1
|
Effects of Voluntary Sodium Consumption during the Perinatal Period on Renal Mechanisms, Blood Pressure, and Vasopressin Responses after an Osmotic Challenge in Rats. Nutrients 2023; 15:nu15020254. [PMID: 36678125 PMCID: PMC9860675 DOI: 10.3390/nu15020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular control is vulnerable to forced high sodium consumption during the per-inatal period, inducing programming effects, with anatomical and molecular changes at the kidney, brain, and vascular levels that increase basal and induce blood pressure. However, the program- ming effects of the natriophilia proper of the perinatal period on blood pressure control have not yet been elucidated. In order to evaluate this, we studied the effect of a sodium overload challenge (SO) on blood pressure response and kidney and brain gene expression in adult offspring exposed to voluntary hypertonic sodium consumption during the perinatal period (PM-NaCl group). Male PM-NaCl rats showed a more sustained increase in blood pressure after SO than controls (PM-Ctrol). They also presented a reduced number of glomeruli, decreased expression of TRPV1, and increased expression of At1a in the kidney cortex. The relative expression of heteronuclear vaso- pressin (AVP hnRNA) and AVP in the supraoptic nucleus was unchanged after SO in PM-NaCl in contrast to the increase observed in PM-Ctrol. The data indicate that the availability of a rich source of sodium during the perinatal period induces a long-term effect modifying renal, cardiovascular, and neuroendocrine responses implicated in the control of hydroelectrolyte homeostasis.
Collapse
|
2
|
Abstract
Isolated systolic hypertension is associated with higher risk of cardiovascular disease and all-cause mortality. Despite being the most common form of hypertension in the elderly, it is also detectable among young and middle-aged subjects. Dietary salt (sodium chloride) intake is an important determinant of blood pressure, and high salt intake is associated with greater risk of hypertension and cardiovascular events. In most countries, habitual salt intake at all age categories largely exceeds the international recommendations. Excess salt intake, often interacting with overweight and insulin resistance, may contribute to the development and maintenance of isolated systolic hypertension in young individuals by causing endothelial dysfunction and promoting arterial stiffness through a number of mechanisms, namely increase in the renin-angiotensin-aldosterone system activity, sympathetic tone and salt-sensitivity. This short review focused on the epidemiological and clinical evidence, the mechanistic pathways and the cluster of pathophysiological factors whereby excess salt intake may favor the development and maintenance of isolated systolic hypertension in young people.
Collapse
Affiliation(s)
- Lanfranco D'Elia
- Medical School, Department of Clinical Medicine and Surgery, ESH Excellence Center of Hypertension, University of Naples Federico II, Naples, Italy
| | - Pasquale Strazzullo
- Medical School, Department of Clinical Medicine and Surgery, ESH Excellence Center of Hypertension, University of Naples Federico II, Naples, Italy -
| |
Collapse
|
3
|
Dabrowski W, Siwicka-Gieroba D, Robba C, Bielacz M, Sołek-Pastuszka J, Kotfis K, Bohatyrewicz R, Jaroszyński A, Malbrain MLNG, Badenes R. Potentially Detrimental Effects of Hyperosmolality in Patients Treated for Traumatic Brain Injury. J Clin Med 2021; 10:4141. [PMID: 34575255 PMCID: PMC8467376 DOI: 10.3390/jcm10184141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hyperosmotic therapy is commonly used to treat intracranial hypertension in traumatic brain injury patients. Unfortunately, hyperosmolality also affects other organs. An increase in plasma osmolality may impair kidney, cardiac, and immune function, and increase blood-brain barrier permeability. These effects are related not only to the type of hyperosmotic agents, but also to the level of hyperosmolality. The commonly recommended osmolality of 320 mOsm/kg H2O seems to be the maximum level, although an increase in plasma osmolality above 310 mOsm/kg H2O may already induce cardiac and immune system disorders. The present review focuses on the adverse effects of hyperosmolality on the function of various organs.
Collapse
Affiliation(s)
- Wojciech Dabrowski
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Dorota Siwicka-Gieroba
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Chiara Robba
- Department of Anaesthesia and Intensive Care, Policlinico San Martino, 16100 Genova, Italy;
| | - Magdalena Bielacz
- Institute of Tourism and Recreation, State Vocational College of Szymon Szymonowicz, 22-400 Zamosc, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Katarzyna Kotfis
- Department of Anaesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Romuald Bohatyrewicz
- Department of Anaesthesiology and Intensive Care, Pomeranian Medical University, 71-252 Szczecin, Poland; (J.S.-P.); (R.B.)
| | - Andrzej Jaroszyński
- Department of Nephrology, Institute of Medical Science, Jan Kochanowski University of Kielce, 25-736 Kielce, Poland;
| | - Manu L. N. G. Malbrain
- Department of Anaesthesiology and Intensive Care, Medical University of Lublin, 20-954 Lublin, Poland;
- International Fluid Academy, Dreef 3, 3360 Lovenjoel, Belgium
- Medical Department, AZ Jan Palfjin Hospital, Watersportlaan 5, 9000 Gent, Belgium
| | - Rafael Badenes
- Department of Anaesthesiology and Intensive Care, Hospital Clìnico Universitario de Valencia, University of Valencia, 46010 Valencia, Spain;
| |
Collapse
|
4
|
Integration of Hypernatremia and Angiotensin II by the Organum Vasculosum of the Lamina Terminalis Regulates Thirst. J Neurosci 2020; 40:2069-2079. [PMID: 32005766 DOI: 10.1523/jneurosci.2208-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/08/2020] [Accepted: 01/23/2020] [Indexed: 11/21/2022] Open
Abstract
The organum vasculosum of the lamina terminalis (OVLT) contains NaCl-sensitive neurons to regulate thirst, neuroendocrine function, and autonomic outflow. The OVLT also expresses the angiotensin II (AngII) type1 receptor, and AngII increases Fos expression in OVLT neurons. The present study tested whether individual OVLT neurons sensed both NaCl and AngII to regulate thirst and body fluid homeostasis. A multifaceted approach, including in vitro whole-cell patch recordings, in vivo single-unit recordings, and optogenetic manipulation of OVLT neurons, was used in adult, male Sprague Dawley rats. First, acute intravenous infusion of hypertonic NaCl or AngII produced anatomically distinct patterns of Fos-positive nuclei in the OVLT largely restricted to the dorsal cap versus vascular core, respectively. However, in vitro patch-clamp recordings indicate 66% (23 of 35) of OVLT neurons were excited by bath application of both hypertonic NaCl and AngII. Similarly, in vivo single-unit recordings revealed that 52% (23 of 44) of OVLT neurons displayed an increased discharge to intracarotid injection of both hypertonic NaCl and AngII. In marked contrast to Fos immunoreactivity, neuroanatomical mapping of Neurobiotin-filled cells from both in vitro and in vivo recordings revealed that NaCl- and AngII-responsive neurons were distributed throughout the OVLT. Next, optogenetic excitation of OVLT neurons stimulated thirst but not salt appetite. Conversely, optogenetic inhibition of OVLT neurons attenuated thirst stimulated by hypernatremia or elevated AngII but not hypovolemia. Collectively, these findings provide the first identification of individual OVLT neurons that respond to both elevated NaCl and AngII concentrations to regulate thirst and body fluid homeostasis.SIGNIFICANCE STATEMENT Body fluid homeostasis requires the integration of neurohumoral signals to coordinate behavior, neuroendocrine function, and autonomic function. Extracellular NaCl concentrations and the peptide hormone angiotensin II (AngII) are two major neurohumoral signals that regulate body fluid homeostasis. Herein, we present the first compelling evidence that individual neurons located in the organum vasculosum of the lamina terminalis detect both NaCl and AngII. Furthermore, optogenetic interrogations demonstrate that these neurons play a pivotal role in the regulation of thirst stimulated by NaCl and AngII. These novel observations lay the foundation for future investigations for how such inputs as well as others converge onto unique organum vasculosum of the lamina terminalis neurons to coordinate body fluid homeostasis and contribute to disorders of fluid balance.
