1
|
Kasahara Y, Narukawa M, Saito Y, Abe K, Asakura T. The complexities of salt taste reception: insights into the role of TMC4 in chloride taste detection. Front Mol Neurosci 2024; 17:1468438. [PMID: 39386048 PMCID: PMC11461469 DOI: 10.3389/fnmol.2024.1468438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/29/2024] [Indexed: 10/12/2024] Open
Abstract
Although salt is an essential substance vital to life, excessive salt intake could cause various health issues. Therefore, new technologies and strategies should be developed to reduce salt intake without compromising taste. However, the underlying physiological mechanisms of salt taste reception is complex and not completely understood. Sodium chloride is a typical salty substance. It is widely believed that only sodium is important for the generation of salty taste. On the other hand, from a psychophysical perspective, the importance of chloride in salty taste has been indicated. Thus, understanding the mechanisms of both sodium- and chloride-tastes generation is necessary to completely comprehended the fundamentals of salt taste reception. However, the mechanism for detecting chloride taste has remained unclear for many years. Recently, we have identified transmembrane channel-like 4 (TMC4) as the first molecule that mediates the reception of chloride taste. TMC4 functions as a voltage-dependent chloride channel and plays an important role in the reception of the chloride taste by detecting chloride ions. In this mini-review, we first introduce the known reception mechanism of salty taste, and then discuss the roles of TMC4 in the salt taste reception. The finding of TMC4 may serve as a basis for developing new technologies and formulating strategies to reduce salt intake without compromising taste.
Collapse
Affiliation(s)
- Yoichi Kasahara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Masataka Narukawa
- Department of Food and Nutrition, Kyoto Women's University, Kyoto, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Toyo Institute of Food Technology, Hyogo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Liberal Arts, The Open University of Japan, Chiba, Japan
| |
Collapse
|
2
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
3
|
Ren H, Zhou J, Fu H, Feng Q, Wang J, Li C, Xia G, Shang W, He Y. Identification and virtual screening of novel salty peptides from hydrolysate of tilapia by-product by batch molecular docking. Front Nutr 2024; 10:1343209. [PMID: 38260067 PMCID: PMC10800615 DOI: 10.3389/fnut.2023.1343209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Tilapia produces a large number of by-products during processing, which contain potentially flavorful peptides. Methods The application of PyRx software enabled batch molecular docking andscreening of 16 potential salty peptides from 189 peptides identified in the enzymaticdigestion of tilapia by-products. Results According to sensory analysis, all 16 peptides werepredominantly salty with a threshold of 0.256 - 0.379 mmol/L with some sournessand astringency, among which HLDDALR had the highest salty intensity, followedby VIEPLDIGDDKVR, FPGIPDHL, and DFKSPDDPSRH. I addition, moleculardocking results showed these four core peptides with high salt intensity bound to thesalt receptor TRPV1 mainly via van der Waals interactions, hydrogen bonds, andhydrophobic forces; Arg491, Tyr487, VAL441, and Asp708 were the key sites for thebinding of salty peptides to TRPV1. Therefore, the application of batch moleculardocking using PyRx is effective and economical for the virtual screening of saltypeptides.
