak Ca2+ levels decreased by aging and HFD feeding, respectively, but also, these interventions had an additive effect in aged HFD-fed mice. These data suggest that the impairment in the contractile force in aged muscle is aggravated by a HFD, which may be due to synergistic dysfunction in intracellular Ca2+ release.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Yoshifumi Tamura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Kakehi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Ryota Hashimoto
- Department of Physiology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katsuhiko Funai
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Ryuzo Kawamori
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Watanabe D, Hatakeyama K, Ikegami R, Eshima H, Yagishita K, Poole DC, Kano Y. Sex differences in mitochondrial Ca 2+ handling in mouse fast-twitch skeletal muscle in vivo. J Appl Physiol (1985) 2020; 128:241-251. [PMID: 31917626 DOI: 10.1152/japplphysiol.00230.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We investigated sex differences in mitochondrial Ca2+ handling properties in mouse fast-twitch skeletal muscle. Changes in cytoplasmic Ca2+ concentration ([Ca2+]cyto) were measured in vivo using tibialis anterior muscles from male and female mice. The muscles were exposed to increasing concentrations of cyclopiazonic acid [CPA; sarcoplasmic reticulum (SR) Ca2+-ATPase inhibitor] (from 10 to 30 to 50 μM at 10 min intervals). Thirty minutes after treatment, [Ca2+]cyto was increased by 31.6 ± 2.0% and 13.5 ± 4.5% of initial [Ca2+]cyto in male and female muscles, respectively, and there was a significant difference between sexes. However, muscle preincubation for 5 min with 10 μM carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (an inhibitor of mitochondria Ca2+ uptake) eradicated this difference between sexes with respect to the CPA-induced [Ca2+]cyto increase. Both intermyofibrillar mitochondrial number and volume, assessed in longitudinal fiber sections, were higher in females compared with males (mitochondria number: 13.1 ± 1.0 in males vs. 19.9 ± 2.3 in females; mitochondrial volume: 0.034 ± 0.004 μm3/μm3 fiber volume in males vs. 0.066 ± 0.008 μm3/μm3 fiber volume in females, both P < 0.05). There were no sex differences in the content of SR Ca2+-ATPase, mitochondrial Ca2+ uniporter, mitofusin (Mfn) 1, or Mfn2. These results suggest that 1) mitochondrial Ca2+ uptake ability is greater in female than male myocytes, and 2) this superior Ca2+ uptake ability of female myocytes is due, partly, to the higher intermyofibrillar mitochondrial content but not to the expression of mitochondrial proteins related to mitochondrial Ca2+ uptake.NEW & NOTEWORTHY This investigation presents evidence that female versus male fast-twitch muscle exhibits a greater mitochondrial calcium ion uptake capability that is partly conferred by the higher intermyofibrillar mitochondrial volume density.
