1
|
Liu L, Wen Y, Ni Q, Chen L, Wang H. Prenatal ethanol exposure and changes in fetal neuroendocrine metabolic programming. Biol Res 2023; 56:61. [PMID: 37978540 PMCID: PMC10656939 DOI: 10.1186/s40659-023-00473-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Prenatal ethanol exposure (PEE) (mainly through maternal alcohol consumption) has become widespread. However, studies suggest that it can cause intrauterine growth retardation (IUGR) and multi-organ developmental toxicity in offspring, and susceptibility to various chronic diseases (such as neuropsychiatric diseases, metabolic syndrome, and related diseases) in adults. Through ethanol's direct effects and its indirect effects mediated by maternal-derived glucocorticoids, PEE alters epigenetic modifications and organ developmental programming during fetal development, which damages the offspring health and increases susceptibility to various chronic diseases after birth. Ethanol directly leads to the developmental toxicity of multiple tissues and organs in many ways. Regarding maternal-derived glucocorticoid-mediated IUGR, developmental programming, and susceptibility to multiple conditions after birth, ethanol induces programmed changes in the neuroendocrine axes of offspring, such as the hypothalamus-pituitary-adrenal (HPA) and glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axes. In addition, the differences in ethanol metabolic enzymes, placental glucocorticoid barrier function, and the sensitivity to glucocorticoids in various tissues and organs mediate the severity and sex differences in the developmental toxicity of ethanol exposure during pregnancy. Offspring exposed to ethanol during pregnancy have a "thrifty phenotype" in the fetal period, and show "catch-up growth" in the case of abundant nutrition after birth; when encountering adverse environments, these offspring are more likely to develop diseases. Here, we review the developmental toxicity, functional alterations in multiple organs, and neuroendocrine metabolic programming mechanisms induced by PEE based on our research and that of other investigators. This should provide new perspectives for the effective prevention and treatment of ethanol developmental toxicity and the early prevention of related fetal-originated diseases.
Collapse
Affiliation(s)
- Liang Liu
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Qubo Ni
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Joint Disease Research Center of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| |
Collapse
|
2
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
3
|
Wang Y, Feltham BA, Louis XL, Eskin MNA, Suh M. Maternal diets affected ceramides and fatty acids in brain regions of neonatal rats with prenatal ethanol exposure. Nutr Neurosci 2023; 26:60-71. [PMID: 34957933 DOI: 10.1080/1028415x.2021.2017661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objectives: Ceramide (Cer), known as apoptotic markers, increases with prenatal ethanol (EtOH) exposure, resulting in neuroapoptosis. Whether maternal nutrition can impact Cer concentrations in brain, via altering plasma and brain fatty acid compositions have not been examined. This study compared a standard chow with a formulated semi-purified energy dense (E-dense) diet on fatty acid composition, Cer concentrations, and apoptosis in plasma and brain regions (cortex, cerebellum, and hippocampus) of pups exposed to EtOH during gestation. Methods: Pregnant Sprague-Dawley rats were randomized into four groups: chow (n = 6), chow + EtOH (20% v/v) (n = 7), E-dense (n = 6), and E-dense + EtOH (n = 8). At postnatal day 7, representing the peak brain growth spurt in rats, lipids, and apoptosis were analyzed by gas chromatography and a fluorometric caspase-3 assay kit, respectively. Results: Maternal E-dense diet increased total fatty acid concentrations (p < 0.0001), including docosahexaenoic acid (DHA) (p < 0.0001) in plasma, whereas DHA concentrations were decreased in the cerebellum (p < 0.03) of pups than those from chow-fed dams. EtOH-induced Cer elevations in the hippocampus of pups born to dams fed chow were reduced by an E-dense diet (p < 0.02). No significant effects of maternal diet quality and EtOH were observed on caspase-3 activity. No significant correlations existed between plasma/brain fatty acids and Cer concentrations. Discussions: Maternal diet quality affected fatty acid compositions and Cer concentrations of pups with prenatal EtOH exposure, differently. Maternal nutrition has the potential to prevent or alleviate some of the adverse effects of prenatal EtOH exposure.
