1
|
Bohmke NJ, Dixon DL, Kirkman DL. Chrono-nutrition for hypertension. Diabetes Metab Res Rev 2024; 40:e3760. [PMID: 38287721 DOI: 10.1002/dmrr.3760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/27/2023] [Accepted: 11/15/2023] [Indexed: 01/31/2024]
Abstract
Despite the advancement in blood pressure (BP) lowering medications, uncontrolled hypertension persists, underscoring a stagnation of effective clinical strategies. Novel and effective lifestyle therapies are needed to prevent and manage hypertension to mitigate future progression to cardiovascular and chronic kidney diseases. Chrono-nutrition, aligning the timing of eating with environmental cues and internal biological clocks, has emerged as a potential strategy to improve BP in high-risk populations. The aim of this review is to provide an overview of the circadian physiology of BP with an emphasis on renal and vascular circadian biology. The potential of Chrono-nutrition as a lifestyle intervention for hypertension is discussed and current evidence for the efficacy of time-restricted eating is presented.
Collapse
Affiliation(s)
- Natalie J Bohmke
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Dave L Dixon
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Danielle L Kirkman
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Zhang S, Li X, Liu S, Zhang W, Li M, Qiao C. Research progress on the role of ET-1 in diabetic kidney disease. J Cell Physiol 2023; 238:1183-1192. [PMID: 37063089 DOI: 10.1002/jcp.31023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/18/2023]
Abstract
Diabetic kidney disease (DKD) is one of the common complications of diabetes mellitus, which usually progresses to end-stage renal disease and causes great damage to the health of patients. Endothelin-1 (ET-1), a molecule closely associated with the progression of DKD, has increased expression in response to high glucose stimulation and is involved in hemodynamic changes, inflammation, glomerular and tubular dysfunction in the kidney, causing an increase in proteinuria and a decrease in glomerular filtration function, ultimately leading to glomerulosclerosis and renal failure. This paper aims to review the molecular level changes, regulatory mechanisms, and mechanisms of action of ET-1 under DKD, clinical trials of ET-1 receptor antagonists in recent years and current problems, to provide basic information and new research directions and ideas for the treatment of DKD and ET-1-related research.
Collapse
Affiliation(s)
- Shenghao Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaodan Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Siyu Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wanting Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Meinuo Li
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
TSC1 deletion in fibroblasts alleviates lipopolysaccharide-induced acute kidney injury. Clin Sci (Lond) 2018; 132:2087-2101. [PMID: 30185506 DOI: 10.1042/cs20180348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/20/2018] [Accepted: 09/05/2018] [Indexed: 11/17/2022]
Abstract
Mechanistic target of rapamycin complex 1 (mTORC1) signaling is active in inflammation, but its involvement in septic acute kidney injury (AKI) has not been shown. mTORC1 activation (p-S6) in renal fibroblasts was increased in a mouse AKI model induced by 1.5 mg/kg lipopolysaccharide (LPS). Deletion of tuberous sclerosis complex 1 (TSC1), an mTORC1 negative regulator, in fibroblasts (Fibro-TSC1-/-) inhibited the elevation of serum creatinine and blood urea nitrogen in AKI compared with that in TSC1fl/fl control mice. Endothelin-1 (EDN1) and phospho-Jun-amino-terminal kinase (p-JNK) were up-regulated in Fibro-TSC1-/- renal fibroblasts after LPS challenge. Rapamycin, an mTORC1 inhibitor, and bosentan, an EDN1 antagonist, eliminated the difference in renal function between TSC1fl/fl and Fibro-TSC1-/- mice after LPS injection. Rapamycin restored LPS-induced up-regulation of EDN1, endothelin converting enzyme-1 (ECE1), and p-JNK in TSC1-knockdown mouse embryonic fibroblasts (MEFs). SP600125, a Jun-amino-terminal kinase (JNK) inhibitor, attenuated LPS-induced enhancement of EDN1 and ECE1 in TSC1-knockdown MEFs without a change in phospho-S6 ribosomal protein (p-S6) level. The results indicate that mTORC1-JNK-dependent up-regulation of ECE1 elevated EDN1 in TSC1-knockout renal fibroblasts and contributed to improvement of renal function in Fibro-TSC1-/- mice with LPS-induced AKI. Renal fibroblast mTORC1 plays an important role in septic AKI.