Collapse
|
5
|
Watso JC, Robinson AT, Babcock MC, Migdal KU, Wenner MM, Stocker SD, Farquhar WB. Short-term water deprivation does not increase blood pressure variability or impair neurovascular function in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2019; 318:R112-R121. [PMID: 31617739 DOI: 10.1152/ajpregu.00149.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High dietary salt increases arterial blood pressure variability (BPV) in salt-resistant, normotensive rodents and is thought to result from elevated plasma [Na+] sensitizing central sympathetic networks. Our purpose was to test the hypothesis that water deprivation (WD)-induced elevations in serum [Na+] augment BPV via changes in baroreflex function and sympathetic vascular transduction in humans. In a randomized crossover fashion, 35 adults [17 female/18 male, age: 25 ± 4 yr, systolic/diastolic blood pressure (BP): 107 ± 11/60 ± 7 mmHg, body mass index: 23 ± 3 kg/m2] completed two hydration protocols: a euhydration control condition (CON) and a stepwise reduction in water intake over 3 days, concluding with 16 h of WD. We assessed blood and urine electrolyte concentrations and osmolality, resting muscle sympathetic nerve activity (MSNA; peroneal microneurography; 18 paired recordings), beat-to-beat BP (photoplethysmography), common femoral artery blood flow (Doppler ultrasound), and heart rate (single-lead ECG). A subset of participants (n = 25) underwent ambulatory BP monitoring during day 3 of each protocol. We calculated average real variability as an index of BPV. WD increased serum [Na+] (141.0 ± 2.3 vs. 142.1 ± 1.7 mmol/L, P < 0.01) and plasma osmolality (288 ± 4 vs. 292 ± 5 mosmol/kg H2O, P < 0.01). However, WD did not increase beat-to-beat (1.9 ± 0.4 vs. 1.8 ± 0.4 mmHg, P = 0.24) or ambulatory daytime (9.6 ± 2.1 vs. 9.4 ± 3.3 mmHg, P = 0.76) systolic BPV. Additionally, sympathetic baroreflex sensitivity (P = 0.20) and sympathetic vascular transduction were not different after WD (P = 0.17 for peak Δmean BP following spontaneous MSNA bursts). These findings suggest that, despite modestly increasing serum [Na+], WD does not affect BPV, arterial baroreflex function, or sympathetic vascular transduction in healthy young adults.
Collapse
Affiliation(s)
- Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Kamila U Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, Delaware
| |
Collapse
|
6
|
El-Mas MM, Abdel-Rahman AA. Role of Alcohol Oxidative Metabolism in Its Cardiovascular and Autonomic Effects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1193:1-33. [PMID: 31368095 PMCID: PMC8034813 DOI: 10.1007/978-981-13-6260-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several review articles have been published on the neurobehavioral actions of acetaldehyde and other ethanol metabolites as well as in major alcohol-related disorders such as cancer and liver and lung disease. However, very few reviews dealt with the role of alcohol metabolism in the adverse cardiac and autonomic effects of alcohol and their potential underlying mechanisms, particularly in vulnerable populations. In this chapter, following a brief overview of the dose-related favorable and adverse cardiovascular effects of alcohol, we discuss the role of ethanol metabolism in its adverse effects in the brainstem and heart. Notably, current knowledge dismisses a major role for acetaldehyde in the adverse autonomic and cardiac effects of alcohol because of its low tissue level in vivo. Contrary to these findings in men and male rodents, women and hypertensive individuals are more sensitive to the adverse cardiac effects of similar amounts of alcohol. To understand this discrepancy, we discuss the autonomic and cardiac effects of alcohol and its metabolite acetaldehyde in a model of hypertension, the spontaneously hypertensive rat (SHR) and female rats. We present evidence that enhanced catalase activity, which contributes to cardioprotection in hypertension (compensatory) and in the presence of estrogen (inherent), becomes detrimental due to catalase catalysis of alcohol metabolism to acetaldehyde. Noteworthy, studies in SHRs and in estrogen deprived or replete normotensive rats implicate acetaldehyde in triggering oxidative stress in autonomic nuclei and the heart via (i) the Akt/extracellular signal-regulated kinases (ERK)/nitric oxide synthase (NOS) cascade and (ii) estrogen receptor-alpha (ERα) mediation of the higher catalase activity, which generates higher ethanol-derived acetaldehyde in female heart. The latter is supported by the ability of ERα blockade or catalase inhibition to attenuate alcohol-evoked myocardial oxidative stress and dysfunction. More mechanistic studies are needed to further understand the mechanisms of this public health problem.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Abdel A Abdel-Rahman
- Department of Pharmacology and Toxicology, The Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
7
|
da Silva EF, Bassi M, Menani JV, Colombari DSA, Zoccal DB, Pedrino GR, Colombari E. Carotid bodies contribute to sympathoexcitation induced by acute salt overload. Exp Physiol 2018; 104:15-27. [PMID: 30370945 DOI: 10.1113/ep087110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/12/2018] [Indexed: 01/24/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does carotid body input contribute to the hyperosmotic responses? What is the main finding and its importance? The response to NaCl overload is sympathorespiratory excitation. Eliminating the carotid body input reduced sympathoexcitation but did not affect the increase in phrenic burst frequency, whereas eliminating the hypothalamus prevented the tachypnoea and sympathoexcitation. We conclude that the carotid body inputs are essential for the full expression of the sympathetic activity during acute NaCl overload, whereas the tachypnoea depends on hypothalamic mechanisms. ABSTRACT Acute salt excess activates central osmoreceptors, which trigger an increase in sympathetic and respiratory activity. The carotid bodies also respond to hyperosmolality of the extracellular compartment, but their contribution to the sympathoexcitatory and ventilatory responses to NaCl overload remains unknown. To evaluate their contribution to acute NaCl overload, we recorded thoracic sympathetic (tSNA), phrenic (PNA) and carotid sinus nerve activities in decorticate in situ preparations of male Holtzman rats (60-100 g) while delivering intra-arterial infusions of hyperosmotic NaCl (0.17, 0.3, 0.7, 1.5 and 2.0 mol l-1 ; 200 μl infusion over 25-30 s, with a 10 min time interval between solutions) or mannitol (0.3, 0.5, 1.0, 2.7 and 3.8 mol l-1 ) progressively. The cumulative infusions of hyperosmotic NaCl increased the perfusate osmolality to 341 ± 5 mosmol (kg water)-1 and elicited an immediate increase in PNA and tSNA (n = 6, P < 0.05) in sham-denervated rats. Carotid body removal attenuated sympathoexcitation (n = 5, P < 0.05) but did not affect the tachypnoeic response. A precollicular transection disconnecting the hypothalamus abolished the sympathoexcitatory and tachypnoeic responses to NaCl overload (n = 6, P < 0.05). Equi-osmolar infusions of mannitol did not alter the PNA and tSNA in sham-denervated rats (n = 5). Sodium chloride infusions increased carotid sinus nerve activity (n = 10, P < 0.05), whereas mannitol produced negligible changes (n = 5). The results indicate that carotid bodies are activated by acute NaCl overload, but not by mannitol. We conclude that the carotid bodies contribute to the increased sympathetic activity during acute NaCl overload, whereas the ventilatory response is mainly mediated by hypothalamic mechanisms.