Collapse
Affiliation(s)
- Yidi Wang
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Bradley A Feltham
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Xavier L Louis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Michael N A Eskin
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Miyoung Suh
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Division of Neurodegenerative Disorders, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada.,Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Milyutina YP, Arutjunyan AV, Shcherbitskaia AD, Zalozniaia IV. The Effect of Hyperhomocysteinemia on the Content of Neurotrophins in Brain Structures of Pregnant Rats. NEUROCHEM J+ 2022. [DOI: 10.1134/s1819712422030060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Stankovic IN, Colak D. Prenatal Drugs and Their Effects on the Developing Brain: Insights From Three-Dimensional Human Organoids. Front Neurosci 2022; 16:848648. [PMID: 35401083 PMCID: PMC8990163 DOI: 10.3389/fnins.2022.848648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Decades of research have unequivocally demonstrated that fetal exposure to both recreational and prescription drugs in utero negatively impacts the developing brain. More recently, the application of cutting-edge techniques in neurodevelopmental research has attempted to identify how the fetal brain responds to specific environmental stimuli. Meanwhile, human fetal brain studies still encounter ethical considerations and technical limitations in tissue collection. Human-induced pluripotent stem cell (iPSC)-derived brain organoid technology has emerged as a powerful alternative to examine fetal neurobiology. In fact, human 3D organoid tissues recapitulate cerebral development during the first trimester of pregnancy. In this review, we aim to provide a comprehensive summary of fetal brain metabolic studies related to drug abuse in animal and human models. Additionally, we will discuss the current challenges and prospects of using brain organoids for large-scale metabolomics. Incorporating cutting-edge techniques in human brain organoids may lead to uncovering novel molecular and cellular mechanisms of neurodevelopment, direct novel therapeutic approaches, and raise new exciting questions.
Collapse
Affiliation(s)
- Isidora N. Stankovic
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
- *Correspondence: Isidora N. Stankovic,
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Gale & Ira Drukier Institute for Children’s Health, Weill Cornell Medicine, Cornell University, New York, NY, United States
- Dilek Colak,
| |
Collapse
|
6
|
Association of prenatal alcohol exposure with offspring DNA methylation in mammals: a systematic review of the evidence. Clin Epigenetics 2022; 14:12. [PMID: 35073992 PMCID: PMC8785586 DOI: 10.1186/s13148-022-01231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Prenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmental outcomes. Several studies suggest that PAE modifies DNA methylation in offspring cells and tissues, providing evidence for a potential mechanistic link to Fetal Alcohol Spectrum Disorder (FASD). We systematically reviewed existing evidence on the extent to which maternal alcohol use during pregnancy is associated with offspring DNA methylation.
Methods
A systematic literature search was conducted across five online databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Web of Science, EMBASE, Google Scholar and CINAHL Databases were searched for articles relating to PAE in placental mammals. Data were extracted from each study and the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) was used to assess the potential for bias in human studies.
Results
Forty-three articles were identified for inclusion. Twenty-six animal studies and 16 human studies measured offspring DNA methylation in various tissues using candidate gene analysis, methylome-wide association studies (MWAS), or total nuclear DNA methylation content. PAE dose and timing varied between studies. Risk of bias was deemed high in nearly all human studies. There was insufficient evidence in human and animal studies to support global disruption of DNA methylation from PAE. Inconclusive evidence was found for hypomethylation at IGF2/H19 regions within somatic tissues. MWAS assessing PAE effects on offspring DNA methylation showed inconsistent evidence. There was some consistency in the relatively small number of MWAS conducted in populations with FASD. Meta-analyses could not be conducted due to significant heterogeneity between studies.
Conclusion
Considering heterogeneity in study design and potential for bias, evidence for an association between PAE and offspring DNA methylation was inconclusive. Some reproducible associations were observed in populations with FASD although the limited number of these studies warrants further research.
Trail Registration: This review is registered with PROSPERO (registration number: CRD42020167686).
Collapse
|
7
|
Lussier AA, Bodnar TS, Moksa M, Hirst M, Kobor MS, Weinberg J. Prenatal Adversity Alters the Epigenetic Profile of the Prefrontal Cortex: Sexually Dimorphic Effects of Prenatal Alcohol Exposure and Food-Related Stress. Genes (Basel) 2021; 12:genes12111773. [PMID: 34828381 PMCID: PMC8622940 DOI: 10.3390/genes12111773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 01/02/2023] Open
Abstract
Prenatal adversity or stress can have long-term consequences on developmental trajectories and health outcomes. Although the biological mechanisms underlying these effects are poorly understood, epigenetic modifications, such as DNA methylation, have the potential to link early-life environments to alterations in physiological systems, with long-term functional implications. We investigated the consequences of two prenatal insults, prenatal alcohol exposure (PAE) and food-related stress, on DNA methylation profiles of the rat brain during early development. As these insults can have sex-specific effects on biological outcomes, we analyzed epigenome-wide DNA methylation patterns in prefrontal cortex, a key brain region involved in cognition, executive function, and behavior, of both males and females. We found sex-dependent and sex-concordant influences of these insults on epigenetic patterns. These alterations occurred in genes and pathways related to brain development and immune function, suggesting that PAE and food-related stress may reprogram neurobiological/physiological systems partly through central epigenetic changes, and may do so in a sex-dependent manner. Such epigenetic changes may reflect the sex-specific effects of prenatal insults on long-term functional and health outcomes and have important implications for understanding possible mechanisms underlying fetal alcohol spectrum disorder and other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Alexandre A. Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Correspondence: (A.A.L.); (J.W.)
