1
|
Mohebbati R, Hosseini M, Khazaei M, Shafei MN. Cardiovascular Effect of Cuneiform Nucleus During Hemorrhagic Hypotension. Basic Clin Neurosci 2020; 11:251-259. [PMID: 32963718 PMCID: PMC7502186 DOI: 10.32598/bcn.11.2.84.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/10/2018] [Accepted: 11/10/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction: The underlying mechanism responsible for the cardiovascular response to Hemorrhage (HEM) is still unknown; however, several brain areas, such as the Cuneiform nucleus (CnF) have shown to be involved. In this study, the cardiovascular effect of the CnF during HEM was evaluated. Methods: The animals were divided into the following groups: 1. Vehicle; 2. HEM; 3. Cobalt chloride (CoCl2); 4. CoCl2+saline; and 5. CoCl2+HEM. Catheterization of the left and right femoral artery was performed to record blood pressure and blood withdrawal, respectively. Saline and CoCl2 were microinjected into the CnF nucleus, and then blood withdrawal was done for HEM induction. Cardiovascular regulation throughout the experiments was recorded and changes (Δ) in the Systolic Blood Pressure (SBP), Mean Arterial Pressure (MAP) and Heart Rate (HR) were calculated over time and compared with those treated with saline and HEM, using repeated-measures ANOVA. Results: HEM significantly reduced ΔSBP and ΔMAP and augmented ΔHR than the vehicle group. CoCl2 did not significantly affect basic ΔSBP, ΔMAP, and ΔHR compared with the vehicle group. However, injection of CoCl2 into the CnF before HEM (CoCl2+HEM group) significantly decreased ΔSBP, ΔMAP, and tachycardia, induced by HEM. Conclusion: Our results indicated that blockade of the CnF by CoCl2 significantly reduced the hypotension and tachycardia, induced by HEM indicating the involvement of CnF in cardiovascular regulation during HEM.
Collapse
Affiliation(s)
- Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurogenic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Lateef DM, Xiao C, Brychta RJ, Diedrich A, Schnermann J, Reitman ML. Bombesin-like receptor 3 regulates blood pressure and heart rate via a central sympathetic mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H891-8. [PMID: 26801314 DOI: 10.1152/ajpheart.00963.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/22/2016] [Indexed: 02/07/2023]
Abstract
Bombesin-like receptor 3 (BRS-3) is an orphan G protein-coupled receptor that regulates energy expenditure, food intake, and body weight. We examined the effects of BRS-3 deletion and activation on blood pressure and heart rate. In free-living, telemetered Brs3 null mice the resting heart rate was 10% lower than wild-type controls, while the resting mean arterial pressure was unchanged. During physical activity, the heart rate and blood pressure increased more in Brs3 null mice, reaching a similar heart rate and higher mean arterial pressure than control mice. When sympathetic input was blocked with propranolol, the heart rate of Brs3 null mice was unchanged, while the heart rate in control mice was reduced to the level of the null mice. The intrinsic heart rate, measured after both sympathetic and parasympathetic blockade, was similar in Brs3 null and control mice. Intravenous infusion of the BRS-3 agonist MK-5046 increased mean arterial pressure and heart rate in wild-type but not in Brs3 null mice, and this increase was blocked by pretreatment with clonidine, a sympatholytic, centrally acting α2-adrenergic agonist. In anesthetized mice, hypothalamic infusion of MK-5046 also increased both mean arterial pressure and heart rate. Taken together, these data demonstrate that BRS-3 contributes to resting cardiac sympathetic tone, but is not required for activity-induced increases in heart rate and blood pressure. The data suggest that BRS-3 activation increases heart rate and blood pressure via a central sympathetic mechanism.
Collapse
Affiliation(s)
- Dalya M Lateef
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Cuiying Xiao
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert J Brychta
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - André Diedrich
- Autonomic Dysfunction Center, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Jurgen Schnermann
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Marc L Reitman
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
3
|
Geerling JC, Kim M, Mahoney CE, Abbott SBG, Agostinelli LJ, Garfield AS, Krashes MJ, Lowell BB, Scammell TE. Genetic identity of thermosensory relay neurons in the lateral parabrachial nucleus. Am J Physiol Regul Integr Comp Physiol 2015; 310:R41-54. [PMID: 26491097 DOI: 10.1152/ajpregu.00094.2015] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 10/02/2015] [Indexed: 12/31/2022]
Abstract
The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.