Collapse
Affiliation(s)
- Daiki Watanabe
- Bioscience and Technology Program, Department of Engineering Sciences, University of Electro-Communications, Tokyo, Japan.,Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| | - Koji Hatakeyama
- Bioscience and Technology Program, Department of Engineering Sciences, University of Electro-Communications, Tokyo, Japan
| | - Ryo Ikegami
- Bioscience and Technology Program, Department of Engineering Sciences, University of Electro-Communications, Tokyo, Japan
| | - Hiroaki Eshima
- Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, Utah
| | - Kazuyoshi Yagishita
- Clinical Center for Sports Medicine and Sports Dentistry, Hyperbaric Medical Center/Sports Medicine Clinical Center, Medical Hospital of Tokyo Medical and Dental University, Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Bioscience and Technology Program, Department of Engineering Sciences, University of Electro-Communications, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering, University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
19
|
Ji LL, Yeo D. Cellular mechanism of immobilization-induced muscle atrophy: A mini review. SPORTS MEDICINE AND HEALTH SCIENCE 2019; 1:19-23. [PMID: 35782462 PMCID: PMC9219315 DOI: 10.1016/j.smhs.2019.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
It is well-established that regular contraction maintains morphological and functional integrity of skeletal muscle, whereas rigorous exercise training can upregulate muscle metabolic and contractile function. However, when muscles stop contraction, such as during immobilization (IM) and denervation, withdrawal of IGF/Akt/mTOR signaling allows FoxO-controlled protein degradation pathways to dominate. Mitochondria play an important role in regulating both protein synthesis and degradation via several redox sensitive signaling pathways such as mitochondrial biogenesis, fusion and fission dynamics, ubiquitin-proteolysis, autophagy/mitophagy, and apoptosis. During prolonged IM, downregulation of PGC-1α and increased mitochondrial oxidative damage facilitate fission protein and inflammatory cytokine production and activate mitophagic process, leading to a vicious cycle of protein degradation. This “mitostasis theory of muscle atrophy” is the opposite pathway of hormesis, which defines enhanced muscle function with contractile overload. The demonstration that PGC-1α overexpression via transgene or in vivo DNA transfection can successfully restore mitochondrial homeostasis and reverse myocyte atrophy supports such a proposition. Understanding the mechanism governing mitostasis can be instrumental to the treatment of muscle atrophy associated with bedrest, cancer cachexia and sarcopenia.
Collapse
Affiliation(s)
- Li Li Ji
- Corresponding author. 111 Cooke Hall, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| | | |
Collapse
|
20
|
Tabuchi A, Eshima H, Tanaka Y, Nogami S, Inoue N, Sudo M, Okada H, Poole DC, Kano Y. Regional differences in Ca 2+ entry along the proximal-middle-distal muscle axis during eccentric contractions in rat skeletal muscle. J Appl Physiol (1985) 2019; 127:828-837. [PMID: 31369334 DOI: 10.1152/japplphysiol.01005.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Eccentric (ECC) contraction-induced muscle damage is associated with calcium ion (Ca2+) influx from the extracellular milieu through stretch-activated channels. It remains unknown whether Ca2+ influx consequent to repetitive ECC contractions is nonuniform across different muscle regions. We tested the hypothesis that there are regional differences in Ca2+ entry along the proximal-middle-distal muscle axis. Tibialis anterior (TA) muscles of adult male Wistar rats were exposed by reflecting the overlying skin and fasciae and ECC contractions evoked by peroneal nerve stimulation paired with simultaneous ankle extension (50 times/set, 2 protocols: 1 set and 10 sets). During ECC in the proximal, middle, and distal TA, we determined 1) muscle fiber extension by high-speed camera (200 frames/s) and 2) Ca2+ accumulation by in vivo bioimaging (Ca2+-sensitive probe Fura-2-acetoxymethyl ester). Muscle fiber extension from resting was significantly different among regions (i.e., proximal, 4.0%: < middle, 11.2%: < distal, 17.0%; ECC phase length at 500th contraction). Intracellular Ca2+ accumulation after 1 set of ECC was higher in the distal (1.46 ± 0.04, P < 0.05) than the proximal (1.27 ± 0.04) or middle (1.26 ± 0.05) regions. However, this regional Ca2+ accumulation difference