| | - Tamara S. Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.M.); (M.H.)
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (M.M.); (M.H.)
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Michael S. Kobor
- BC Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
- Centre for Molecular Medicine and Therapeutics, Vancouver, BC V5Z 4H4, Canada
- Program in Child and Brain Development, CIFAR, MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada;
- Correspondence: (A.A.L.); (J.W.)
| |
Collapse
|
8
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
9
|
Ford SM, Pedersen CJ, Ford MR, Kim JW, Karunamuni GH, McPheeters MT, Jawaid S, Jenkins MW, Rollins AM, Watanabe M. Folic acid prevents functional and structural heart defects induced by prenatal ethanol exposure. Am J Physiol Heart Circ Physiol 2021. [DOI: 10.1152/ajpheart.00817.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
State-of-the-art biophotonic tools captured blood flow and endocardial cushion volumes in tiny beating quail embryo hearts, an accessible model for studying four-chambered heart development. Both hemodynamic flow and endocardial cushion volumes were altered with ethanol exposure but normalized when folic acid was introduced with ethanol. Folic acid supplementation preserved hemodynamic function that is intimately involved in sculpting the heart from the earliest stages of heart development.
Collapse
Affiliation(s)
- Stephanie M. Ford
- Division of Neonatology, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Cameron J. Pedersen
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew R. Ford
- Department of Ophthalmology, Cole Eye Institute, Cleveland Clinic, Cleveland Ohio
| | - Jun W. Kim
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Ganga H. Karunamuni
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Matthew T. McPheeters
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Safdar Jawaid
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michael W. Jenkins
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Andrew M. Rollins
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Michiko Watanabe
- Division of Pediatric Cardiology, Department of Pediatrics, The Congenital Heart Collaborative, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
10
|
Abstract
AbstractIt is well established that high-dose alcohol consumption during pregnancy increases the risk for a plethora of adverse offspring outcomes. These include neurodevelopmental, cognitive and social deficits, as well as psychiatric illnesses, such as depression and anxiety. However, much less evidence is available on the effects of low- and early-dose alcohol exposure on mental health outcomes, regardless of the accumulating evidence that mental health outcomes should be considered in the context of the Developmental Origins of Health and Disease hypothesis. This review will discuss the evidence that indicates low-dose and early prenatal alcohol exposure can increase the risk of mental illness in offspring and discuss the mechanistic pathways that may be involved.
Collapse
|
11
|
Sebastiani G, Andreu-Fernández V, Herranz Barbero A, Aldecoa-Bilbao V, Miracle X, Meler Barrabes E, Balada Ibañez A, Astals-Vizcaino M, Ferrero-Martínez S, Gómez-Roig MD, García-Algar O. Eating Disorders During Gestation: Implications for Mother's Health, Fetal Outcomes, and Epigenetic Changes. Front Pediatr 2020; 8:587. [PMID: 33042925 PMCID: PMC7527592 DOI: 10.3389/fped.2020.00587] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction: Eating disorders (EDs) have increased globally in women of childbearing age, related to the concern for body shape promoted in industrialized countries. Pregnancy may exacerbate a previous ED or conversely may be a chance for improving eating patterns due to the mother's concern for the unborn baby. EDs may impact pregnancy evolution and increase the risk of adverse outcomes such as miscarriage, preterm delivery, poor fetal growth, or malformations, but the knowledge on this topic is limited. Methods: We performed a systematic review of studies on humans in order to clarify the mechanisms underpinning the adverse pregnancy outcomes in patients with EDs. Results: Although unfavorable fetal development could be multifactorial, maternal malnutrition, altered hormonal pathways, low pre-pregnancy body mass index, and poor gestational weight gain, combined with maternal psychopathology and stress, may impair the evolution of pregnancy. Environmental factors such as malnutrition or substance of abuse may also induce epigenetic changes in the fetal epigenome, which mark lifelong health concerns in offspring. Conclusions: The precocious detection of dysfunctional eating behaviors in the pre-pregnancy period and an early multidisciplinary approach comprised of nutritional support, psychotherapeutic techniques, and the use of psychotropics if necessary, would prevent lifelong morbidity for both mother and fetus. Further prospective studies with large sample sizes are needed in order to design a structured intervention during every stage of pregnancy and in the postpartum period.