Collapse
Affiliation(s)
- Elaine Fernanda da Silva
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Mirian Bassi
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - José Vanderlei Menani
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Débora Simões Almeida Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Daniel Breseghello Zoccal
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| | - Gustavo Rodrigues Pedrino
- Department of Physiological Sciences, Biological Sciences Institute, Federal University of Goias, Goiânia, Goias, Brazil
| | - Eduardo Colombari
- Department of Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, São Paulo, Brazil
| |
Collapse
|
8
|
|
9
|
Brian MS, Matthews EL, Watso JC, Babcock MC, Wenner MM, Rose WC, Stocker SD, Farquhar WB. The influence of acute elevations in plasma osmolality and serum sodium on sympathetic outflow and blood pressure responses to exercise. J Neurophysiol 2017; 119:1257-1265. [PMID: 29357474 DOI: 10.1152/jn.00559.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Elevated plasma osmolality (pOsm) has been shown to increase resting sympathetic nerve activity in animals and humans. The present study tested the hypothesis that increases in pOsm and serum sodium (sNa+) concentration would exaggerate muscle sympathetic nerve activity (MSNA) and blood pressure (BP) responses to handgrip (HG) exercise and postexercise ischemia (PEI). BP and MSNA were measured during HG followed by PEI before and after a 23-min hypertonic saline infusion (HSI-3% NaCl). Eighteen participants (age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed the protocol; pOsm and sNa+ increased from pre- to post-HSI (285 ± 1 to 291 ± 1 mosmol/kg H2O; 138.2 ± 0.3 to 141.3 ± 0.4 mM; P < 0.05 for both). Resting mean BP (90 ± 2 vs. 92 ± 1 mmHg) and MSNA (11 ± 2 vs. 15 ± 2 bursts/min) were increased pre- to post-HSI ( P < 0.05 for both). Mean BP responses to HG (106 ± 2 vs. 111 ± 2 mmHg, P < 0.05) and PEI (102 ± 2 vs. 107 ± 2 mmHg, P < 0.05) were higher post-HSI. Similarly, MSNA during HG (20 ± 2 vs. 29 ± 2 bursts/min, P < 0.05) and PEI (19 ± 2 vs. 24 ± 3 bursts/min, P < 0.05) were greater post-HSI. In addition, the change in MSNA was greater post-HSI during HG (Δ9 ± 2 vs. Δ13 ± 3 bursts/min, P < 0.05). A second set of participants ( n = 13, age 23 ± 1 yr; BMI 24 ± 1 kg/m2) completed a time control (TC) protocol consisting of quiet rest instead of an infusion. The TC condition yielded no change in resting sNa+, pOsm, mean BP, or MSNA (all P > 0.05); responses to HG and PEI were not different pre- to post-quiet rest ( P > 0.05). In summary, acutely increasing pOsm and sNa+ exaggerates BP and MSNA responses during HG exercise and PEI. NEW & NOTEWORTHY Elevated plasma osmolality has been shown to increase resting sympathetic activity and blood pressure. This study provides evidence that acute elevations in plasma osmolality and serum sodium exaggerated muscle sympathetic nerve activity and blood pressure responses during exercise pressor reflex activation in healthy young adults.
Collapse
Affiliation(s)
- Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Health and Human Performance, Plymouth State University , Plymouth, New Hampshire
| | - Evan L Matthews
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Exercise Science and Physical Education, Montclair State University , Montclair, New Jersey
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - William C Rose
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Sean D Stocker
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
10
|
Excess Body Weight, Insulin Resistance and Isolated Systolic Hypertension: Potential Pathophysiological Links. High Blood Press Cardiovasc Prev 2017; 25:17-23. [DOI: 10.1007/s40292-017-0240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/25/2017] [Indexed: 12/24/2022] Open
|
11
|
Dos Santos Moreira MC, Naves LM, Marques SM, Silva EF, Rebelo AC, Colombari E, Pedrino GR. Neuronal circuits involved in osmotic challenges. Physiol Res 2017; 66:411-423. [PMID: 28248529 DOI: 10.33549/physiolres.933373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The maintenance of plasma sodium concentration within a narrow limit is crucial to life. When it differs from normal physiological patterns, several mechanisms are activated in order to restore body fluid homeostasis. Such mechanisms may be vegetative and/or behavioral, and several regions of the central nervous system (CNS) are involved in their triggering. Some of these are responsible for sensory pathways that perceive a disturbance of the body fluid homeostasis and transmit information to other regions. These regions, in turn, initiate adequate adjustments in order to restore homeostasis. The main cardiovascular and autonomic responses to a change in plasma sodium concentration are: i) changes in arterial blood pressure and heart rate; ii) changes in sympathetic activity to the renal system in order to ensure adequate renal sodium excretion/absorption, and iii) the secretion of compounds involved in sodium ion homeostasis (ANP, Ang-II, and ADH, for example). Due to their cardiovascular effects, hypertonic saline solutions have been used to promote resuscitation in hemorrhagic patients, thereby increasing survival rates following trauma. In the present review, we expose and discuss the role of several CNS regions involved in body fluid homeostasis and the effects of acute and chronic hyperosmotic challenges.
Collapse
Affiliation(s)
- M C Dos Santos Moreira
- Department of Physiological Science, Federal University of Goiás, Goiânia - GO - Brazil. or
| | | | | | | | | | | | | |
Collapse
|
12
|
Silva EF, Sera CTN, Mourão AA, Lopes PR, Moreira MCS, Ferreira-Neto ML, Colombari DAS, Cravo SLD, Pedrino GR. Involvement of sinoaortic afferents in renal sympathoinhibition and vasodilation induced by acute hypernatremia. Clin Exp Pharmacol Physiol 2015; 42:1135-41. [DOI: 10.1111/1440-1681.12475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/29/2015] [Accepted: 08/01/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Elaine F Silva
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Celisa TN Sera
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Aline A Mourão
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Paulo R Lopes
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marina CS Moreira
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| | - Marcos L Ferreira-Neto
- Laboratory of Experimental Physiology; Faculty of Physical Education; Federal University of Uberlândia; Uberlândia Minas Gerais Brazil
| | - Débora AS Colombari
- Department of Physiology and Pathology; School of Dentistry; São Paulo State University; Araraquara São Paulo Brazil
| | - Sérgio LD Cravo
- Department of Physiology; Federal University of São Paulo; São Paulo São Paulo Brazil
| | - Gustavo R Pedrino
- Centre for Neuroscience and Cardiovascular Research; Department of Physiological Sciences; Biological Sciences Institute; Federal University of Goiás; Goiânia Goiás Brazil
| |
Collapse
|
13
|
Holbein WW, Toney GM. Activation of the hypothalamic paraventricular nucleus by forebrain hypertonicity selectively increases tonic vasomotor sympathetic nerve activity. Am J Physiol Regul Integr Comp Physiol 2014; 308:R351-9. [PMID: 25519737 DOI: 10.1152/ajpregu.00460.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported that mean arterial pressure (MAP) is maintained in water-deprived rats by an irregular tonic component of vasomotor sympathetic nerve activity (SNA) that is driven by neuronal activity in the hypothalamic paraventricular nucleus (PVN). To establish whether generation of tonic SNA requires time-dependent (i.e., hours or days of dehydration) neuroadaptive responses or can be abruptly generated by even acute circuit activation, forebrain sympathoexcitatory osmosensory inputs to PVN were stimulated by infusion (0.1 ml/min, 10 min) of hypertonic saline (HTS; 1.5 M NaCl) through an internal carotid artery (ICA). Whereas isotonic saline (ITS; 0.15 M NaCl) had no effect (n = 5), HTS increased (P < 0.001; n = 6) splanchnic SNA (sSNA), phrenic nerve activity (PNA), and MAP. Bilateral PVN injections of muscimol (n = 6) prevented HTS-evoked increases of integrated sSNA and PNA (P < 0.001) and attenuated the accompanying pressor response (P < 0.01). Blockade of PVN NMDA receptors with d-(2R)-amino-5-phosphonovaleric acid (AP5; n = 6) had similar effects. Analysis of respiratory rhythmic bursting of sSNA revealed that ICA HTS increased mean voltage (P < 0.001) without affecting the amplitude of inspiratory or expiratory bursts. Analysis of cardiac rhythmic sSNA likewise revealed that ICA HTS increased mean voltage. Cardiac rhythmic sSNA oscillation amplitude was also increased, which is consistent with activation of arterial baroreceptor during the accompanying pressor response. Increased mean sSNA voltage by HTS was blocked by prior PVN inhibition (muscimol) and blockade of PVN NMDA receptors (AP5). We conclude that even acute glutamatergic activation of PVN (i.e., by hypertonicity) is sufficient to selectively increase a tonic component of vasomotor SNA.