Collapse
|
4
|
High preoperative plasma endothelin-1 levels are associated with increased acute kidney injury risk after pulmonary endarterectomy. J Nephrol 2018; 31:881-888. [PMID: 30229506 DOI: 10.1007/s40620-018-0538-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The only curative treatment for chronic thromboembolic pulmonary hypertension (CTEPH) is pulmonary endarterectomy (PEA). PEA requires cardiopulmonary bypass (CPB) which is associated with a high acute kidney injury (AKI) risk. Circulating endothelin-1 (ET-1) levels are elevated in CTEPH, and ET-1 plays a pivotal role in AKI. Because AKI is burdened by high morbidity and mortality, we aimed to evaluate the association between preoperative ET-1 and the risk to develop AKI in CTEPH individuals who undergo PEA. We also evaluated the association of AKI and ET-1 with kidney function and mortality at 1 year after PEA. METHODS In 385 consecutive patients diagnosed with CTEPH who underwent PEA at the Foundation IRCC Policlinico San Matteo (Pavia, Italy) from January 2009 to April 2015, we assessed preoperative circulating ET-1 by ELISA and identified presence of AKI based on 2012 KDIGO criteria. RESULTS AKI occurred in 26.5% of the 347 patients included in the analysis, and was independently associated with preoperative ET-1 (p = 0.008), body mass index (BMI) (p = 0.022), male gender (p = 0.005) and duration of CPB (p = 0.002). At 1-year post PEA, estimated glomerular filtration rate (eGFR) significantly improved in patients who did not develop AKI [ΔeGFR 5.6 ml/min/1.73 m2 (95% CI 3.6-7.6), p < 0.001] but not in those with perioperative AKI. AKI (p < 0.001), age (p < 0.001), preoperative eGFR (p < 0.001) and systemic hypertension diagnosis (p = 0.015) were independently associated with 1-year ΔeGFR. Neither perioperative AKI nor preoperative ET-1 was associated with 1-year survival. CONCLUSION Perioperative AKI is associated with higher preoperative circulating ET-1 and it negatively influences long-term kidney function in patients with CTEPH who undergo PEA.
Collapse
|
5
|
Borska L, Andrys C, Chmelarova M, Kovarikova H, Krejsek J, Hamakova K, Beranek M, Palicka V, Kremlacek J, Borsky P, Fiala Z. Roles of miR-31 and endothelin-1 in psoriasis vulgaris: pathophysiological functions and potential biomarkers. Physiol Res 2017; 66:987-992. [PMID: 28937251 DOI: 10.33549/physiolres.933615] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Psoriatic lesions are characterized by hyperproliferation, aberrant differentiation of keratinocytes resistant to apoptosis and inflammation. miR-31 plays pro-proliferative, pro-differentiative and pro-inflammatory roles and modulates apoptosis in psoriatic keratinocytes. Endothelin-1 (ET-1) is produced by psoriatic keratinocytes and suppresses apoptosis. Inflammation increases the production of ET-1, which in turn leads to the chronic stimulation of keratinocyte proliferation. The aim of this study was to identify the putative link between two potential biomarkers (miR-31 and ET-1) in patients with psoriasis. The study design included experimental group (29 patients with psoriasis), and the control group (22 blood donors). The PASI score evaluated the state of the disease (median: 18.6; interquartile range 14.5-20.9). Both, the serum level of ET-1 and the whole blood level of miR-31 were significantly increased (p<0.001 and p<0.05, respectively) in patients compared to the controls. However, a significant negative relationship between ET-1 and miR-31 was observed (Spearman's rho=-037, p=0.05). It is possible that a negative feedback loop will be present between miR-31 and ET-1. Our results indicate that miR-31 and ET-1, potential biomarkers of the disease, play significant roles in the pathophysiology of psoriasis.