Collapse
Affiliation(s)
- Giorgia Sebastiani
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Valencian International University (VIU), Valencia, Spain
| | - Ana Herranz Barbero
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Victoria Aldecoa-Bilbao
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Xavier Miracle
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Eva Meler Barrabes
- Fetal i+D Fetal Medicine Research Center, BCNatal-Barcelona Center for Maternal-Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Déu), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Arantxa Balada Ibañez
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Marta Astals-Vizcaino
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Silvia Ferrero-Martínez
- Hospital Sant Joan de Déu, Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - María Dolores Gómez-Roig
- Hospital Sant Joan de Déu, Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain
| | - Oscar García-Algar
- Neonatal Unit, Hospital Clinic-Maternitat, Institut Clinic de Ginecologia, Obstetricia i Neonatologia (ICGON), Barcelona Center for Maternal Fetal and Neonatal Medicine (BCNatal), Barcelona, Spain.,Grup de Recerca Infancia i Entorn (GRIE), Institut d'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
12
|
Pucci M, Micioni Di Bonaventura MV, Wille-Bille A, Fernández MS, Maccarrone M, Pautassi RM, Cifani C, D’Addario C. Environmental stressors and alcoholism development: Focus on molecular targets and their epigenetic regulation. Neurosci Biobehav Rev 2019; 106:165-181. [DOI: 10.1016/j.neubiorev.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/13/2018] [Accepted: 07/09/2018] [Indexed: 01/17/2023]
|
13
|
Pfinder M, Lhachimi S. Lifestyle-related risk factors during pregnancy: even low-to-moderate drinking during pregnancy increases the risk for adolescent behavioral problems. JOURNAL OF SUBSTANCE USE 2019. [DOI: 10.1080/14659891.2019.1664668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Manuela Pfinder
- Department of General Practice and Health Services Research, Heidelberg University Hospital, Heidelberg, Germany
- Department of Health Promotion, AOK Baden-Württemberg, Stuttgart, Germany
| | - Stefan Lhachimi
- Research Group for Evidence-Based Public Health, Leibniz-Institute for Prevention Research and Epidemiology BIPS GmbH (BIPS), Bremen, Germany
- Health Sciences Bremen, Institute for Public Health and Nursing Research, University of Bremen, Bremen, Germany
| |
Collapse
|
14
|
Muench C, Luo A, Charlet K, Lee J, Rosoff DB, Sun H, Fede SJ, Jung J, Momenan R, Lohoff FW. Lack of Association Between Serotonin Transporter Gene (SLC6A4) Promoter Methylation and Amygdala Response During Negative Emotion Processing in Individuals With Alcohol Dependence. Alcohol Alcohol 2019; 54:209-215. [PMID: 31008507 DOI: 10.1093/alcalc/agz032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 11/12/2022] Open
Abstract
AIMS Differences in DNA methylation of the serotonin transporter gene (SLC6A4) have been shown to alter SLC6A4 expression and predict brain functions in healthy individuals. This study investigated the association between SLC6A4 promoter methylation and threat-related amygdala activation in individuals with alcohol dependence (AD). METHODS Methylation of the SLC6A4 promoter region was assessed using peripheral blood DNA from 45 individuals with AD and 45 healthy controls (HCs). All participants completed an emotional face matching task in a 3-T magnetic resonance imaging (MRI) scanner. RESULTS Results did not reveal any association between SLC6A4 promoter methylation variation and threat-related amygdala activation in HCs or individuals with AD. Furthermore, methylation in the promoter region of SLC6A4 did not significantly differ between the groups. CONCLUSIONS Our results do not replicate a previous finding that increased methylation in the promoter region of SLC6A4 is associated with threat-related amygdala activation in healthy individuals and further show that there is no such association in individuals with AD. Given that the number of imaging epigenetics studies on SLC6A4 is very limited to date, these inconsistent results indicate that future research is needed to clarify its association with amygdala reactivity in both healthy and clinical populations.