disappeared by 32.5 min after the 1 set protocol when the muscle was quiescent and by contraction set 5 for the 10-set protocol. The initial preferential ECC-induced Ca2+ accumulation observed distally was associated spatially with the greater muscle extension compared with that of the proximal and middle regions. Disappearance of the regional Ca2+ accumulation disparity in quiescent and ECC-contracting muscle might be explained, in part, by axial Ca2+ propagation and account for the uniformity of muscle damage across regions evident 3 days post-ECC.NEW & NOTEWORTHY After 1 set of 50 eccentric (ECC) contractions in the anterior tibialis muscle, intracellular Ca2+ ([Ca2+]i) accumulation evinces substantial regional heterogeneity that is spatially coherent with muscle length changes (i.e., distal [Ca2+]i > middle, proximal). However, irrespective of whether 50 or 500 ECC contractions are performed, this heterogeneity is subsequently abolished, at least in part, by axial intracellular Ca2+ propagation. This Ca2+ homogenization across regions is consistent with the absence of any interregional difference in muscle damage 3 days post-ECC.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Hiroaki Eshima
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Department of Nutrition and Integrative Physiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Yoshinori Tanaka
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Shunsuke Nogami
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Naoki Inoue
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - Mizuki Sudo
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Physical Fitness Research Institute, Meiji Yasuda Life Foundation of Health and Welfare, Tokyo, Japan
| | - Hidetaka Okada
- Department of Mechanical Engineering and Intelligent Systems, Control Systems Program, University of Electro-Communications, Chofu, Tokyo, Japan
| | - David C Poole
- Departments of Anatomy & Physiology and Kinesiology, Kansas State University, Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Chofu, Tokyo, Japan.,Center for Neuroscience and Biomedical Engineering (CNBE), University of Electro-Communications, Chofu, Tokyo, Japan
| |
Collapse
|
21
|
Ikegami R, Eshima H, Mashio T, Ishiguro T, Hoshino D, Poole DC, Kano Y. Accumulation of intramyocyte TRPV1-mediated calcium during heat stress is inhibited by concomitant muscle contractions. J Appl Physiol (1985) 2019; 126:691-698. [PMID: 30676872 DOI: 10.1152/japplphysiol.00668.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Heat stress promotes intramyocyte calcium concentration ([Ca2+]i) accumulation via transient receptor potential vanilloid 1 (TRPV1) channels. We tested the hypothesis that muscle contractile activity concomitant with heat stress would accelerate the increase in [Ca2+]i via TRPV1, further impairing [Ca2+]i homeostasis. Spinotrapezius muscles of adult Wistar rats were exteriorized in vivo and loaded with the fluorescent Ca2+ probe fura 2-AM. Heat stress (muscle surface temperature 40°C) was used as TRPV1 activator. An isometric contraction (100 Hz, 5-10 V, 30 s) was induced electrically concomitant with heat stress. [Ca2+]i was determined for 20 min using in vivo fluorescence microscopy, and the phosphorylation response of TRPV1 was determined by Western blotting. Heat stress induced a significant [Ca2+]i increase of 18.5 ± 8.1% at 20 min and TRPV1 phosphorylation (+231%), which was inhibited by addition of the TRPV1 inhibitor (capsazepine). However, contrary to expectations, the heat stress and isometric contraction condition almost completely inhibited TRPV1 phosphorylation and the consequent [Ca2+]i elevation (<2.8% accumulation during heat stress, P > 0.05). In conclusion, this in vivo physiological model demonstrated that isometric muscle contraction(s) can suppress the phosphorylation response of TRPV1 and maintain [Ca2+]i homeostasis during heat stress. NEW & NOTEWORTHY This investigation is the first document the dynamics of intramyocyte calcium concentration ([Ca2+]i) increase in the myoplasm of skeletal muscle fibers in response to heat stress where the muscle blood flow is preserved. Heat stress at 40°C drives a myoplasmic [Ca2+]i accumulation in concert with transient receptor potential vanilloid 1 (TRPV1) phosphorylation. However, muscle contraction caused TRPV1 channel deactivation by dephosphorylation of TRPV1. TRPV1 inactivation via isometric contraction(s) permits maintenance of [Ca2+]i homeostasis even under high imposed muscle temperature.
