1
|
Posada-Quintero HF, Landon CS, Stavitzski NM, Dean JB, Chon KH. Seizures Caused by Exposure to Hyperbaric Oxygen in Rats Can Be Predicted by Early Changes in Electrodermal Activity. Front Physiol 2022; 12:767386. [PMID: 35069238 PMCID: PMC8767060 DOI: 10.3389/fphys.2021.767386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/26/2021] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric oxygen (HBO2) is breathed during undersea operations and in hyperbaric medicine. However, breathing HBO2 by divers and patients increases the risk of central nervous system oxygen toxicity (CNS-OT), which ultimately manifests as sympathetic stimulation producing tachycardia and hypertension, hyperventilation, and ultimately generalized seizures and cardiogenic pulmonary edema. In this study, we have tested the hypothesis that changes in electrodermal activity (EDA), a measure of sympathetic nervous system activation, precedes seizures in rats breathing 5 atmospheres absolute (ATA) HBO2. Radio telemetry and a rodent tether apparatus were adapted for use inside a sealed hyperbaric chamber. The tethered rat was free to move inside a ventilated animal chamber that was flushed with air or 100% O2. The animal chamber and hyperbaric chamber (air) were pressurized in parallel at ~1 atmosphere/min. EDA activity was recorded simultaneously with cortical electroencephalogram (EEG) activity, core body temperature, and ambient pressure. We have captured the dynamics of EDA using time-varying spectral analysis of raw EDA (TVSymp), previously developed as a tool for sympathetic tone assessment in humans, adjusted to detect the dynamic changes of EDA in rats that occur prior to onset of CNS-OT seizures. The results show that a significant increase in the amplitude of TVSymp values derived from EDA recordings occurs on average (±SD) 1.9 ± 1.6 min before HBO2-induced seizures. These results, if corroborated in humans, support the use of changes in TVSymp activity as an early "physio-marker" of impending and potentially fatal seizures in divers and patients.
Collapse
Affiliation(s)
- Hugo F Posada-Quintero
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| | - Carol S Landon
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Nicole M Stavitzski
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jay B Dean
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Ki H Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
2
|
Posada-Quintero HF, Derrick BJ, Winstead-Derlega C, Gonzalez SI, Claire Ellis M, Freiberger JJ, Chon KH. Time-varying Spectral Index of Electrodermal Activity to Predict Central Nervous System Oxygen Toxicity Symptoms in Divers: Preliminary results. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1242-1245. [PMID: 34891512 DOI: 10.1109/embc46164.2021.9629924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The most effective method to mitigate decompression sickness in divers is hyperbaric oxygen (HBO2) pre-breathing. However, divers breathing HBO2 are at risk for developing central nervous system oxygen toxicity (CNS-OT), which can manifest as symptoms that might impair a diver's performance, or cause more serious symptoms like seizures. In this study, we have collected electrodermal activity (EDA) signals in fifteen subjects at elevated oxygen partial pressures (2.06 ATA, 35 FSW) in the "foxtrot" chamber pool at the Duke University Hyperbaric Center, while performing a cognitive stress test for up to 120 minutes. Specifically, we have computed the time-varying spectral analysis of EDA (TVSymp) as a tool for sympathetic tone assessment and evaluated its feasibility for the prediction of symptoms of CNS-OT in divers. The preliminary results show large increase in the amplitude TVSymp values derived from EDA recordings ~2 minutes prior to expert human adjudication of symptoms related to oxygen toxicity. An early detection based on TVSymp might allow the diver to take countermeasures against the dire consequences of CNS-OT which can lead to drowning.Clinical Relevance-This study provides a sensitive analysis method which indicates a significant increase in the electrodermal activity prior to human expert adjudication of symptoms related to CNS-OT.