Collapse
Affiliation(s)
| | - Glenn M Toney
- Department of Physiology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| |
Collapse
|
14
|
Stocker SD, Monahan KD, Browning KN. Neurogenic and sympathoexcitatory actions of NaCl in hypertension. Curr Hypertens Rep 2014; 15:538-46. [PMID: 24052211 DOI: 10.1007/s11906-013-0385-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excess dietary salt intake is a major contributing factor to the pathogenesis of salt-sensitive hypertension. Strong evidence suggests that salt-sensitive hypertension is attributed to renal dysfunction, vascular abnormalities, and activation of the sympathetic nervous system. Indeed, sympathetic nerve transections or interruption of neurotransmission in various brain centers lowers arterial blood pressure (ABP) in many salt-sensitive models. The purpose of this article is to discuss recent evidence that supports a role of plasma or cerebrospinal fluid hypernatremia as a key mediator of sympathoexcitation and elevated ABP. Both experimental and clinical studies using time-controlled sampling have documented that a diet high in salt increases plasma and cerebrospinal fluid sodium concentration. To the extent it has been tested, acute and chronic elevations in sodium concentration activates the sympathetic nervous system in animals and humans. A further understanding of how the central nervous system detects changes in plasma or cerebrospinal fluid sodium concentration may lead to new therapeutic treatment strategies in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Cellular & Molecular Physiology, Pennsylvania State University College of Medicine, 500 University Drive H166, Hershey, PA, 17033, USA,
| | | | | |
Collapse
|
15
|
Holbein WW, Bardgett ME, Toney GM. Blood pressure is maintained during dehydration by hypothalamic paraventricular nucleus-driven tonic sympathetic nerve activity. J Physiol 2014; 592:3783-99. [PMID: 24973410 DOI: 10.1113/jphysiol.2014.276261] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Resting sympathetic nerve activity (SNA) consists primarily of respiratory and cardiac rhythmic bursts of action potentials. During homeostatic challenges such as dehydration, the hypothalamic paraventricular nucleus (PVN) is activated and drives SNA in support of arterial pressure (AP). Given that PVN neurones project to brainstem cardio-respiratory regions that generate bursting patterns of SNA, we sought to determine the contribution of PVN to support of rhythmic bursting of SNA during dehydration and to elucidate which bursts dominantly contribute to maintenance of AP. Euhydrated (EH) and dehydrated (DH) (48 h water deprived) rats were anaesthetized, bilaterally vagotomized and underwent acute PVN inhibition by bilateral injection of the GABA-A receptor agonist muscimol (0.1 nmol in 50 nl). Consistent with previous studies, muscimol had no effect in EH rats (n = 6), but reduced mean AP (MAP; P < 0.001) and integrated splanchnic SNA (sSNA; P < 0.001) in DH rats (n = 6). Arterial pulse pressure was unaffected in both groups. Muscimol reduced burst frequency of phrenic nerve activity (P < 0.05) equally in both groups without affecting the burst amplitude-duration integral (i.e. area under the curve). PVN inhibition did not affect the amplitude of the inspiratory peak, expiratory trough or expiratory peak of sSNA in either group, but reduced cardiac rhythmic sSNA in DH rats only (P < 0.001). The latter was largely reversed by inflating an aortic cuff to restore MAP (n = 5), suggesting that the muscimol-induced reduction of cardiac rhythmic sSNA in DH rats was an indirect effect of reducing MAP and thus arterial baroreceptor input. We conclude that MAP is largely maintained in anaesthetized DH rats by a PVN-driven component of sSNA that is neither respiratory nor cardiac rhythmic.
Collapse
Affiliation(s)
- Walter W Holbein
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Megan E Bardgett
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Glenn M Toney
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| |
Collapse
|
16
|
Collister JP, Nahey DB, Hendel MD, Brooks VL. Roles of the subfornical organ and area postrema in arterial pressure increases induced by 48-h water deprivation in normal rats. Physiol Rep 2014; 2:e00191. [PMID: 24744870 PMCID: PMC3967674 DOI: 10.1002/phy2.191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/19/2022] Open
Abstract
In rats, water deprivation (WD) increases arterial blood pressure (BP) in part due to actions of elevated osmolality in the brain to increase vasopressin levels and sympathetic activity. However, the osmoreceptors that mediate this response have not been identified. To test the hypothesis that osmoregulatory circumventricular organs are involved, BP and heart rate (HR) were continuously recorded telemetrically during 48 h of WD in normal rats with lesions (x) or sham lesions (sham) of the subfornical organ (SFO) or area postrema (AP). Although WD increased BP in SFOx and SFOsham rats, no significant difference in the hypertensive response was observed between groups. HR decreased transiently but similarly in SFOx and SFOsham rats during the first 24 h of WD. When water was reintroduced, BP and HR decreased rapidly and similarly in both groups. BP (during lights off) and HR were both lower in APx rats before WD compared to APsham. WD increased BP less in APx rats, and the transient bradycardia was eliminated. Upon reintroduction of drinking water, smaller falls in both BP and HR were observed in APx rats compared to APsham rats. WD increased plasma osmolality and vasopressin levels similarly in APx and APsham rats, and acute blockade of systemic V1 vasopressin receptors elicited similar depressor responses, suggesting that the attenuated BP response is not due to smaller increases in vasopressin or osmolality. In conclusion, the AP, but not the SFO, is required for the maximal hypertensive effect induced by WD in rats.
Collapse
Affiliation(s)
- John P Collister
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, Minnesota
| | - David B Nahey
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, Minnesota
| | - Michael D Hendel
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, 55108, Minnesota
| | - Virginia L Brooks
- Department of Physiology & Pharmacology, Oregon Health and Science University Portland, Oregon, 97239
| |
Collapse
|
17
|
Holbein WW, Toney GM. Sympathetic network drive during water deprivation does not increase respiratory or cardiac rhythmic sympathetic nerve activity. J Appl Physiol (1985) 2013; 114:1689-96. [PMID: 23580603 DOI: 10.1152/japplphysiol.00078.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Effects of water deprivation on rhythmic bursting of sympathetic nerve activity (SNA) were investigated in anesthetized, bilaterally vagotomized, euhydrated (control) and 48-h water-deprived (WD) rats (n = 8/group). Control and WD rats had similar baseline values of mean arterial pressure, heart rate, end-tidal CO2, and central respiratory drive. Although integrated splanchnic SNA (sSNA) was greater in WD rats than controls (P < 0.01), analysis of respiratory rhythmic bursting of sSNA revealed that inspiratory rhythmic burst amplitude was actually smaller (P < 0.005) in WD rats (+68 ± 6%) than controls (+208 ± 20%), and amplitudes of the early expiratory (postinspiratory) trough and late expiratory burst of sSNA were not different between groups. Further analysis revealed that water deprivation had no effect on either the amplitude or periodicity of the cardiac rhythmic oscillation of sSNA. Collectively, these data indicate that the increase of sSNA produced by water deprivation is not attributable to either increased respiratory or cardiac rhythmic burst discharge. Thus the sympathetic network response to acute water deprivation appears to differ from that of chronic sympathoexcitation in neurogenic forms of arterial hypertension, where increased respiratory rhythmic bursting of SNA and baroreflex adaptations have been reported.
Collapse
Affiliation(s)
- Walter W Holbein
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
18
|
Veitenheimer B, Osborn JW. Effects of intrathecal kynurenate on arterial pressure during chronic osmotic stress in conscious rats. Am J Physiol Heart Circ Physiol 2012; 304:H303-10. [PMID: 23161878 DOI: 10.1152/ajpheart.00629.2012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased plasma osmolality elevates mean arterial pressure (MAP) through activation of the sympathetic nervous system, but the neurotransmitters released in the spinal cord to regulate MAP during osmotic stress remain unresolved. Glutamatergic neurons of the rostral ventrolateral medulla project to sympathetic preganglionic neurons in the spinal cord and are likely activated during conditions of osmotic stress; however, this has not been examined in conscious rats. This study investigated whether increased MAP during chronic osmotic stress depends on activation of spinal glutamate receptors. Rats were chronically instrumented with an indwelling intrathecal (i.t.) catheter for antagonist delivery to the spinal cord and a radiotelemetry transmitter for continuous monitoring of MAP and heart rate. Osmotic stress induced by 48 h of water deprivation (WD) increased MAP by ~15 mmHg. Intrathecal kynurenic acid, a nonspecific antagonist of ionotropic glutamate receptors, decreased MAP significantly more after 48 h of WD compared with the water-replete state. Water-deprived rats also showed a greater fall in MAP in response to i.t. 2-amino-5-phosphonovalerate. Finally, i.t. kynurenic acid also decreased MAP more in an osmotically driven model of neurogenic hypertension, the DOCA-salt rat, compared with normotensive controls. Our results suggest that spinally released glutamate mediates increased MAP during 48-h WD and DOCA-salt hypertension.