Collapse
Affiliation(s)
- Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Audrey Luo
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Katrin Charlet
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA.,Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Jisoo Lee
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Daniel B Rosoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Hui Sun
- Office of the Clinical Director, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Samantha J Fede
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Jeesun Jung
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| | - Falk W Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 10 Center Drive (10CRC), Bethesda, MD, USA
| |
Collapse
|
15
|
Kahl KG, Stapel B, Frieling H. Link between depression and cardiovascular diseases due to epigenomics and proteomics: Focus on energy metabolism. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:146-157. [PMID: 30194950 DOI: 10.1016/j.pnpbp.2018.09.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/13/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022]
Abstract
Major depression is the most common mental disorder and a leading cause of years lived with disability. In addition to the burden attributed to depressive symptoms and reduced daily life functioning, people with major depression are at increased risk of premature mortality, particularly due to cardiovascular diseases. Several studies point to a bi-directional relation between major depression and cardiovascular diseases, thereby indicating that both diseases may share common pathophysiological pathways. These include lifestyle factors (e.g. physical activity, smoking behavior), dysfunctions of endocrine systems (e.g. hypothalamus-pituitary adrenal axis), and a dysbalance of pro- and anti-inflammatory factors. Furthermore, recent research point to the role of epigenomic and proteomic factors, that are reviewed here with a particular focus on the mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Kai G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Britta Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| |
Collapse
|
16
|
Lussier AA, Bodnar TS, Mingay M, Morin AM, Hirst M, Kobor MS, Weinberg J. Prenatal Alcohol Exposure: Profiling Developmental DNA Methylation Patterns in Central and Peripheral Tissues. Front Genet 2018; 9:610. [PMID: 30568673 PMCID: PMC6290329 DOI: 10.3389/fgene.2018.00610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Background: Prenatal alcohol exposure (PAE) can alter the development of neurobiological systems, leading to lasting neuroendocrine, neuroimmune, and neurobehavioral deficits. Although the etiology of this reprogramming remains unknown, emerging evidence suggests DNA methylation as a potential mediator and biomarker for the effects of PAE due to its responsiveness to environmental cues and relative stability over time. Here, we utilized a rat model of PAE to examine the DNA methylation profiles of rat hypothalami and leukocytes at four time points during early development to assess the genome-wide impact of PAE on the epigenome and identify potential biomarkers of PAE. Our model of PAE resulted in blood alcohol levels of ~80-150 mg/dl throughout the equivalent of the first two trimesters of human pregnancy. Hypothalami were analyzed on postnatal days (P) 1, 8, 15, 22 and leukocytes at P22 to compare central and peripheral markers. Genome-wide DNA methylation analysis was performed by methylated DNA immunoprecipitation followed by next-generation sequencing. Results: PAE resulted in lasting changes to DNA methylation profiles across all four ages, with 118 differentially methylated regions (DMRs) displaying persistent alterations across the developmental period at a false-discovery rate (FDR) < 0.05. In addition, 299 DMRs showed the same direction of change in the hypothalamus and leukocytes of P22 pups at an FDR < 0.05, with some genes overlapping with the developmental profile findings. The majority of these DMRs were located in intergenic regions, which contained several computationally-predicted transcription factor binding sites. Differentially methylated genes were generally involved in immune function, epigenetic remodeling, metabolism, and hormonal signaling, as determined by gene ontology analyses. Conclusions: Persistent DNA methylation changes in the hypothalamus may be associated with the long-term physiological and neurobehavioral alterations in observed in PAE. Furthermore, correlations between epigenetic alterations in peripheral tissues and those in the brain will provide a foundation for the development of biomarkers of fetal alcohol spectrum disorder (FASD). Finally, findings from studies of PAE provide important insight into the etiology of neurodevelopmental and mental health disorders, as they share numerous phenotypes and comorbidities.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Tamara S Bodnar
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Matthew Mingay
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre M Morin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories Centre for High-Throughput Biology, University of British Columbia, Vancouver, BC, Canada.,Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency Research Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, Faculty of Medicine, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Legault LM, Bertrand-Lehouillier V, McGraw S. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective. Biochem Cell Biol 2018; 96:117-130. [DOI: 10.1139/bcb-2017-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Obstetrics and Gynecology, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, Canada
| |
Collapse
|
18
|
Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: Does DNA methylation play a role? Neurotoxicol Teratol 2018; 71:50-63. [PMID: 29408446 DOI: 10.1016/j.ntt.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
The period of in utero development is one of the most critical windows during which adverse conditions and exposures may influence the growth and development of the fetus as well as its future postnatal health and behavior. Maternal substance use during pregnancy remains a relatively common but nonetheless hazardous in utero exposure. For example, previous epidemiological studies have associated prenatal substance exposure with reduced birth weight, poor developmental and psychological outcomes, and increased risk for diseases and behavioral disorders (e.g., externalizing behaviors like ADHD, conduct disorder, and substance use) later in life. Researchers are now learning that many of the mechanisms whereby adverse in utero exposures may affect key pathways crucial for proper fetal growth and development are epigenetic in nature, with the majority of work in humans considering DNA methylation specifically. This review will explore the research to date on epigenetic alterations tied to maternal substance use during pregnancy and will also discuss the possible role of DNA methylation in the robust relationship between maternal substance use and later behavioral and developmental sequelae in offspring.