Collapse
Affiliation(s)
- L Borska
- Institute of Pathological Physiology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Rebholz CM, Harman JL, Grams ME, Correa A, Shimbo D, Coresh J, Young BA. Association between Endothelin-1 Levels and Kidney Disease among Blacks. J Am Soc Nephrol 2017; 28:3337-3344. [PMID: 28698270 DOI: 10.1681/asn.2016111236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 06/03/2017] [Indexed: 11/03/2022] Open
Abstract
Endothelin-1, a marker of endothelial dysfunction, is a potent vasoconstrictor released by endothelial cells and an important regulator of renal physiology. It is not known whether elevated serum levels of endothelin-1 indicate future risk of kidney disease in the general population. In participants in the Jackson Heart Study, a community-based observational study of cardiovascular risk in black adults, we measured serum endothelin-1 level at baseline (2000-2004; n=3538). We defined incident CKD as eGFR<60 ml/min per 1.73 m2 and ≥30% eGFR decline at the third visit (2009-2013) relative to baseline among those participants with baseline eGFR ≥60 ml/min per 1.73 m2 At baseline, mean age was 55 years old, 37% of participants were men, and mean eGFR was 94 ml/min per 1.73 m2 Over a median follow-up of 8 years, 228 (6.4%) cases of incident CKD occurred in participants. Participants with baseline endothelin-1 levels in higher quartiles had a greater incidence of CKD in the fully adjusted model (odds ratio for fourth versus first quartile, 1.81; 95% confidence interval, 1.11 to 2.96; Ptrend=0.04). Endothelin-1 positively associated with all-cause mortality (hazard ratio for fourth versus first quartile, 1.64; 95% confidence interval, 1.24 to 2.16; Ptrend<0.001). In conclusion, higher baseline serum endothelin-1 levels associated with incident CKD and all-cause mortality during follow-up in this general population sample of blacks.
Collapse
Affiliation(s)
- Casey M Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; .,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
| | - Jane L Harman
- Program in Prevention and Population Sciences, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Morgan E Grams
- Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland.,Division of Nephrology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Adolfo Correa
- Departments of Pediatrics and.,Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Daichi Shimbo
- Department of Medicine, Columbia University Medical Center, New York, New York; and
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Welch Center for Prevention, Epidemiology, and Clinical Research, Baltimore, Maryland
| | - Bessie A Young
- Division of Nephrology, Department of Medicine, Veterans Affairs Puget Sound Health Care System and the University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Egido J, Rojas-Rivera J, Mas S, Ruiz-Ortega M, Sanz AB, Gonzalez Parra E, Gomez-Guerrero C. Atrasentan for the treatment of diabetic nephropathy. Expert Opin Investig Drugs 2017; 26:741-750. [PMID: 28468519 DOI: 10.1080/13543784.2017.1325872] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Endothelin-1 (ET-1) is the most potent vasoconstrictor, and is involved in the renal regulation of salt and water homeostasis. When produced in excess in the kidney, ET-1 promotes proteinuria and tubulointerstitial injury. There is great interest in the clinical use of endothelin receptor antagonists (ERAs) in chronic kidney disease (CKD), mainly in diabetic nephropathy (DN). Areas covered: Physiopathological actions of ET-1 on the kidney. Both dual ETAR/ETBR (bosentan) or ETAR specific endothelin antagonists (avosentan and atrasentan, among others), which have progressed to early clinical development, with particular emphasis on atrasentan. Expert opinion: Different phase I and II clinical trials with ERAs in DN, mostly with atrasentan, have shown that these drugs have a marked anti-proteinuric effect on residual proteinuria when administered as add-on therapy in addition to ACEi or ARAII treatment. In the past few years, a series of randomized controlled trials investigating new approaches to DN have provided negative or inconclusive data, or even were terminated due to safety concerns or lack of efficacy. Therefore, we eagerly but cautiously await the results of the ongoing SONAR trial with atrasentan in more than 4,000 patients including assessment of renal and cardiovascular hard-end points (estimated primary completion date, July 2018).