Collapse
Affiliation(s)
- Britta Veitenheimer
- The Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
19
|
El-Mas MM, Abdel-Rahman AA. Enhanced catabolism to acetaldehyde in rostral ventrolateral medullary neurons accounts for the pressor effect of ethanol in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 2012; 302:H837-44. [PMID: 22159996 PMCID: PMC3353783 DOI: 10.1152/ajpheart.00958.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/01/2011] [Indexed: 11/22/2022]
Abstract
We have previously shown that ethanol microinjection into the rostral ventrolateral medulla (RVLM) elicits sympathoexcitation and hypertension in conscious spontaneously hypertensive rats (SHRs) but not in Wistar-Kyoto (WKY) rats. In this study, evidence was sought to implicate the oxidative breakdown of ethanol in this strain-dependent hypertensive action of ethanol. Biochemical experiments revealed significantly higher catalase activity and similar aldehyde dehydrogenase (ALDH) activity in the RVLM of SHRs compared with WKY rats. We also investigated the influence of pharmacological inhibition of catalase (3-aminotriazole) or ALDH (cyanamide) on the cardiovascular effects of intra-RVLM ethanol or its metabolic product acetaldehyde in conscious rats. Compared with vehicle, ethanol (10 μg/rat) elicited a significant increase in blood pressure in SHRs that lasted for the 60-min observation period but had no effect on blood pressure in WKY rats. The first oxidation product, acetaldehyde, played a critical role in ethanol-evoked hypertension because 1) catalase inhibition (3-aminotriazole treatment) virtually abolished the ethanol-evoked pressor response in SHRs, 2) intra-RVLM acetaldehyde (2 μg/rat) reproduced the strain-dependent hypertensive effect of intra-RVLM ethanol, and 3) ALDH inhibition (cyanamide treatment) uncovered a pressor response to intra-RVLM acetaldehyde in WKY rats similar to the response observed in SHRs. These findings support the hypothesis that local production of acetaldehyde, due to enhanced catalase activity, in the RVLM mediates the ethanol-evoked pressor response in SHRs.
Collapse
Affiliation(s)
- Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | | |
Collapse
|
20
|
Altered cardiovascular reactivity and osmoregulation during hyperosmotic stress in adult rats developmentally exposed to polybrominated diphenyl ethers (PBDEs). Toxicol Appl Pharmacol 2011; 256:103-13. [DOI: 10.1016/j.taap.2011.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/23/2022]
|
21
|
Greaney JL, Ray CA, Prettyman AV, Edwards DG, Farquhar WB. Influence of increased plasma osmolality on sympathetic outflow during apnea. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1091-6. [PMID: 20660106 PMCID: PMC2957377 DOI: 10.1152/ajpregu.00341.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/19/2010] [Indexed: 11/22/2022]
Abstract
Animal models have shown that peripheral chemoreceptors alter their firing patterns in response to changes in plasma osmolality, which, in turn, may modulate sympathetic outflow. The purpose of this study was to test the hypothesis that increases in plasma osmolality augment muscle sympathetic nerve activity (MSNA) responses to chemoreceptor activation. MSNA was recorded from the peroneal nerve (microneurography) during a 23-min intravenous hypertonic saline infusion (3% NaCl; HSI). Chemoreceptor activation was elicited by voluntary end-expiratory apnea. MSNA responses to end-expiratory apnea were calculated as the absolute increase from the preceding baseline period. Plasma osmolality significantly increased from pre- to post-HSI (284 ± 1 to 290 ± 1 mOsm/kg H(2)O; P < 0.01). There was a significant overall effect of osmolality on sympathetic activity (P < 0.01). Duration of the voluntary end-expiratory apnea was not different after HSI (pre = 40 ± 5 s; post = 41 ± 4 s). MSNA responses to end-expiratory apnea were not different after HSI, expressed as an absolute change in burst frequency (n = 11; pre = 8 ± 2; post = 11 ± 1 burst/min) and as a percent increase in total activity (pre = 51 ± 4% AU; post = 53 ± 4% AU). A second group of subjects (n = 8) participated in 23-min volume/time-control intravenous isotonic saline infusions (0.9% NaCl). Isotonic saline volume-control infusions yielded no change in plasma osmolality or MSNA at rest. Furthermore, MSNA responses to apnea following isotonic saline infusion were not different. In summary, elevated plasma osmolality increased MSNA at rest and during apnea, but contrary to the hypothesis, MSNA responsiveness to apnea was not augmented. Therefore, this study does not support a neural interaction between plasma osmolality and chemoreceptor stimulation.
Collapse
Affiliation(s)
- Jody L Greaney
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, USA
| | | | | | | | | |
Collapse
|
22
|
Toney GM, Stocker SD. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J Physiol 2010; 588:3375-84. [PMID: 20603334 DOI: 10.1113/jphysiol.2010.191940] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Evidence now indicates that exaggerated sympathetic nerve activity (SNA) significantly contributes to salt-sensitive cardiovascular diseases. Although CNS mechanisms that support the elevation of SNA in various cardiovascular disease models have been intensively studied, many mechanistic details remain unknown. In recent years, studies have shown that SNA can rise as a result of both acute and chronic increases of body fluid osmolality. These findings have raised the possibility that salt-sensitive cardiovascular diseases could result, at least in part, from direct osmosensory activation of CNS sympathetic drive. In this brief review we emphasize recent findings from several laboratories, including our own, which demonstrate that neurons of the forebrain organum vasculosum laminae terminalis (OVLT) play a pivotal role in triggering hyperosmotic activation of SNA by recruiting neurons in specific regions of the hypothalamus, brainstem and spinal cord. Although OVLT neurons are intrinsically osmosensitive and shrink when exposed to extracellular hypertonicity, it is not yet clear if these processes are functionally linked. Whereas acute hypertonic activation of OVLT neurons critically depends on TRPV1 channels, studies in TRPV1(-/-) mice suggest that acute and long-term osmoregulatory responses remain largely intact. Therefore, acute and chronic osmosensory transduction by OVLT neurons may be mediated by distinct mechanisms. We speculate that organic osmolytes such as taurine and possibly novel processes such as extracellular acidification could contribute to long-term osmosensory transduction by OVLT neurons and might therefore participate in the elevation of SNA in salt-sensitive cardiovascular diseases.
Collapse
Affiliation(s)
- Glenn M Toney
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
23
|
Cravo SL, Campos RR, Colombari E, Sato MA, Bergamaschi CM, Pedrino GR, Ferreira-Neto ML, Lopes OU. Role of the medulla oblongata in normal and high arterial blood pressure regulation: the contribution of Escola Paulista de Medicina - UNIFESP. AN ACAD BRAS CIENC 2010; 81:589-603. [PMID: 19722026 DOI: 10.1590/s0001-37652009000300021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 05/13/2009] [Indexed: 11/22/2022] Open
Abstract
Several forms of experimental evidence gathered in the last 37 years have unequivocally established that the medulla oblongata harbors the main neural circuits responsible for generating the vasomotor tone and regulating arterial blood pressure. Our current understanding of this circuitry derives mainly from the studies of Pedro Guertzenstein, a former student who became Professor of Physiology at UNIFESP later, and his colleagues. In this review, we have summarized the main findings as well as our collaboration to a further understanding of the ventrolateral medulla and the control of arterial blood pressure under normal and pathological conditions.