Collapse
Affiliation(s)
- Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA.
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Emily Rolan
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
19
|
Boschen KE, Keller SM, Roth TL, Klintsova AY. Epigenetic mechanisms in alcohol- and adversity-induced developmental origins of neurobehavioral functioning. Neurotoxicol Teratol 2018; 66:63-79. [PMID: 29305195 DOI: 10.1016/j.ntt.2017.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 12/11/2017] [Accepted: 12/26/2017] [Indexed: 12/13/2022]
Abstract
The long-term effects of developmental alcohol and stress exposure are well documented in both humans and non-human animal models. Damage to the brain and attendant life-long impairments in cognition and increased risk for psychiatric disorders are debilitating consequences of developmental exposure to alcohol and/or psychological stress. Here we discuss evidence for a role of epigenetic mechanisms in mediating these consequences. While we highlight some of the common ways in which stress or alcohol impact the epigenome, we point out that little is understood of the epigenome's response to experiencing both stress and alcohol exposure, though stress is a contributing factor as to why women drink during pregnancy. Advancing our understanding of this relationship is of critical concern not just for the health and well-being of individuals directly exposed to these teratogens, but for generations to come.
Collapse
Affiliation(s)
- K E Boschen
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC 27599, United States
| | - S M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States
| | - T L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| | - A Y Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
20
|
Comasco E, Rangmar J, Eriksson UJ, Oreland L. Neurological and neuropsychological effects of low and moderate prenatal alcohol exposure. Acta Physiol (Oxf) 2018; 222. [PMID: 28470828 DOI: 10.1111/apha.12892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/17/2017] [Accepted: 04/27/2017] [Indexed: 01/18/2023]
Abstract
Several explanations for the diverse results in research on foetal alcohol spectrum disorders or alcohol-related neurodevelopmental disorder might be at hand: timing, amount and patterns of alcohol exposure, as well as complex epigenetic responses. The genetic background of the offspring and its interaction with other prenatal and post-natal environmental cues are likely also of importance. In the present report, key findings about the possible effects of low and moderate doses of maternal alcohol intake on the neuropsychological development of the offspring are reviewed and plausible mechanisms discussed. Special focus is put on the serotonergic system within developmental and gene-environment frameworks. The review also suggests guidelines for future studies and also summarizes some of to-be-answered questions of relevance to clinical practice. Contradictory findings and paucity of studies on the effects of exposure to low alcohol levels during foetal life for the offspring's neuropsychological development call for large prospective studies, as well as for studies including neuroimaging and multi-omics analyses to dissect the neurobiological underpinnings of alcohol exposure-related phenotypes and to identify biomarkers. Finally, it remains to be investigated whether any safe threshold of alcohol drinking during pregnancy can be identified.