Collapse
Affiliation(s)
- Hongjun Ren
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jingxuan Zhou
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Huixian Fu
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Qiaohui Feng
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Jionghao Wang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Chuan Li
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Guanghua Xia
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| | - Wenting Shang
- College of Food Science and Engineering, Hainan University, Haikou, China
| | - Yanfu He
- College of Food Science and Engineering, Hainan University, Haikou, China
- Hainan Provincial Engineering Research Centre of Aquatic Resources Efficient Utilization in the South China Sea, Haikou, China
- Key Laboratory of Seafood Processing of Haikou, Haikou, China
| |
Collapse
|
4
|
Duriez A, Bergerot C, Cone JJ, Roitman MF, Gutkin B. Homeostatic Reinforcement Theory Accounts for Sodium Appetitive State- and Taste-Dependent Dopamine Responding. Nutrients 2023; 15:nu15041015. [PMID: 36839372 PMCID: PMC9968091 DOI: 10.3390/nu15041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
Seeking and consuming nutrients is essential to survival and the maintenance of life. Dynamic and volatile environments require that animals learn complex behavioral strategies to obtain the necessary nutritive substances. While this has been classically viewed in terms of homeostatic regulation, recent theoretical work proposed that such strategies result from reinforcement learning processes. This theory proposed that phasic dopamine (DA) signals play a key role in signaling potentially need-fulfilling outcomes. To examine links between homeostatic and reinforcement learning processes, we focus on sodium appetite as sodium depletion triggers state- and taste-dependent changes in behavior and DA signaling evoked by sodium-related stimuli. We find that both the behavior and the dynamics of DA signaling underlying sodium appetite can be accounted for by a homeostatically regulated reinforcement learning framework (HRRL). We first optimized HRRL-based agents to sodium-seeking behavior measured in rodents. Agents successfully reproduced the state and the taste dependence of behavioral responding for sodium as well as for lithium and potassium salts. We then showed that these same agents account for the regulation of DA signals evoked by sodium tastants in a taste- and state-dependent manner. Our models quantitatively describe how DA signals evoked by sodium decrease with satiety and increase with deprivation. Lastly, our HRRL agents assigned equal preference for sodium versus the lithium containing salts, accounting for similar behavioral and neurophysiological observations in rodents. We propose that animals use orosensory signals as predictors of the internal impact of the consumed good and our results pose clear targets for future experiments. In sum, this work suggests that appetite-driven behavior may be driven by reinforcement learning mechanisms that are dynamically tuned by homeostatic need.
Collapse
Affiliation(s)
- Alexia Duriez
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clémence Bergerot
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- Charité—Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Jackson J. Cone
- Hotchkiss Brain Institute, Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Boris Gutkin
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)6-8631-6231
| |
Collapse
|
5
|
Breza JM, St. John SJ. Analysis of the rat chorda tympani nerve response to "super salty" sodium carbonate. Chem Senses 2023; 48:bjad015. [PMID: 37224503 PMCID: PMC10413316 DOI: 10.1093/chemse/bjad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 05/26/2023] Open
Abstract
In behavioral experiments, rats perceive sodium carbonate (Na2CO3) as super salty. In fact, when the dissociated Na+ ions are accounted for, rats perceive Na2CO3 as 5× saltier than equinormal concentrations of NaCl. The chorda tympani nerve (CT) responds to salts through at least two receptor mechanisms and is a model system for understanding how salt taste is transmitted to the brain. Here, we recorded CT nerve activity to a broad range of NaCl (3-300 mM) and Na2CO3 (3-300 mN) to investigate why Na2CO3 tastes so salty to rats. Benzamil, a specific epithelial sodium channel (ENaC) antagonist, was used to determine the relative contribution of apical ENaCs in Na2CO3 transduction. The benzamil-insensitive component of CT nerve responses was enhanced by increasing the adapted tongue temperature from 23°C to 30°C. Na2CO3 solutions are alkaline, so we compared neural responses (with and without benzamil) to 100 mM NaCl alone (6.2 pH) and at a pH (11.2 pH) that matched 100 mN Na2CO3. As expected, NaCl responses increased progressively with increasing concentration and temperature. Responses to 3 mN Na2CO3 were greater than 3 mM NaCl with and without benzamil, but the shape of the first log-fold range of was relatively flat. Adjusting the pH of NaCl to 11.2 abolished the thermal enhancement of 100 mN NaCl through the benzamil-insensitive pathway. Rinsing Na2CO3 off the tongue resulted in robust aftertaste that was concentration dependent, thermally sensitive, and benzamil-insensitive. Responses to alkaline NaCl did not recapitulate Na2CO3 responses or aftertaste, suggesting multiple transduction mechanisms for the cations (2Na+) and anion (CO3-2).