Collapse
Affiliation(s)
- Sergio L Cravo
- Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Shi P, Martinez MA, Calderon AS, Chen Q, Cunningham JT, Toney GM. Intra-carotid hyperosmotic stimulation increases Fos staining in forebrain organum vasculosum laminae terminalis neurones that project to the hypothalamic paraventricular nucleus. J Physiol 2008; 586:5231-45. [PMID: 18755745 DOI: 10.1113/jphysiol.2008.159665] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Body fluid hyperosmolality has long been known to elicit homeostatic responses that range from drinking to inhibition of salt appetite to release of neurohypohyseal hormones (i.e. vasopressin and oxytocin). More recently, it has been recognized that hyperosmolality is capable of also provoking a significant increase of sympathetic nerve activity (SNA). It has been reported that neurones in the forebrain organum vasculosum laminae terminalis (OVLT) and hypothalamic paraventricular nucleus (PVN) each contribute significantly to this response. Here we sought to determine if sympathoexcitatory levels of hyperosmolality activate specifically those OVLT neurones that form a monosynaptic pathway to the PVN. First, we established in anaesthetized rats that graded concentrations of hypertonic NaCl (1.5 and 3.0 osmol kg(-1)) elicit graded increases of renal SNA (RSNA) when infused at a rate of 0.1 ml min(-1) through an internal carotid artery (ICA) - the major vascular supply of the forebrain. Next, infusions were performed in conscious rats in which OVLT neurones projecting to the PVN (OVLT-PVN) were retrogradely labelled with cholera toxin subunit B (CTB). Immunostaining of the immediate early gene product Fos and CTB was performed to quantify osmotic activation of OVLT-PVN neurones. ICA infusions of hypertonic NaCl and mannitol each significantly (P < 0.01-0.001) increased the number of Fos immunoreactive (Fos-ir) neuronal nuclei in the dorsal cap (DC) and lateral margins (LM) of OVLT. In the LM, infusions of 1.5 and 3.0 osmol kg(-1) NaCl produced similar increases in the number of Fos-ir neurones. In the DC, these infusions produced graded increases in Fos expression. Among OVLT neurones with axons projecting directly to the PVN (i.e. CTB-ir), graded hypertonic NaCl infusions again produced graded increases in Fos expression and this was observed in both the DC and LM. Although the DC and LM contained a similar number of OVLT-PVN neurones, the proportion of such neurones that expressed Fos-ir in responses to ICA hypertonic NaCl infusions was greater in the DC (P < 0.001). These findings support the conclusion that PVN-projecting neurones in the DC and LM of OVLT could participate in behavioural, neuroendocrine, and sympathetic nervous system responses to body fluid hyperosmolality.
Collapse
Affiliation(s)
- Peng Shi
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | |
Collapse
|
25
|
Shi P, Stocker SD, Toney GM. Organum vasculosum laminae terminalis contributes to increased sympathetic nerve activity induced by central hyperosmolality. Am J Physiol Regul Integr Comp Physiol 2007; 293:R2279-89. [PMID: 17898124 PMCID: PMC3575105 DOI: 10.1152/ajpregu.00160.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The contribution of the organum vasculosum laminae terminalis (OVLT) in mediating central hyperosmolality-induced increases of sympathetic nerve activity (SNA) and arterial blood pressure (ABP) was assessed in anesthetized rats. Solutions of graded NaCl concentration (150, 375, and 750 mM) were injected (150 mul) into the forebrain vascular supply via an internal carotid artery (ICA). Time-control experiments (n = 6) established that ICA NaCl injections produced short-latency, transient increases of renal SNA (RSNA) and mean ABP (MAP) (P < 0.05-0.001). Responses were graded, highly reproducible, and unaltered by systemic blockade of vasopressin V1 receptors (n = 4). In subsequent studies, stimulus-triggered averaging of RSNA was used to accurately locate the OVLT. Involvement of OVLT in responses to ICA NaCl was assessed by recording RSNA and MAP responses before and 15 min after electrolytic lesion of the OVLT (n = 6). Before lesion, NaCl injections increased RSNA and MAP (P < 0.05-0.001), similar to time control experiments. After lesion, RSNA responses were significantly reduced (P < 0.05-0.001), but MAP responses were unaltered. To exclude a role for fibers of passage, the inhibitory GABA-A receptor agonist muscimol was microinjected into the OVLT (50 pmol in 50 nl) (n = 6). Before muscimol, hypertonic NaCl increased RSNA, lumbar SNA (LSNA), and MAP (P < 0.05-0.001). After muscimol, both RSNA and LSNA were significantly reduced in response to 375 and 750 mM NaCl (P < 0.05). MAP responses were again unaffected. Injections of vehicle (saline) into OVLT (n = 6) and muscimol lateral to OVLT (n = 5) each failed to alter responses to ICA NaCl. We conclude that OVLT neurons contribute to sympathoexcitation by central hyperosmolality.
Collapse
Affiliation(s)
- Peng Shi
- Dept. of Physiology-MC 7756, Univ. of Texas Health Science Center, 7703 Floyd Curl Dr., San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
26
|
Adams JM, Madden CJ, Sved AF, Stocker SD. Increased dietary salt enhances sympathoexcitatory and sympathoinhibitory responses from the rostral ventrolateral medulla. Hypertension 2007; 50:354-9. [PMID: 17592069 DOI: 10.1161/hypertensionaha.107.091843] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased dietary salt exaggerates arterial blood pressure (ABP) responses evoked from the rostral ventrolateral medulla (RVLM). The present study determined whether these enhanced pressor responses were directly attributable to a greater increase in sympathetic nerve activity (SNA) and whether these enhanced responses were balanced by a greater responsiveness of RVLM neurons to inhibitory input. Male Sprague-Dawley rats were fed normal chow and given access to either water or a 1% NaCl solution for 14 days. Injection of l-glutamate (0.03, 0.1, 1.0, and 3.0 nmol) into the RVLM produced a significantly greater increase in renal SNA, splanchnic SNA, and ABP in rats drinking 1% NaCl versus water. Conversely, injection of the inhibitory amino acid gamma-aminobutyric acid (0.1, 1.0, and 10 nmol) into the RVLM produced significantly greater decreases in renal SNA, splanchnic SNA, and ABP of rats drinking 1% NaCl versus water. These enhanced SNA and ABP responses to l-glutamate and gamma-aminobutyric acid were not observed in rats drinking 1% NaCl for 1 or 7 days but were present in rats drinking 1% NaCl for 21 days. Moreover, the dietary salt-induced enhancement of both sympathoexcitatory and sympathoinhibitory responses from the RVLM persisted after the 1% NaCl solution was replaced with water for 1, but not 7, days. These findings indicate that the potentiated ABP responses observed previously are mediated by parallel changes in SNA, and these responses depend on a slowly developing and reversible form of neuronal plasticity.
Collapse
Affiliation(s)
- Julye M Adams
- Department of Physiology, University of Kentucky, 800 Rose St MS-508, Lexington, KY 40536-0298, USA
| | | | | | | |
Collapse
|
27
|
Freeman KL, Brooks VL. AT(1) and glutamatergic receptors in paraventricular nucleus support blood pressure during water deprivation. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1675-82. [PMID: 17185407 DOI: 10.1152/ajpregu.00623.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water deprivation activates sympathoexcitatory neurons in the paraventricular nucleus (PVN); however, the neurotransmitters that mediate this activation are unknown. To test the hypothesis that ANG II and glutamate are involved, effects on blood pressure (BP) of bilateral PVN microinjections of ANG II type 1 receptor (AT1R) antagonists, candesartan and valsartan, or the ionotropic glutamate receptor antagonist, kynurenate, were determined in urethane-anesthetized water-deprived and water-replete male rats. Because PVN may activate sympathetic neurons via the rostral ventrolateral medulla (RVLM) and because PVN disinhibition increases sympathetic activity in part via increased drive of AT1R in the RVLM, candesartan was also bilaterally microinjected into the RVLM. Total blockade of the PVN with bilateral microinjections of muscimol, a GABA(A) agonist, decreased BP more (P < 0.05) in water-deprived (-29 +/- 8 mmHg) than in water-replete (-7 +/- 2 mmHg) rats, verifying that the PVN is required for BP maintenance during water deprivation. PVN candesartan slowly lowered BP by 7 +/- 1 mmHg (P < 0.05). In water-replete rats, however, candesartan did not alter BP (1 +/- 1 mmHg). Valsartan also produced a slowly developing decrease in arterial pressure (-6 +/- 1 mmHg; P < 0.05) in water-deprived but not in water-replete (-1 +/- 1 mmHg) rats. In water-deprived rats, PVN kynurenate rapidly decreased BP (-19 +/- 3 mmHg), and the response was greater (P < 0.05) than in water-replete rats (-4 +/- 1 mmHg). Finally, as in PVN, candesartan in RVLM slowly decreased BP in water-deprived (-8 +/- 1 mmHg; P < 0.05) but not in water-replete (-3 +/- 1 mmHg) rats. These data suggest that activation of AT(1) and glutamate receptors in PVN, as well as of AT1R in RVLM, contributes to BP maintenance during water deprivation.