Collapse
Affiliation(s)
- E. Comasco
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| | - J. Rangmar
- Department of Psychology; University of Gothenburg; Gothenburg Sweden
| | - U. J. Eriksson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - L. Oreland
- Department of Neuroscience; Uppsala University; Uppsala Sweden
| |
Collapse
|
21
|
Neuroepigenetics of Prenatal Psychological Stress. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:83-104. [DOI: 10.1016/bs.pmbts.2018.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Imam MU, Ismail M. The Impact of Traditional Food and Lifestyle Behavior on Epigenetic Burden of Chronic Disease. GLOBAL CHALLENGES (HOBOKEN, NJ) 2017; 1:1700043. [PMID: 31565292 PMCID: PMC6607231 DOI: 10.1002/gch2.201700043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/12/2017] [Indexed: 05/11/2023]
Abstract
Noncommunicable chronic diseases (NCCDs) are the leading causes of morbidity and mortality globally. The mismatch between present day diets and ancestral genome is suggested to contribute to the NCCDs burden, which is promoted by traditional risk factors like unhealthy diets, physical inactivity, alcohol and tobacco. However, epigenetic evidence now suggests that cumulatively inherited epigenetic modifications may have made humans more prone to the effects of present day lifestyle factors. Perinatal starvation was widespread in the 19th century. This together with more recent events like increasing consumption of western and low fiber diets, smoking, harmful use of alcohol, physical inactivity, and environmental pollutants may have programed the human epigenome for higher NCCDs risk. In this review, on the basis of available epigenetic data it is hypothesized that transgenerational effects of lifestyle factors may be contributing to the current global burden of NCCDs. Thus, there is a need to reconsider prevention strategies so that the subsequent generations will not have to pay for our sins and those of our ancestors.
Collapse
Affiliation(s)
- Mustapha U. Imam
- Precision Nutrition Innovation InstituteCollege of Public HealthZhengzhou UniversityZhengzhou450001China
| | - Maznah Ismail
- Laboratory of Molecular BiomedicineInstitute of BioscienceUniversiti Putra MalaysiaSerdangSelangor43400Malaysia
| |
Collapse
|
23
|
Karunamuni G, Sheehan MM, Doughman YQ, Gu S, Sun J, Li Y, Strainic JP, Rollins AM, Jenkins MW, Watanabe M. Supplementation with the Methyl Donor Betaine Prevents Congenital Defects Induced by Prenatal Alcohol Exposure. Alcohol Clin Exp Res 2017; 41:1917-1927. [PMID: 28888041 DOI: 10.1111/acer.13495] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite decades of public education about dire consequences of prenatal alcohol exposure (PAE), drinking alcohol during pregnancy remains prevalent. As high as 40% of live-born infants exposed to alcohol during gestation and diagnosed with fetal alcohol syndrome have congenital heart defects that can be life-threatening. In animal models, the methyl donor betaine, found in foods such as wheat bran, quinoa, beets, and spinach, ameliorated neurobehavioral deficits associated with PAE, but effects on heart development are unknown. METHODS Previously, we modeled a binge drinking episode during the first trimester in avian embryos. Here, we investigated whether betaine could prevent adverse effects of alcohol on heart development. Embryos exposed to ethanol (EtOH) with and without an optimal dose of betaine (5 μM) were analyzed at late developmental stages. Cardiac morphology parameters were rapidly analyzed and quantified using optical coherence tomography. DNA methylation at early stages was detected by immunofluorescent staining for 5-methylcytosine in sections of embryos treated with EtOH or cotreated with betaine. RESULTS Compared to EtOH-exposed embryos, betaine-supplemented embryos had higher late-stage survival rates and fewer gross head and body defects than seen after alcohol exposure alone. Betaine also reduced the incidence of late-stage cardiac defects such as absent vessels, abnormal atrioventricular (AV) valves, and hypertrophic ventricles. Furthermore, betaine cotreatment brought measurements of great vessel diameters, interventricular septum thickness, and AV leaflet volumes in betaine-supplemented embryos close to control values. Early-stage 5-methycytosine staining revealed that DNA methylation levels were reduced by EtOH exposure and normalized by co-administration with betaine. CONCLUSIONS This is the first study demonstrating efficacy of the methyl donor betaine in alleviating cardiac defects associated with PAE. These findings highlight the therapeutic potential of low-concentration betaine doses in mitigating PAE-induced birth defects and have implications for prenatal nutrition policies, especially for women who may not be responsive to folate supplementation.
Collapse
Affiliation(s)
- Ganga Karunamuni
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Megan M Sheehan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yong Qiu Doughman
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Shi Gu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jiayang Sun
- Department of Population and Quantitative Health Sciences, Center for Statistical Research, Computing and Collaboration, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Youjun Li
- Department of Population and Quantitative Health Sciences, Center for Statistical Research, Computing and Collaboration, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - James P Strainic
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Andrew M Rollins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael W Jenkins
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Michiko Watanabe
- Department of Pediatrics, Congenital Heart Collaborative, UH Rainbow Babies and Children's Hospital, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
24
|
Mandal C, Halder D, Jung KH, Chai YG. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus. Int J Mol Sci 2017; 18:ijms18071386. [PMID: 28657590 PMCID: PMC5535879 DOI: 10.3390/ijms18071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Institute of Natural Science and Technology, Hanyang University, 15588 Ansan, Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Department of Bionanotechnology, Hanyang University, 04763 Seoul, Korea.