Collapse
Affiliation(s)
- Joseph M Breza
- Department of Psychology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | | |
Collapse
|
6
|
Kasahara Y, Narukawa M, Takeuchi A, Tominaga M, Abe K, Asakura T. Molecular logic of salt taste reception in special reference to transmembrane channel-like 4 (TMC4). J Physiol Sci 2022; 72:31. [DOI: 10.1186/s12576-022-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022]
Abstract
AbstractThe taste is biologically of intrinsic importance. It almost momentarily perceives environmental stimuli for better survival. In the early 2000s, research into taste reception was greatly developed with discovery of the receptors. However, the mechanism of salt taste reception is not fully elucidated yet and many questions still remain. At present, next-generation sequencing and genome-editing technologies are available which would become pivotal tools to elucidate the remaining issues. Here we review current mechanisms of salt taste reception in particular and characterize the properties of transmembrane channel-like 4 as a novel salt taste-related molecule that we found using these sophisticated tools.
Collapse
|
7
|
Mu R, Tang S, Han X, Wang H, Yuan D, Zhao J, Long Y, Hong H. A cholinergic medial septum input to medial habenula mediates generalization formation and extinction of visual aversion. Cell Rep 2022; 39:110882. [PMID: 35649349 DOI: 10.1016/j.celrep.2022.110882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 12/07/2021] [Accepted: 05/06/2022] [Indexed: 12/28/2022] Open
Abstract
Generalization of visual aversion is a critical function of the brain that supports survival, but the underlying neurobiological mechanisms are unclear. We establish a rapid generalization procedure for inducing visual aversion by dynamic stripe images. By using fiber photometry, apoptosis, chemogenetic and optogenetic techniques, and behavioral tests, we find that decreased cholinergic neurons' activity in the medial septum (MS) leads to generalization loss of visual aversion. Strikingly, we identify a projection from MS cholinergic neurons to the medial habenula (MHb) and find that inhibition of the MS→MHb cholinergic circuit disrupts aversion-generalization formation while its continuous activation disrupts subsequent extinction. Further studies show that MS→MHb cholinergic projections modulate the generalization of visual aversion possibly via M1 muscarinic acetylcholine receptors (mAChRs) of downstream neurons coreleasing glutamate and acetylcholine. These findings reveal that the MS→MHb cholinergic circuit is a critical node in aversion-generalization formation and extinction and potentially provides insight into the pathogenesis of affective disorders.
Collapse
Affiliation(s)
- Ronghao Mu
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Susu Tang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomeng Han
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Hao Wang
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Danhua Yuan
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Jiajia Zhao
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China
| | - Yan Long
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| | - Hao Hong
- Department of Pharmacology, Key Laboratory of Neuropsychiatric Diseases, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Liu S, Zhu P, Tian Y, Chen Y, Liu Y, Chen W, Liping D, Wu C. Preparation and application of taste bud organoids in biomedicine towards chemical sensation mechanisms. Biotechnol Bioeng 2022; 119:2015-2030. [PMID: 35441364 DOI: 10.1002/bit.28109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/11/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022]
Abstract
Taste is one of the most basic and important sensations that is able to monitor the food quality and avoid intake of potential danger materials. Whether as an inevitable symptom of aging or a complication of cancer treatment, taste loss very seriously affects the patient's life quality. Taste bud organoids provide an alternative and convenient approach for the research of taste functions and the underlying mechanisms due to their characteristics of availability, strong maneuverability, and high similarity to the in-vivo taste buds. This review gives a systemic and comprehensive introduction to the preparation and application of taste bud organoids towards chemical sensing mechanisms. For the first, the basic structure and functions of taste buds will be briefly introduced. Then, the currently available approaches for the preparation of taste bud organoids are summarized and discussed, which are mainly divided into two categories, i.e. the stem/progenitor cell-derived approach and the tissue-derived approach. For the next, different applications of taste bud organoids in biomedicine are outlined based on their central roles such as disease modeling, biological sensing, gene regulation, and signal transduction. Finally, the current challenges, future development trends and prospects of research in taste bud organoids are proposed and discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuge Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Yage Liu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Du Liping