Collapse
Affiliation(s)
- Korrina L Freeman
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | |
Collapse
|
28
|
Mueller PJ. Exercise training attenuates increases in lumbar sympathetic nerve activity produced by stimulation of the rostral ventrolateral medulla. J Appl Physiol (1985) 2006; 102:803-13. [PMID: 17053106 DOI: 10.1152/japplphysiol.00498.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training (ExTr) has been associated with blunted activation of the sympathetic nervous system in several animal models and in some human studies. Although these data are consistent with the hypothesis that ExTr reduces the incidence of cardiovascular diseases via reduced sympathoexcitation, the mechanisms are unknown. The rostral ventrolateral medulla (RVLM) is important in control of sympathetic nervous system activity in both physiological and pathophysiological states. The purpose of the present study was to test the hypothesis that ExTr results in reduced sympathoexcitation mediated at the level of the RVLM. Male Sprague-Dawley rats were treadmill trained or remained sedentary for 8-10 wk. RVLM microinjections were performed under Inactin anesthesia while mean arterial pressure, heart rate, and lumbar sympathetic nerve activity (LSNA) were recorded. Bilateral microinjections of the GABA(A) antagonist bicuculline (5 mM, 90 nl) into the RVLM increased LSNA in sedentary animals (169 +/- 33%), which was blunted in ExTr animals (100 +/- 22%, P < 0.05). Activation of the RVLM with unilateral microinjections of glutamate (10 mM, 30 nl) increased LSNA in sedentary animals (76 +/- 13%), which was also attenuated by training (26 +/- 2%, P < 0.05). Bilateral microinjections of the ionotropic glutamate receptor antagonist kynurenate (40 mM, 90 nl) produced small increases in mean arterial pressure and LSNA that were similar between groups. Results suggest that ExTr may reduce increases in LSNA due to reduced activation of the RVLM. Conversely, we speculate that the relatively enhanced activation of LSNA in sedentary animals may be related to the increased incidence of cardiovascular disease associated with a sedentary lifestyle.
Collapse
Affiliation(s)
- Patrick J Mueller
- Dalton Cardiovascular Research Center and Dept. of Biomedical Sciences, University of Missouri-Columbia, 65211-3300, USA.
| |
Collapse
|
29
|
Antunes VR, Yao ST, Pickering AE, Murphy D, Paton JFR. A spinal vasopressinergic mechanism mediates hyperosmolality-induced sympathoexcitation. J Physiol 2006; 576:569-83. [PMID: 16873404 PMCID: PMC1890358 DOI: 10.1113/jphysiol.2006.115766] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 07/20/2006] [Indexed: 11/08/2022] Open
Abstract
An elevation in plasma osmolality elicits a complex neurohumoral response, including an activation of the sympathetic nervous system and an increase in arterial pressure. Using a combination of in vivo and in situ rat preparations, we sought to investigate whether hypothalamic vasopressinergic spinally projecting neurones are activated during increases in plasma osmolality to elicit sympathoexcitation. Hypertonic saline (HS, i.v. bolus), which produced a physiological increase in plasma osmolality to 299 +/- 1 mosmol (kg water)(-1), elicited an immediate increase in mean arterial pressure (MAP) (from 101 +/- 1 to 121 +/- 3 mmHg) in vivo. Pre-treatment with prazosin reversed the HS-induced pressor response to a hypotensive response (from 121 +/- 3 to 68 +/- 2 mmHg), indicating significant activation of the sympathetic nervous system. In an in situ arterially perfused decorticate rat preparation, hyperosmotic perfusate consisted of either 135 mm NaCl, or a non-NaCl osmolyte, mannitol (0.5%); both increased lumbar sympathetic nerve activity (LSNA) by 32 +/- 5% (NaCl) and 21 +/- 1% (mannitol), which was attenuated after precollicular transection (7 +/- 3% and 1 +/- 1%, respectively). Remaining experiments used the NaCl hyperosmotic stimulus. In separate preparations the hyperosmotic-induced sympathoexcitation (21 +/- 2%) was also significantly attenuated after transection of the circumventricular organs (2 +/- 1%). Either isoguvacine (a GABA(A) receptor agonist) or kynurenic acid (a non-selective ionotropic glutamate receptor antagonist) microinjected bilaterally into the paraventricular nucleus (PVN) attenuated the increase in LSNA induced by the hyperosmotic stimulus (control: 25 +/- 2%; after isoguvacine: 7 +/- 2%; after kynurenic: 8 +/- 3%). Intrathecal injection of a V(1a) receptor antagonist also reduced the increase in LSNA elicited by the hyperosmotic stimulus (control: 29 +/- 6%; after blocker: 4 +/- 1%). These results suggest that a physiological hyperosmotic stimulus produces sympathetically mediated hypertension in conscious rats. These data are substantiated by the in situ decorticate preparation in which sympathoexcitation was also evoked by comparable hyperosmotic stimulation. Our findings demonstrate the importance of vasopressin acting on spinal V(1a) receptors for mediating sympathoexcitatory response to acute salt loading.
Collapse
Affiliation(s)
- V R Antunes
- Department of Physiology, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | |
Collapse
|
30
|
Abstract
Hypertension - the chronic elevation of blood pressure - is a major human health problem. In most cases, the root cause of the disease remains unknown, but there is mounting evidence that many forms of hypertension are initiated and maintained by an elevated sympathetic tone. This review examines how the sympathetic tone to cardiovascular organs is generated, and discusses how elevated sympathetic tone can contribute to hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, Health Sciences Center, University of Virginia, 1300 Jefferson Park Avenue, Charlottesville, Virginia 22908-0735, USA.
| |
Collapse
|
31
|
Abstract
Using deoxycorticosterone acetate (DOCA)–salt rats, we tested the hypothesis that increased plasma NaCl concentration supports sympathetic activity and blood pressure (BP) during salt-sensitive hypertension. One day before experimentation, femoral catheters and an electrode for measurement of lumbar sympathetic nerve activity (LSNA) probe were surgically positioned in DOCA-salt and Sham-salt rats. DOCA-salt rats exhibited increased (
P
<0.05) BP and NaCl concentration (BP, 163±8 mm Hg; NaCl, 260.8±3.3 mEq/L [DOCA-salt]: BP, 106.3±4.2 mm Hg; NaCl, 254.3±1.7 mEq/L [Sham-salt]). After V
1
vasopressin blockade (Manning compound, 5 μg IV), infusion (0.12 mL/min) of 5% dextrose in water decreased NaCl concentrations, BP (−28±7 mm Hg), and LSNA (−39±5%) in DOCA-salt but not Sham-salt rats. To explain how such small (≈2%) increases in plasma NaCl could underlie the hypertension, we hypothesized that DOCA augments the pressor and sympathoexcitatory actions of NaCl. To address this hypothesis, animals with equally elevated NaCl but no DOCA (Sham-1.7% salt) and animals with increased DOCA but normal NaCl levels (DOCA-water) were prepared and administered the infusion of 5% dextrose in water. BP and LSNA were not altered in DOCA-water rats. In the Sham-1.7% salt rats, BP fell (
P
<0.05), but not LSNA, and the responses were significantly smaller than that observed in the DOCA-salt animals. Collectively, these data suggest that increased NaCl levels contribute to sympathoexcitation and hypertension in DOCA-salt rats because of amplification of the NaCl signal by DOCA.