Collapse
Affiliation(s)
- Ryo Ikegami
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Hiroaki Eshima
- Department of Nutrition and Integrative Physiology, University of Utah School of Medicine , Salt Lake City, Utah
| | - Takuro Mashio
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Tomosada Ishiguro
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - Daisuke Hoshino
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| | - David C Poole
- Departments of Anatomy and Physiology and Kinesiology, Kansas State University , Manhattan, Kansas
| | - Yutaka Kano
- Department of Engineering Science, Bioscience, and Technology Program, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo , Japan
| |
Collapse
|
22
|
Yeo D, Kang C, Gomez-Cabrera MC, Vina J, Ji LL. Intensified mitophagy in skeletal muscle with aging is downregulated by PGC-1alpha overexpression in vivo. Free Radic Biol Med 2019; 130:361-368. [PMID: 30395971 DOI: 10.1016/j.freeradbiomed.2018.10.456] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction plays an important role in the etiology of age-related muscle atrophy known as sarcopenia. PGC-1α is positioned at the center of crosstalk in regulating mitochondrial quality control, but its role in mitophagy in aged skeletal muscle is currently unclear. The present study investigated the effects of aging and PGC-1α overexpression via in vivo DNA transfection on key mitophagy protein markers, as well as mitochondrial dynamics related proteins, metabolic function and antioxidant capacity in mouse muscle. C57BL/6J mice at the age of 2 mo (young, Y; N = 14) and 24 mo (old, O; N = 14) were transfected in vivo with either PGC-1α DNA (OE, N = 7) or GFP (N = 7) into the tibialis anterior (TA) muscle followed by electroporation. PINK1 and Parkin protein contents were 3.6 and 1.4-fold higher (P < 0.01), whereas mitochondrial ubiquitination (Ub) increased 1.5-fold (P < 0.05), in O vs. Y mice. PGC-1 OE suppressed PINK and Parkin protein levels by 50-60% (P < 0.01), and decreased Ub by 20% (P < 0.05) in old mice. Aging significantly increased the protein content of LC3II (30%, P < 0.05), p62 (42%, P < 0.05), RheB (5.5-fold, P < 0.01), Beclin-1 (3-fold, P < 0.01) and Mfn2 (~4-fold, P < 0.01) in the TA muscle. However, these age-related increases in mitophagy markers were attenuated by PGC-1α OE. Furthermore, aging dramatically increased Fis-1 protein content by 14-fold (P < 0.01), along with a severe reduction of citrate synthase activity (64%, P < 0.01) and cytochrome c oxidase subunit IV (COXIV) protein content (85%, P < 0.01). PGC-1α OE mitigated the age effects on Fis-1 and Drp-1 (P < 0.05). Moreover, PGC-1α OE enhanced mitochondrial oxidative function and antioxidant enzyme activities, and decreased lipid peroxidation and inner membrane damage found in old mice (P < 0.01). In summary, our data demonstrate that mitophagy protein expression in skeletal muscle was enhanced at old age driven possibly by increased mitochondrial dysfunction, damage, and fission. PGC-1α OE was effective in ameliorating mitochondrial deficits but did not restore muscle fiber atrophy.
Collapse
Affiliation(s)
- Dongwook Yeo
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minneapolis, MN 55455, United States
| | - Chounghun Kang
- Department of Physical Education, Inha University, Incheon, South Korea
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Jose Vina
- Department of Physiology, University of Valencia, Investigación Hospital Clínico Universitario/INCLIVA, Valencia, Spain
| | - Li Li Ji
- Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, Minneapolis, Minneapolis, MN 55455, United States.