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, 710061, China
| |
Collapse
|
9
|
Ramos R, Wu CH, Turrigiano GG. Strong Aversive Conditioning Triggers a Long-Lasting Generalized Aversion. Front Cell Neurosci 2022; 16:854315. [PMID: 35295904 PMCID: PMC8918528 DOI: 10.3389/fncel.2022.854315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Generalization is an adaptive mnemonic process in which an animal can leverage past learning experiences to navigate future scenarios, but overgeneralization is a hallmark feature of anxiety disorders. Therefore, understanding the synaptic plasticity mechanisms that govern memory generalization and its persistence is an important goal. Here, we demonstrate that strong CTA conditioning results in a long-lasting generalized aversion that persists for at least 2 weeks. Using brain slice electrophysiology and activity-dependent labeling of the conditioning-active neuronal ensemble within the gustatory cortex, we find that strong CTA conditioning induces a long-lasting increase in synaptic strengths that occurs uniformly across superficial and deep layers of GC. Repeated exposure to salt, the generalized tastant, causes a rapid attenuation of the generalized aversion that correlates with a reversal of the CTA-induced increases in synaptic strength. Unlike the uniform strengthening that happens across layers, reversal of the generalized aversion results in a more pronounced depression of synaptic strengths in superficial layers. Finally, the generalized aversion and its reversal do not impact the acquisition and maintenance of the aversion to the conditioned tastant (saccharin). The strong correlation between the generalized aversion and synaptic strengthening, and the reversal of both in superficial layers by repeated salt exposure, strongly suggests that the synaptic changes in superficial layers contribute to the formation and reversal of the generalized aversion. In contrast, the persistence of synaptic strengthening in deep layers correlates with the persistence of CTA. Taken together, our data suggest that layer-specific synaptic plasticity mechanisms separately govern the persistence and generalization of CTA memory.
Collapse
|
10
|
D'Urso O, Drago F. Pharmacological significance of extra-oral taste receptors. Eur J Pharmacol 2021; 910:174480. [PMID: 34496302 DOI: 10.1016/j.ejphar.2021.174480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023]
Abstract
It has recently been shown that taste receptors, in addition to being present in the oral cavity, exist in various extra-oral organs and tissues such as the thyroid, lungs, skin, stomach, intestines, and pancreas. Although their physiological function is not yet fully understood, it appears that they can help regulate the body's homeostasis and provide an additional defense function against pathogens. Since the vast majority of drugs are bitter, the greatest pharmacological interest is in the bitter taste receptors. In this review, we describe how bitter taste 2 receptors (TAS2Rs) induce bronchodilation and mucociliary clearance in the airways, muscle relaxation in various tissues, inhibition of thyroid stimulating hormone (TSH) in thyrocytes, and release of glucagon-like peptide-1 (GLP-1) and ghrelin in the digestive system. In fact, substances such as dextromethorphan, chloroquine, methimazole and probably glimepiride, being agonists of TAS2Rs, lead to these effects. TAS2Rs and taste 1 receptors (TAS1R2/3) are G protein-coupled receptors (GPCR). TAS1R2/3 are responsible for sweet taste perception and may induce GLP-1 release and insulin secretion. Umami taste receptors, belonging to the same superfamily of receptors, perform a similar function with regard to insulin. The sour and salty taste receptors work in a similar way, both being channel receptors sensitive to amiloride. Finally, gene-protein coupled receptor 40 (GPR40) and GPR120 for fatty taste perception are also protein-coupled receptors and may induce GLP-1 secretion and insulin release, similar to those of other receptors belonging to the same superfamily.