Collapse
Affiliation(s)
- Jesus Egido
- a Division of Nephrology and Hypertension , Madrid , Spain.,b Renal, Vascular and Diabetes Research Laboratory University Hospital Fundacion Jimenez Diaz. Autonoma University (UAM) , Madrid , Spain.,c Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain.,d FRIAT (Fundacion Renal Iñigo Alvarez de Toledo) , Madrid , Spain
| | | | - Sebastian Mas
- b Renal, Vascular and Diabetes Research Laboratory University Hospital Fundacion Jimenez Diaz. Autonoma University (UAM) , Madrid , Spain.,c Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| | - Marta Ruiz-Ortega
- b Renal, Vascular and Diabetes Research Laboratory University Hospital Fundacion Jimenez Diaz. Autonoma University (UAM) , Madrid , Spain
| | - Ana Belen Sanz
- b Renal, Vascular and Diabetes Research Laboratory University Hospital Fundacion Jimenez Diaz. Autonoma University (UAM) , Madrid , Spain
| | - Emilio Gonzalez Parra
- a Division of Nephrology and Hypertension , Madrid , Spain.,d FRIAT (Fundacion Renal Iñigo Alvarez de Toledo) , Madrid , Spain
| | - Carmen Gomez-Guerrero
- b Renal, Vascular and Diabetes Research Laboratory University Hospital Fundacion Jimenez Diaz. Autonoma University (UAM) , Madrid , Spain.,c Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM) , Madrid , Spain
| |
Collapse
|
8
|
Kasztan M, Fox BM, Speed JS, De Miguel C, Gohar EY, Townes TM, Kutlar A, Pollock JS, Pollock DM. Long-Term Endothelin-A Receptor Antagonism Provides Robust Renal Protection in Humanized Sickle Cell Disease Mice. J Am Soc Nephrol 2017; 28:2443-2458. [PMID: 28348063 DOI: 10.1681/asn.2016070711] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 02/13/2017] [Indexed: 11/03/2022] Open
Abstract
Sickle cell disease (SCD)-associated nephropathy is a major source of morbidity and mortality in patients because of the lack of efficacious treatments targeting renal manifestations of the disease. Here, we describe a long-term treatment strategy with the selective endothelin-A receptor (ETA) antagonist, ambrisentan, designed to interfere with the development of nephropathy in a humanized mouse model of SCD. Ambrisentan preserved GFR at the level of nondisease controls and prevented the development of proteinuria, albuminuria, and nephrinuria. Microscopy studies demonstrated prevention of podocyte loss and structural alterations, the absence of vascular congestion, and attenuation of glomerulosclerosis in treated mice. Studies in isolated glomeruli showed that treatment reduced inflammation and oxidative stress. At the level of renal tubules, ambrisentan treatment prevented the increased excretion of urinary tubular injury biomarkers. Additionally, the treatment strategy prevented tubular brush border loss, diminished tubular iron deposition, blocked the development of interstitial fibrosis, and prevented immune cell infiltration. Furthermore, the prevention of albuminuria in treated mice was associated with preservation of cortical megalin expression. In a separate series of identical experiments, combined ETA and ETB receptor antagonism provided only some of the protection observed with ambrisentan, highlighting the importance of exclusively targeting the ETA receptor in SCD. Our results demonstrate that ambrisentan treatment provides robust protection from diverse renal pathologies in SCD mice, and suggest that long-term ETA receptor antagonism may provide a strategy for the prevention of renal complications of SCD.
Collapse
Affiliation(s)
| | - Brandon M Fox
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Joshua S Speed
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Carmen De Miguel
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Department of Medicine, and
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama; and
| | | | - Jennifer S Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Department of Medicine, and .,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|
9
|
De Miguel C, Speed JS, Kasztan M, Gohar EY, Pollock DM. Endothelin-1 and the kidney: new perspectives and recent findings. Curr Opin Nephrol Hypertens 2016; 25:35-41. [PMID: 26625864 PMCID: PMC4698004 DOI: 10.1097/mnh.0000000000000185] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The role of endothelin-1 (ET-1) in the kidney has been under study for many years; however, the complex mechanisms by which endothelin controls the physiology/pathophysiology of this organ are not fully resolved. This review aims to summarize recent findings in the field, especially regarding glomerular and tubular damage, Na/water homeostasis and sex differences in ET-1 function. RECENT FINDINGS Podocytes have been recently identified as a target of ET-1 in the glomerular filtration barrier via ETA receptor activation. Activation of the ETA receptor by ET-1 leads to renal tubular damage by promoting endoplasmic reticulum stress and apoptosis in these cells. In addition, high flow rates in the nephron in response to high salt intake induce ET-1 production by the collecting ducts and promote nitric oxide-dependent natriuresis through epithelial sodium channel inhibition. Recent evidence also indicates that sex hormones regulate the renal ET-1 system differently in men and women, with estrogen suppressing renal ET-1 production and testosterone upregulating that production. SUMMARY Based on the reports reviewed in here, targeting of the renal endothelin system is a possible therapeutic approach against the development of glomerular injury. More animal and clinical studies are needed to better understand the dimorphic control of this system by sex hormones.
Collapse
Affiliation(s)
- Carmen De Miguel
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Joshua S. Speed
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Malgorzata Kasztan
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Eman Y. Gohar
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - David M. Pollock
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|