Collapse
Affiliation(s)
- Joel C Geerling
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts;
| | - Minjee Kim
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Carrie E Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Stephen B G Abbott
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Lindsay J Agostinelli
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Alastair S Garfield
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts; Centre for Integrative Physiology, University of Edinburgh, Edinburgh, Scotland
| | - Michael J Krashes
- Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Bradford B Lowell
- Division of Endocrinology, Department of Medicine, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center; Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
4
|
Li C, Fitzgerald MEC, Del Mar N, Cuthbertson-Coates S, LeDoux MS, Gong S, Ryan JP, Reiner A. The identification and neurochemical characterization of central neurons that target parasympathetic preganglionic neurons involved in the regulation of choroidal blood flow in the rat eye using pseudorabies virus, immunolabeling and conventional pathway tracing methods. Front Neuroanat 2015; 9:65. [PMID: 26082687 PMCID: PMC4451581 DOI: 10.3389/fnana.2015.00065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 11/13/2022] Open
Abstract
The choroidal blood vessels of the eye provide the main vascular support to the outer retina. These blood vessels are under parasympathetic vasodilatory control via input from the pterygopalatine ganglion (PPG), which in turn receives its preganglionic input from the superior salivatory nucleus (SSN) of the hindbrain. The present study characterized the central neurons projecting to the SSN neurons innervating choroidal PPG neurons, using pathway tracing and immunolabeling. In the initial set of studies, minute injections of the Bartha strain of the retrograde transneuronal tracer pseudorabies virus (PRV) were made into choroid in rats in which the superior cervical ganglia had been excised (to prevent labeling of sympathetic circuitry). Diverse neuronal populations beyond the choroidal part of ipsilateral SSN showed transneuronal labeling, which notably included the parvocellular part of the paraventricular nucleus of the hypothalamus (PVN), the periaqueductal gray, the raphe magnus (RaM), the B3 region of the pons, A5, the nucleus of the solitary tract (NTS), the rostral ventrolateral medulla (RVLM), and the intermediate reticular nucleus of the medulla. The PRV+ neurons were located in the parts of these cell groups that are responsive to systemic blood pressure signals and involved in systemic blood pressure regulation by the sympathetic nervous system. In a second set of studies using PRV labeling, conventional pathway tracing, and immunolabeling, we found that PVN neurons projecting to SSN tended to be oxytocinergic and glutamatergic, RaM neurons projecting to SSN were serotonergic, and NTS neurons projecting to SSN were glutamatergic. Our results suggest that blood pressure and volume signals that drive sympathetic constriction of the systemic vasculature may also drive parasympathetic vasodilation of the choroidal vasculature, and may thereby contribute to choroidal baroregulation during low blood pressure.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Malinda E C Fitzgerald
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Biology, Christian Brothers University Memphis, TN, USA ; Department of Ophthalmology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Nobel Del Mar
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Sherry Cuthbertson-Coates
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Mark S LeDoux
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Neurology, University of Tennessee Health Science Center Memphis, TN, USA
| | - Suzhen Gong
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA
| | - James P Ryan
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Anton Reiner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center Memphis, TN, USA ; Department of Ophthalmology, University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
5
|
Davern PJ. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front Physiol 2014; 5:436. [PMID: 25477821 PMCID: PMC4235290 DOI: 10.3389/fphys.2014.00436] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/26/2014] [Indexed: 11/13/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is located in an anatomical position that enables it to perform a critical role in relaying signals related to the regulation of fluid and electrolyte intake and cardiovascular function from the brainstem to the forebrain. Early neuroanatomical studies have described the topographic organization of blood pressure sensitive neurons and functional studies have demonstrated a major role for the LPBN in regulating cardiovascular function, including blood pressure, in response to hemorrhages, and hypovolemia. In addition, inactivation of the LPBN induces overdrinking of water in response to a range of dipsogenic treatments primarily, but not exclusively, those associated with endogenous centrally acting angiotensin II. Moreover, treatments that typically cause water intake stimulate salt intake under some circumstances particularly when serotonin receptors in the LPBN are blocked. This review explores the expanding body of evidence that underlies the complex neural network within the LPBN influencing salt appetite, thirst and the regulation of blood pressure. Importantly understanding the interactions among neurons in the LPBN that affect fluid balance and cardiovascular control may be critical to unraveling the mechanisms responsible for hypertension.