Collapse
Affiliation(s)
- Ottavio D'Urso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy.
| |
Collapse
|
11
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
12
|
Wang Y, Sun Y, Joseph PV. Contrasting Patterns of Gene Duplication, Relocation, and Selection Among Human Taste Genes. Evol Bioinform Online 2021; 17:11769343211035141. [PMID: 34366662 PMCID: PMC8312168 DOI: 10.1177/11769343211035141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/08/2021] [Indexed: 11/15/2022] Open
Abstract
In humans, taste genes are responsible for perceiving at least 5 different taste qualities. Human taste genes’ evolutionary mechanisms need to be explored. We compiled a list of 69 human taste-related genes and divided them into 7 functional groups. We carried out comparative genomic and evolutionary analyses for these taste genes based on 8 vertebrate species. We found that relative to other groups of human taste genes, human TAS2R genes have a higher proportion of tandem duplicates, suggesting that tandem duplications have contributed significantly to the expansion of the human TAS2R gene family. Human TAS2R genes tend to have fewer collinear genes in outgroup species and evolve faster, suggesting that human TAS2R genes have experienced more gene relocations. Moreover, human TAS2R genes tend to be under more relaxed purifying selection than other genes. Our study sheds new insights into diverse and contrasting evolutionary patterns among human taste genes.
Collapse
Affiliation(s)
- Yupeng Wang
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Ying Sun
- BDX Research & Consulting LLC, Herndon, VA, USA
| | - Paule Valery Joseph
- Division of Intramural Research, National Institute on Alcohol Abuse and Alcoholism and National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
13
|
Houghton JW, Carpenter G, Hans J, Pesaro M, Lynham S, Proctor G. Agonists of Orally Expressed TRP Channels Stimulate Salivary Secretion and Modify the Salivary Proteome. Mol Cell Proteomics 2020; 19:1664-1676. [PMID: 32651226 PMCID: PMC8014997 DOI: 10.1074/mcp.ra120.002174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Indexed: 11/06/2022] Open
Abstract
Natural compounds that can stimulate salivary secretion are of interest in developing treatments for xerostomia, the perception of a dry mouth, that affects between 10 and 30% of the adult and elderly population. Chemesthetic transient receptor potential (TRP) channels are expressed in the surface of the oral mucosa. The TRPV1 agonists capsaicin and piperine have been shown to increase salivary flow when introduced into the oral cavity but the sialogogic properties of other TRP channel agonists have not been investigated. In this study we have determined the influence of different TRP channel agonists on the flow and protein composition of saliva. Mouth rinsing with the TRPV1 agonist nonivamide or menthol, a TRPM8 agonist, increased whole mouth saliva (WMS) flow and total protein secretion compared with unstimulated saliva, the vehicle control mouth rinse or cinnamaldehyde, a TRPA1 agonist. Nonivamide also increased the flow of labial minor gland saliva but parotid saliva flow rate was not increased. The influence of TRP channel agonists on the composition and function of the salivary proteome was investigated using a multi-batch quantitative MS method novel to salivary proteomics. Inter-personal and inter-mouth rinse variation was observed in the secreted proteomes and, using a novel bioinformatics method, inter-day variation was identified with some of the mouth rinses. Significant changes in specific salivary proteins were identified after all mouth rinses. In the case of nonivamide, these changes were attributed to functional shifts in the WMS secreted, primarily the over representation of salivary and nonsalivary cystatins which was confirmed by immunoassay. This study provides new evidence of the impact of TRP channel agonists on the salivary proteome and the stimulation of salivary secretion by a TRPM8 channel agonist, which suggests that TRP channel agonists are potential candidates for developing treatments for sufferers of xerostomia.