Collapse
Affiliation(s)
- Theresa L O'Donaughy
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
32
|
Stocker SD, Simmons JR, Stornetta RL, Toney GM, Guyenet PG. Water deprivation activates a glutamatergic projection from the hypothalamic paraventricular nucleus to the rostral ventrolateral medulla. J Comp Neurol 2006; 494:673-85. [PMID: 16374796 PMCID: PMC2861548 DOI: 10.1002/cne.20835] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Elevated sympathetic outflow contributes to the maintenance of blood pressure in water-deprived rats. The neural circuitry underlying this response may involve activation of a pathway from the hypothalamic paraventricular nucleus (PVH) to the rostral ventrolateral medulla (RVLM). We sought to determine whether the PVH-RVLM projection activated by water deprivation is glutamatergic and/or contains vasopressin- or oxytocin-neurophysins. Vesicular glutamate transporter 2 (VGLUT2) mRNA was detected by in situ hybridization in the majority of PVH neurons retrogradely labeled from the ipsilateral RVLM with cholera toxin subunit B (CTB; 85% on average, with regional differences). Very few RVLM-projecting PVH neurons were immunoreactive for oxytocin- or vasopressin-associated neurophysin. Injection of biotinylated dextran amine (BDA) into the PVH produced clusters of BDA-positive nerve terminals within the ipsilateral RVLM that were immunoreactive (ir) for the VGLUT2 protein. Some of these terminals made close appositions with tyrosine-hydroxylase-ir dendrites (presumptive C1 cells). In water-deprived rats (n=4), numerous VGLUT2 mRNA-positive PVH neurons retrogradely labeled from the ipsilateral RVLM with CTB were c-Fos-ir (16-40%, depending on PVH region). In marked contrast, few glutamatergic, RVLM-projecting PVH neurons were c-Fos-ir in control rats (n=3; 0-3%, depending on PVH region). Most (94% +/- 4%) RVLM-projecting PVH neurons activated by water deprivation contained VGLUT2 mRNA. In summary, most PVH neurons that innervate the RVLM are glutamatergic, and this population includes the neurons that are activated by water deprivation. One mechanism by which water deprivation may increase the sympathetic outflow is activation of a glutamatergic pathway from the PVH to the RVLM.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA
| | | | | | | | | |
Collapse
|
33
|
Brooks VL, Haywood JR, Johnson AK. Translation of salt retention to central activation of the sympathetic nervous system in hypertension. Clin Exp Pharmacol Physiol 2006; 32:426-32. [PMID: 15854153 DOI: 10.1111/j.1440-1681.2005.04206.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
1. Increased dietary salt increases blood pressure in many hypertensive individuals, producing salt-sensitive hypertension (SSH). The cause is unknown, but a major component appears to be activation of the sympathetic nervous system. The purpose of this short review is to present one hypothesis to explain how increased dietary salt increases sympathetic activity in SSH. 2. It is proposed that increased salt intake causes salt retention and raises plasma sodium chloride (NaCl) concentrations, which activate sodium/osmoreceptors to trigger sympathoexcitation. Moreover, we suggest that small and often undetectable increases in osmolality can drive significant sympathoexcitation, because the gain of the relationship between osmolality and increased sympathetic activity is enhanced. Multiple factors may contribute to this facilitation, including inappropriately elevated levels of angiotensin II or aldosterone, changes in gene expression or synaptic plasticity and increased sodium concentrations in cerebrospinal fluid. 3. Future studies are required to delineate the brain sites and mechanisms of action and interaction of osmolality and these amplification factors to elicit sustained sympathoexcitation in SSH.
Collapse
Affiliation(s)
- Virginia L Brooks
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| | | | | |
Collapse
|
34
|
|
35
|
Brooks VL, Qi Y, O'Donaughy TL. Increased osmolality of conscious water-deprived rats supports arterial pressure and sympathetic activity via a brain action. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1248-55. [PMID: 15661967 DOI: 10.1152/ajpregu.00638.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that high osmolality acts in the brain to chronically support mean arterial pressure (MAP) and lumbar sympathetic nerve activity (LSNA), the osmolality of blood perfusing the brain was reduced in conscious water-deprived and water-replete rats by infusion of hypotonic fluid via bilateral nonoccluding intracarotid catheters. In water-deprived rats, the intracarotid hypotonic infusion, estimated to lower osmolality by approximately 2%, decreased MAP by 9+/-1 mmHg and LSNA to 86+/-7% of control; heart increased by 25+/-8 beats per minute (bpm) (all P<0.05). MAP, LSNA, and heart rate did not change when the hypotonic fluid was infused intravenously. The intracarotid hypotonic fluid infusion was also ineffective in water-replete rats. Prior treatment with a V1 vasopressin antagonist did not alter the subsequent hypotensive and tachycardic effects of intracarotid hypotonic fluid infusion in water-deprived rats. In summary, acute decreases in osmolality of the carotid blood of water-deprived, but not water-replete, rats decreases MAP and LSNA and increases heart rate. These data support the hypothesis that the elevated osmolality induced by water deprivation acts via a region perfused by the carotid arteries, presumably the brain, to tonically increase MAP and LSNA and suppress heart rate.
Collapse
Affiliation(s)
- Virginia L Brooks
- Dept. of Physiology and Pharmacology, L-334, Oregon Health & Science Univ., 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA.
| | | | | |
Collapse
|
36
|
Stocker SD, Hunwick KJ, Toney GM. Hypothalamic paraventricular nucleus differentially supports lumbar and renal sympathetic outflow in water-deprived rats. J Physiol 2004; 563:249-63. [PMID: 15611033 PMCID: PMC1665556 DOI: 10.1113/jphysiol.2004.076661] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The present study sought to determine whether the hypothalamic paraventricular nucleus (PVN) contributes in a time-dependent manner to the differential patterning of lumbar and renal sympathetic nerve activity (SNA) in water-deprived rats. Mean arterial blood pressure (MAP) and both lumbar SNA (LSNA) and renal SNA (RSNA) were recorded simultaneously in control, 24 and 48 h water-deprived rats, and the PVN was inhibited bilaterally with microinjection of the GABA(A) agonist muscimol (100 pmol in 100 nl per side). Inhibition of the PVN significantly decreased RSNA in 48 h water-deprived rats but not in 24 h water-deprived or control rats (48 h, -17 +/- 4%; 24 h, -2 +/- 5%; control, 4 +/- 6%; P < 0.05). In addition, injection of muscimol significantly decreased LSNA in 48 and 24 h water-deprived rats but not in control rats (48 h, -41 +/- 4%; 24 h, -14 +/- 6%; control, -3 +/- 2%; P < 0.05). Interestingly, the decrease in LSNA was significantly greater than the decrease in RSNA of 24 and 48 h water-deprived rats (P < 0.05). Inhibition of the PVN also significantly decreased MAP to a greater extent in 48 and 24 h water-deprived rats compared to control rats (48 h, -34 +/- 5 mmHg; 24 h, -26 +/- 4 mmHg; control, -15 +/- 3 mmHg; P < 0.05). When 48 h water-deprived rats were acutely rehydrated by giving access to tap water 2 h before experiments, inhibition of the PVN with muscimol did not alter LSNA (-12 +/- 8%) or RSNA (7 +/- 4%) but did produce a small decrease in MAP (-15 +/- 4 mmHg) that was not different from control rats. In a parallel set of experiments, acute rehydration of 48 h water-deprived rats significantly attenuated the increased Fos immunoreactivity in PVN neurones that project to the spinal cord or rostral ventrolateral medulla. Collectively, the present findings suggest that PVN autonomic neurones are synaptically influenced during water deprivation, and that these neurones differentially contribute to LSNA and RSNA in water-deprived rats.
Collapse
Affiliation(s)
- Sean D Stocker
- Department of Physiology (MC-7756), University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|