Collapse
|
3
|
Schirato SR, El-Dash I, El-Dash V, Bizzarro B, Marroni A, Pieri M, Cialoni D, Chaui-Berlinck JG. Association Between Heart Rate Variability and Decompression-Induced Physiological Stress. Front Physiol 2020; 11:743. [PMID: 32714210 PMCID: PMC7351513 DOI: 10.3389/fphys.2020.00743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to analyze the correlation between decompression-related physiological stress markers, given by inflammatory processes and immune system activation and changes in Heart Rate Variability, evaluating whether Heart Rate Variability can be used to estimate the physiological stress caused by the exposure to hyperbaric environments and subsequent decompression. A total of 28 volunteers participated in the experimental protocol. Electrocardiograms were performed; blood samples were obtained for the quantification of red cells, hemoglobin, hematocrit, neutrophils, lymphocytes, platelets, aspartate transaminase (AST), alanine aminotransferase (ALT), and for immunophenotyping and microparticles (MP) research through Flow Cytometry, before and after each experimental protocol from each volunteer. Also, myeloperoxidase (MPO) expression and microparticles (MPs) deriving from platelets, neutrophils and endothelial cells were quantified. Negative associations between the standard deviation of normal-to-normal intervals (SDNN) in the time domain, the High Frequency in the frequency domain and the total number of circulating microparticles was observed (p-value = 0.03 and p-value = 0.02, respectively). The pre and post exposure ratio of variation in the number of circulating microparticles was negatively correlated with SDNN (p-value = 0.01). Additionally, a model based on the utilization of Radial Basis Function Neural Networks (RBF-NN) was created and was able to predict the SDNN ratio of variation based on the variation of specific inflammatory markers (RMSE = 0.06).
Collapse
Affiliation(s)
- Sergio Rhein Schirato
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ingrid El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Vivian El-Dash
- Department of Physiology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Bruna Bizzarro
- Peter Murányi Experimental Research Center, Albert Einstein Hospital, São Paulo, Brazil
| | | | - Massimo Pieri
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
| | - Danilo Cialoni
- DAN Europe Research Division, Roseto degli Abruzzi, Italy
- Environmental Physiology and Medicine Laboratory, Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | |
Collapse
|
4
|
Graphite Based Electrode for ECG Monitoring: Evaluation under Freshwater and Saltwater Conditions. SENSORS 2016; 16:s16040542. [PMID: 27092502 PMCID: PMC4851056 DOI: 10.3390/s16040542] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/31/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022]
Abstract
We proposed new electrodes that are applicable for electrocardiogram (ECG) monitoring under freshwater- and saltwater-immersion conditions. Our proposed electrodes are made of graphite pencil lead (GPL), a general-purpose writing pencil. We have fabricated two types of electrode: a pencil lead solid type (PLS) electrode and a pencil lead powder type (PLP) electrode. In order to assess the qualities of the PLS and PLP electrodes, we compared their performance with that of a commercial Ag/AgCl electrode, under a total of seven different conditions: dry, freshwater immersion with/without movement, post-freshwater wet condition, saltwater immersion with/without movement, and post-saltwater wet condition. In both dry and post-freshwater wet conditions, all ECG-recorded PQRST waves were clearly discernible, with all types of electrodes, Ag/AgCl, PLS, and PLP. On the other hand, under the freshwater- and saltwater-immersion conditions with/without movement, as well as post-saltwater wet conditions, we found that the proposed PLS and PLP electrodes provided better ECG waveform quality, with significant statistical differences compared with the quality provided by Ag/AgCl electrodes.