Collapse
Affiliation(s)
- Pamela J Davern
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Institute Melbourne, VIC, Australia
| |
Collapse
|
6
|
Ahlgren JK, Hayward LF. Daily voluntary exercise alters the cardiovascular response to hemorrhage in conscious male rats. Auton Neurosci 2011; 160:42-52. [PMID: 21215710 PMCID: PMC3034809 DOI: 10.1016/j.autneu.2010.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/30/2010] [Accepted: 11/19/2010] [Indexed: 01/03/2023]
Abstract
The present study tested the hypothesis that voluntary wheel-exercised rats would better tolerate severe hemorrhage (HEM) compared to age matched sedentary (SED) controls. Conscious rats housed with (EX, n = 8) or without (SED, n = 8) a running wheel for 6 weeks underwent a 30% total blood volume HEM over 15 min and were euthanized 90 min later and brain tissue was processed for Fos-like immunoreactivity (FLI). Both EX and SED groups displayed typical responses to HEM (initial tachycardia followed by decreased HR and MAP) but at the end of HEM, mean arterial pressure (93 ± 6 vs 58 ± 3 mm Hg) and heart rate (316 ± 17 vs. 247 ± 22 bpm,) were higher in the EX vs. SED animals and 60 min following the end of HEM, HR remained significantly elevated in the EX vs SED animals. The altered HR response to HEM in the EX animals was linked to a significant difference in sympatho-vagal drive identified by heart rate variability analysis and an augmented baroreflex response to hypotension tested in a separate group of animals (n = 4-5/group). In many of the brain regions analyzed, EX rats displayed lower levels of FLI compared to SED rats. Significantly lower levels of FLI in the EX vs SED rats were identified in the middle and caudal external lateral subnucleus of the lateral parabrachial nucleus and the dorsal cap of the hypothalamic paraventricular nucleus. These results suggest that enhanced tolerance to HEM following daily exercise may result from an EX-induced reduction in excitation or exaggerated inhibition in central circuits involved in autonomic control.
Collapse
Affiliation(s)
- Joslyn K Ahlgren
- Department of Physiological Sciences, University of FL, Gainesville, 32610, United States
| | | |
Collapse
|
7
|
West C, Zhang Z, Ecker G, Masilamani SME. Increased renal alpha-epithelial sodium channel (ENAC) protein and increased ENAC activity in normal pregnancy. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1326-32. [PMID: 20686170 DOI: 10.1152/ajpregu.00082.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pregnancy-mediated sodium (Na) retention is required to provide an increase in plasma volume for the growing fetus. The mechanisms responsible for this Na retention are not clear. We first used a targeted proteomics approach and found that there were no changes in the protein abundance compared with virgin rats of the β or γ ENaC, type 3 Na(+)/H(+) exchanger (NHE3), bumetanide-sensitive cotransporter (NKCC2), or NaCl cotransporter (NCC) in mid- or late pregnancy. In contrast, we observed marked increases in the abundance of the α-ENaC subunit. The plasma volume increased progressively during pregnancy with the greatest plasma volume being evident in late pregnancy. ENaC inhibition abolished the difference in plasma volume status between virgin and pregnant rats. To determine the in vivo activity of ENaC, we conducted in vivo studies of rats in late pregnancy (days 18-20) and virgin rats to measure the natriuretic response to ENaC blockade (with benzamil). The in vivo activity of ENaC (U(Na)V postbenzamil-U(Na)V postvehicle) was markedly increased in late pregnancy, and this difference was abolished by pretreatment with the mineralocorticoid receptor antagonist, eplerenone. These findings demonstrate that the increased α-ENaC subunit of pregnancy is associated with an mineralocorticoid-dependent increase in ENaC activity. Further, we show that ENaC activity is a major contributor of plasma volume status in late pregnancy. These changes are likely to contribute to the renal sodium retention and plasma volume expansion required for an optimal pregnancy.