| |
Collapse
|
25
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
26
|
Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 2017; 9:291-311. [PMID: 28234026 PMCID: PMC5549650 DOI: 10.2217/epi-2016-0163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
27
|
Epigenetic studies in Developmental Origins of Health and Disease: pitfalls and key considerations for study design and interpretation. J Dev Orig Health Dis 2016; 8:30-43. [DOI: 10.1017/s2040174416000507] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The field of Developmental Origins of Health and Disease (DOHaD) seeks to understand the relationships between early-life environmental exposures and long-term health and disease. Until recently, the molecular mechanisms underlying these phenomena were poorly understood; however, epigenetics has been proposed to bridge the gap between the environment and phenotype. Epigenetics involves the study of heritable changes in gene expression, which occur without changes to the underlying DNA sequence. Different types of epigenetic modifications include DNA methylation, post-translational histone modifications and non-coding RNAs. Increasingly, changes to the epigenome have been associated with early-life exposures in both humans and animal models, offering both an explanation for how the environment may programme long-term health, as well as molecular changes that could be developed as biomarkers of exposure and/or future disease. As such, epigenetic studies in DOHaD hold much promise; however, there are a number of factors which should be considered when designing and interpreting such studies. These include the impact of the genome on the epigenome, the tissue-specificity of epigenetic marks, the stability (or lack thereof) of epigenetic changes over time and the importance of associating epigenetic changes with changes in transcription or translation to demonstrate functional consequences. In this review, we discuss each of these key concepts and provide practical strategies to mitigate some common pitfalls with the aim of providing a useful guide for future epigenetic studies in DOHaD.
Collapse
|
28
|
Belmer A, Patkar OL, Pitman KM, Bartlett SE. Serotonergic Neuroplasticity in Alcohol Addiction. Brain Plast 2016; 1:177-206. [PMID: 29765841 PMCID: PMC5928559 DOI: 10.3233/bpl-150022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Alcohol addiction is a debilitating disorder producing maladaptive changes in the brain, leading drinkers to become more sensitive to stress and anxiety. These changes are key factors contributing to alcohol craving and maintaining a persistent vulnerability to relapse. Serotonin (5-Hydroxytryptamine, 5-HT) is a monoamine neurotransmitter widely expressed in the central nervous system where it plays an important role in the regulation of mood. The serotonin system has been extensively implicated in the regulation of stress and anxiety, as well as the reinforcing properties of all of the major classes of drugs of abuse, including alcohol. Dysregulation within the 5-HT system has been postulated to underlie the negative mood states associated with alcohol use disorders. This review will describe the serotonergic (5-HTergic) neuroplastic changes observed in animal models throughout the alcohol addiction cycle, from prenatal to adulthood exposure. The first section will focus on alcohol-induced 5-HTergic neuroadaptations in offspring prenatally exposed to alcohol and the consequences on the regulation of stress/anxiety. The second section will compare alterations in 5-HT signalling induced by acute or chronic alcohol exposure during adulthood and following alcohol withdrawal, highlighting the impact on the regulation of stress/anxiety signalling pathways. The third section will outline 5-HTergic neuroadaptations observed in various genetically-selected ethanol preferring rat lines. Finally, we will discuss the pharmacological manipulation of the 5-HTergic system on ethanol- and anxiety/stress-related behaviours demonstrated by clinical trials, with an emphasis on current and potential treatments.
Collapse
Affiliation(s)
- Arnauld Belmer
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Omkar L Patkar
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Kim M Pitman
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| | - Selena E Bartlett
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia.,Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
29
|
Chater-Diehl EJ, Laufer BI, Castellani CA, Alberry BL, Singh SM. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure. PLoS One 2016; 11:e0154836. [PMID: 27136348 PMCID: PMC4852908 DOI: 10.1371/journal.pone.0154836] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/20/2016] [Indexed: 11/18/2022] Open
Abstract
The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse's lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as "Free radical scavenging". We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was "Peroxisome biogenesis"; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD.
Collapse
Affiliation(s)
- Eric J. Chater-Diehl
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Benjamin I. Laufer
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | | | - Bonnie L. Alberry
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
| | - Shiva M. Singh
- Molecular Genetics Unit, Department of Biology, Western University, London, Ontario, Canada
- * E-mail:
| |
Collapse
|