Collapse
|
5
|
Novel Conductive Carbon Black and Polydimethlysiloxane ECG Electrode: A Comparison with Commercial Electrodes in Fresh, Chlorinated, and Salt Water. Ann Biomed Eng 2016; 44:2464-2479. [DOI: 10.1007/s10439-015-1528-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/08/2015] [Indexed: 10/22/2022]
|
6
|
Germonpre P, Balestra C, Obeid G, Caers D. Cutis Marmorata skin decompression sickness is a manifestation of brainstem bubble embolization, not of local skin bubbles. Med Hypotheses 2015; 85:863-9. [PMID: 26432631 DOI: 10.1016/j.mehy.2015.09.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 09/21/2015] [Indexed: 12/30/2022]
Abstract
"Cutis Marmorata" skin symptoms after diving, most frequently in the form of an itching or painful cutaneous red-bluish discoloration are commonly regarded as a mild form of decompression sickness (DCS), and treated with oxygen inhalation without reverting to hyperbaric recompression treatment. It has been observed that the occurrence of Cutis Marmorata is frequently associated with the presence of a Patent Foramen Ovale (PFO) of the heart, and indeed, with a properly executed contrast echocardiographic technique, these patients have an almost 100% prevalence of PFO. Only occasionally, Cutis Marmorata is accompanied by other symptoms of DCS. These symptoms usually are in the form of visual distortions, vertigo, or mild, vague but generalized cerebral dysfunction (such as abnormal fatigue, clumsiness, concentration problems). The pathogenesis of these other manifestations is clearly emboligenic, and we hypothesize that Cutis Marmorata is also a manifestation of gas bubbles embolizing the brain stem: the site of autonomic nervous system regulation of skin blood vessel dilation and constriction. The consequences of this hypothesis are that Cutis Marmorata skin decompression sickness should no longer be considered a mild, innocuous form but rather a serious, neurological form and treated accordingly.
Collapse
Affiliation(s)
- Peter Germonpre
- Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Belgium; Divers Alert Network (DAN) Europe Research Division, Roseto, Italy.
| | - Costantino Balestra
- Divers Alert Network (DAN) Europe Research Division, Roseto, Italy; Free University of Brussels Exercise and Environmental Physiology Laboratory, Brussels, Belgium
| | - Georges Obeid
- Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Belgium; Military Hospital Brussels, Cardiology Department, Brussels, Belgium
| | - Dirk Caers
- Centre for Hyperbaric Oxygen Therapy, Military Hospital Brussels, Belgium
| |
Collapse
|
7
|
Reyes BA, Posada-Quintero HF, Bales JR, Clement AL, Pins GD, Swiston A, Riistama J, Florian JP, Shykoff B, Qin M, Chon KH. Novel electrodes for underwater ECG monitoring. IEEE Trans Biomed Eng 2015; 61:1863-76. [PMID: 24845297 DOI: 10.1109/tbme.2014.2309293] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We have developed hydrophobic electrodes that provide all morphological waveforms without distortion of an ECG signal for both dry and water-immersed conditions. Our electrode is comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS). For feasibility testing of the CB/PDMS electrodes, various tests were performed. One of the tests included evaluation of the electrode-to-skin contact impedance for different diameters, thicknesses, and different pressure levels. As expected, the larger the diameter of the electrodes, the lower the impedance and the difference between the large sized CB/PDMS and the similarly-sized Ag/AgCl hydrogel electrodes was at most 200 kΩ, in favor of the latter. Performance comparison of CB/PDMS electrodes to Ag/AgCl hydrogel electrodes was carried out in three different scenarios: a dry surface, water immersion, and postwater immersion conditions. In the dry condition, no statistical differences were found for both the temporal and spectral indices of the heart rate variability analysis between the CB/PDMS and Ag/AgCl hydrogel (p > 0.05) electrodes. During water immersion, there was significant ECG amplitude reduction with CB/PDMS electrodes when compared to wet Ag/AgCl electrodes kept dry by their waterproof adhesive tape, but the reduction was not severe enough to obscure the readability of the recordings, and all morphological waveforms of the ECG signal were discernible even when motion artifacts were introduced. When water did not penetrate tape-wrapped Ag/AgCl electrodes, high fidelity ECG signals were observed. However, when water penetrated the Ag/AgCl electrodes, the signal quality degraded to the point where ECG morphological waveforms were not discernible.
Collapse
|
8
|
Reyes BA, Posada-Quintero HF, Bales JR, Chon KH. Performance evaluation of carbon black based electrodes for underwater ECG monitoring. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:1691-4. [PMID: 25570300 DOI: 10.1109/embc.2014.6943932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (p<0.05) was only found during the immersed condition with CB/PDMS electrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.
Collapse
|