Collapse
Affiliation(s)
- Jack William Houghton
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK; Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK.
| | - Guy Carpenter
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | | | | | - Steven Lynham
- Proteomics Facility, King's College London, London, UK
| | - Gordon Proctor
- Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
14
|
Aroke EN, Powell-Roach KL, Jaime-Lara RB, Tesfaye M, Roy A, Jackson P, Joseph PV. Taste the Pain: The Role of TRP Channels in Pain and Taste Perception. Int J Mol Sci 2020; 21:E5929. [PMID: 32824721 PMCID: PMC7460556 DOI: 10.3390/ijms21165929] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential (TRP) channels are a superfamily of cation transmembrane proteins that are expressed in many tissues and respond to many sensory stimuli. TRP channels play a role in sensory signaling for taste, thermosensation, mechanosensation, and nociception. Activation of TRP channels (e.g., TRPM5) in taste receptors by food/chemicals (e.g., capsaicin) is essential in the acquisition of nutrients, which fuel metabolism, growth, and development. Pain signals from these nociceptors are essential for harm avoidance. Dysfunctional TRP channels have been associated with neuropathic pain, inflammation, and reduced ability to detect taste stimuli. Humans have long recognized the relationship between taste and pain. However, the mechanisms and relationship among these taste-pain sensorial experiences are not fully understood. This article provides a narrative review of literature examining the role of TRP channels on taste and pain perception. Genomic variability in the TRPV1 gene has been associated with alterations in various pain conditions. Moreover, polymorphisms of the TRPV1 gene have been associated with alterations in salty taste sensitivity and salt preference. Studies of genetic variations in TRP genes or modulation of TRP pathways may increase our understanding of the shared biological mediators of pain and taste, leading to therapeutic interventions to treat many diseases.
Collapse
Affiliation(s)
- Edwin N. Aroke
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | | | - Rosario B. Jaime-Lara
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Markos Tesfaye
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Abhrabrup Roy
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| | - Pamela Jackson
- School of Nursing, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (E.N.A.); (P.J.)
| | - Paule V. Joseph
- Sensory Science and Metabolism Unit (SenSMet), National Institute of Nursing Research, National Institutes of Health, Bethesda, MD 20892, USA; (R.B.J.-L.); (M.T.); (A.R.)
| |
Collapse
|
15
|
Abstract
Expensive and extensive studies on the epidemiology of excessive Na intake and its pathology have been conducted over four decades. The resultant consensus that dietary Na is toxic, as well as the contention that it is less so, ignores the root cause of the attractiveness of salted food. The extant hypotheses are that most Na is infiltrated into our bodies via heavily salted industrialised food without our knowledge and that mere exposure early in life determines lifelong intake. However, these hypotheses are poorly evidenced and are meagre explanations for the comparable salt intake of people worldwide despite their markedly different diets. The love of salt begins at birth for some, vacillates in infancy, climaxes during adolescent growth, settles into separate patterns for men and women in adulthood and, with age, fades for some and persists for others. Salt adds flavour to food. It sustains and protects humans in exertion, may modulate their mood and contributes to their ailments. It may have as yet unknown benefits that may promote its delectability, and it generates controversy. An understanding of the predilection for salt should allow a more evidence-based and effective reduction of the health risks associated with Na surfeit and deficiency. The purpose of this brief review is to show the need for research into the determinants of salt intake by summarising the little we know.