| |
Collapse
|
23
|
Lichvarova L, Henzi T, Safiulina D, Kaasik A, Schwaller B. Parvalbumin alters mitochondrial dynamics and affects cell morphology. Cell Mol Life Sci 2018; 75:4643-4666. [PMID: 30255402 PMCID: PMC6208788 DOI: 10.1007/s00018-018-2921-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/24/2018] [Accepted: 09/18/2018] [Indexed: 12/26/2022]
Abstract
The Ca2+-binding protein parvalbumin (PV) and mitochondria play important roles in Ca2+ signaling, buffering and sequestration. Antagonistic regulation of PV and mitochondrial volume is observed in in vitro and in vivo model systems. Changes in mitochondrial morphology, mitochondrial volume and dynamics (fusion, fission, mitophagy) resulting from modulation of PV were investigated in MDCK epithelial cells with stable overexpression/downregulation of PV. Increased PV levels resulted in smaller, roundish cells and shorter mitochondria, the latter phenomenon related to reduced fusion rates and decreased expression of genes involved in mitochondrial fusion. PV-overexpressing cells displayed increased mitophagy, a likely cause for the decreased mitochondrial volumes and the smaller overall cell size. Cells showed lower mobility in vitro, paralleled by reduced protrusions. Constitutive PV down-regulation in PV-overexpressing cells reverted mitochondrial morphology and fractional volume to the state present in control MDCK cells, resulting from increased mitochondrial movement and augmented fusion rates. PV-modulated, bi-directional and reversible mitochondrial dynamics are key to regulation of mitochondrial volume.
Collapse
Affiliation(s)
- Lucia Lichvarova
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Thomas Henzi
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland
| | - Dzhamilja Safiulina
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Allen Kaasik
- Department of Pharmacology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411, Tartu, Estonia
| | - Beat Schwaller
- Unit of Anatomy, Section of Medicine, University of Fribourg, Route Albert-Gockel 1, 1700, Fribourg, Switzerland.
| |
Collapse
|
24
|
Eshima H, Tamura Y, Kakehi S, Nakamura K, Kurebayashi N, Murayama T, Kakigi R, Sakurai T, Kawamori R, Watada H. Dysfunction of muscle contraction with impaired intracellular Ca 2+ handling in skeletal muscle and the effect of exercise training in male db/db mice. J Appl Physiol (1985) 2018; 126:170-182. [PMID: 30433865 DOI: 10.1152/japplphysiol.00048.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes is characterized by reduced contractile force production and increased fatigability of skeletal muscle. While the maintenance of Ca2+ homeostasis during muscle contraction is a requisite for optimal contractile function, the mechanisms underlying muscle contractile dysfunction in type 2 diabetes are unclear. Here, we investigated skeletal muscle contractile force and Ca2+ flux during contraction and pharmacological stimulation in type 2 diabetic model mice ( db/db mice). Furthermore, we investigated the effect of treadmill exercise training on muscle contractile function. In male db/db mice, muscle contractile force and peak Ca2+ levels were both lower during tetanic stimulation of the fast-twitch muscles, while Ca2+ accumulation was higher after stimulation compared with control mice. While 6 wk of exercise training did not improve glucose tolerance, exercise did improve muscle contractile dysfunction, peak Ca2+ levels, and Ca2+ accumulation following stimulation in male db/db mice. These data suggest that dysfunctional Ca2+ flux may contribute to skeletal muscle contractile dysfunction in type 2 diabetes and that exercise training may be a promising therapeutic approach for dysfunctional skeletal muscle contraction. NEW & NOTEWORTHY The purpose of this study was to examine muscle contractile function and Ca2+ regulation as well as the effect of exercise training in skeletal muscle in obese diabetic mice ( db/db). We observed impairment of muscle contractile force and Ca2+ regulation in a male type 2 diabetic animal model. These dysfunctions in muscle were improved by 6 wk of exercise training.
Collapse
Affiliation(s)
- Hiroaki Eshima
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan.,The Japan Society for the Promotion of Science , Tokyo , Japan
| | - Yoshifumi Tamura
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Saori Kakehi
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Kyoko Nakamura
- Department of Physiology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Nagomi Kurebayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Ryo Kakigi
- Department of Physiology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Takashi Sakurai
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Ryuzo Kawamori
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - Hirotaka Watada
- Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Sportology Center, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine , Tokyo , Japan.,Center for Molecular Diabetology, Juntendo University Graduate School of Medicine , Tokyo , Japan
| |
Collapse
|