Collapse
Affiliation(s)
- Crystal West
- Department of Internal Medicine/Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, Virginia 23298-0160, USA
| | | | | | | |
Collapse
|
8
|
Díaz-Casares A, López-González MV, Peinado-Aragonés CA, Lara JP, González-Barón S, Dawid-Milner MS. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat. Brain Res 2009; 1279:58-70. [DOI: 10.1016/j.brainres.2009.02.085] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/27/2009] [Accepted: 02/27/2009] [Indexed: 11/25/2022]
|
9
|
Porter K, Ahlgren J, Stanley J, Hayward LF. Modulation of heart rate variability during severe hemorrhage at different rates in conscious rats. Auton Neurosci 2009; 150:53-61. [PMID: 19482559 DOI: 10.1016/j.autneu.2009.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
Abstract
This study was undertaken to evaluate heart rate (HR) regulation during severe hemorrhage (HEM) at different rates of blood loss. Chronically instrumented male rats underwent HEM at one of three rates: slow (0.5 ml/min/kg; S-HEM), intermediate (1.0 ml/min/kg I-HEM), or 2.0 ml/min/kg (fast; F-HEM) until 30% of the estimated total blood volume (ETBV) was withdrawn. Heart rate variability analysis was performed and the absolute power within the low frequency (LF; 0.16-0.6 Hz) and high frequency (HF; 0.6-3 Hz) ranges was evaluated. During the first 15% of ETBV loss, arterial pressure (AP) was maintained while HR increased. The increase in HR was greatest in the S-HEM and I-HEM groups and was associated with a significant reduction in HF power in the S-HEM group only. As blood loss progressed, AP and HR declined in all treatment groups. The decrease in HR was associated with a significant increase in HF power in the F-HEM and I-HEM groups only. Parasympathetic blockade with atropine methyl bromide eliminated all decreases in HR, independent of the rate of hemorrhage. Blockade of parasympathetic activity also significantly increased the AP at ETBV losses > or =20% independent of the rate of hemorrhage. The effect of atropine on AP was most noticeable in the S-HEM and F-HEM groups. These results demonstrate that rate of blood loss has an important impact on autonomic regulation during severe HEM and support previous findings that neural strategies underlying autonomic control may vary depending on the rate of blood loss.
Collapse
Affiliation(s)
- Karen Porter
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
10
|
Wojciechowski JC, Narasipura SD, Charles N, Mickelsen D, Rana K, Blair ML, King MR. Capture and enrichment of CD34-positive haematopoietic stem and progenitor cells from blood circulation using P-selectin in an implantable device. Br J Haematol 2008; 140:673-81. [PMID: 18218048 PMCID: PMC2268974 DOI: 10.1111/j.1365-2141.2007.06967.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clinical infusion of haematopoietic stem and progenitor cells (HSPCs) is vital for restoration of haematopoietic function in many cancer patients. Previously, we have demonstrated an ability to mimic physiological cell trafficking in order to capture CD34-positive (CD34+) HSPCs using monolayers of the cell adhesion protein P-selectin in flow chambers. The current study aimed to determine if HSPCs could be captured directly from circulating blood in vivo. Vascular shunt prototypes, coated internally with P-selectin, were inserted into the femoral artery of rats. Blood flow through the cell capture device resulted in a wall shear stress of 4-6 dynes/cm(2). After 1-h blood perfusion, immunofluorescence microscopy and flow cytometric analysis revealed successful capture of mononuclear cells positive for the HSPC surface marker CD34. Purity of captured CD34+ cells showed sevenfold enrichment over levels found in whole blood, with an average purity of 28%. Robust cell capture and HSPC enrichment were also demonstrated in devices that were implanted in a closed-loop arterio-venous shunt conformation for 2 h. Adherent cells were viable in culture and able to differentiate into burst-forming units. This study demonstrated an ability to mimic the physiological arrest of HSPCs from blood in an implantable device and may represent a practical alternative for adult stem cell capture and enrichment.
Collapse
Affiliation(s)
- Joel C Wojciechowski
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | | | | | | | | | | | | |
Collapse
|