Collapse
Affiliation(s)
- Micah Leshem
- School of Psychological Sciences, The University of Haifa, Haifa3498838, Israel
| |
Collapse
|
16
|
Zwickl H, Zwickl-Traxler E, Pecherstorfer M. Is Neuronal Histamine Signaling Involved in Cancer Cachexia? Implications and Perspectives. Front Oncol 2019; 9:1409. [PMID: 31921666 PMCID: PMC6933599 DOI: 10.3389/fonc.2019.01409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we present evidence in support of our hypothesis that the neuronal histaminergic system might be involved in cancer cachexia1. To build our premise, we present the research and the reasonable inferences that can be drawn from it in a section by section approach starting from one of the key issues related to cachexia, increased resting energy expenditure (REE), and progressing to the other, anorexia. Based on an extensive survey of the literature and our own deliberations on the abovementioned topics, we investigate whether histamine signaling might be the mechanism used by a tumor to hijack the body's thermogenic machinery. Our hypothesis in short is that hypothalamic histaminergic neurons are stimulated by inputs from the parasympathetic nervous system (PSNS), which senses tumor traits early in cancer development. Histamine release in the preoptic area of the hypothalamus primarily activates brown adipose tissue (BAT), triggering a highly energy demanding mechanism. Chronic activation of BAT, which, in this context, refers to intermittent and/or low grade activation by the sympathetic nervous system, leads to browning of white adipose tissue and further enhances thermogenic potential. Aberrant histamine signaling not only triggers energy-consuming processes, but also anorexia. Moreover, since functions such as taste, smell, and sleep are governed by discrete structures of the brain, which are targeted by distinct histaminergic neuron populations even relatively minor symptoms of cachexia, such as sleep disturbances and taste and smell distortions, also might be ascribed to aberrant histamine signaling. In late stage cachexia, the sympathetic tone in skeletal muscle breaks down, which we hypothesize might be caused by a reduction in histamine signaling or by the interference of other cachexia related mechanisms. Histamine signaling thus might delineate distinct stages of cachexia progression, with the early phase marked by a PSNS-mediated increase in histamine signaling, increased sympathetic tone and symptomatic adipose tissue depletion, and the late phase characterized by reduced histamine signaling, decreased sympathetic tone and symptomatic muscle wasting. To support our hypothesis, we review the literature from across disciplines and highlight the many commonalities between the mechanisms underlying cancer cachexia and current research findings on the regulation of energy homeostasis (particularly as it relates to hypothalamic histamine signaling). Extrapolating from the current body of knowledge, we develop our hypothetical framework (based on experimentally falsifiable assumptions) about the role of a distinct neuron population in the pathophysiology of cancer cachexia. Our hope is that presenting our ideas will spark discussion about the pathophysiology of cachexia, cancer's devastating and intractable syndrome.
Collapse
Affiliation(s)
- Hannes Zwickl
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Elisabeth Zwickl-Traxler
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| | - Martin Pecherstorfer
- Department of Internal Medicine 2, University Hospital Krems, Karl Landsteiner Private University of Health Sciences, Krems, Austria
| |
Collapse
|
17
|
Song L, Chen K, Yan J, Zhang Y, Mao X, Lu B, Sun B. Maternal high-fat diet during gestation and lactation increases conditioned aversion threshold for sucrose and alters sweet taste receptors expression in taste buds in rat offspring. Physiol Behav 2019; 212:112709. [DOI: 10.1016/j.physbeh.2019.112709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 01/01/2023]
|
18
|
Nachtigal D, Andrew K, Green BG. Selective Effects of Temperature on the Sensory Irritation but not Taste of NaCl and Citric Acid. Chem Senses 2019; 44:61-68. [PMID: 30418541 DOI: 10.1093/chemse/bjy072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This study investigated the effect of temperature on taste and chemesthetic sensations produced by the prototypical salty and sour stimuli NaCl and citric acid. Experiment 1 measured the perceived intensity of irritation (burning, stinging) and taste (saltiness, sourness) produced on the tongue tip by brief (3 s) exposures to suprathreshold concentrations of NaCl and citric acid at 3 different temperatures (12, 34, and 42 °C). No significant effects of temperature were found on the taste or sensory irritation of either stimulus. Experiment 2 investigated the potential effects of temperature on sensory irritation at peri-threshold concentrations and its sensitization over time. Measurements were again made on the tongue tip at the same 3 temperatures. Heating was found to enhance the perception of irritation at peri-threshold concentrations for both stimuli, whereas cooling suppressed sensitization of irritation for NaCl but not for citric acid. These results (i) confirm prior evidence that perception of suprathreshold salty and sour tastes are independent of temperature; (ii) demonstrate that heat has only weak effects on sensory irritation produced by brief exposures to NaCl and citric acid; and (iii) suggest that sensitization of the irritation produced by NaCl and citric acid occur via different peripheral mechanisms that have different thermal sensitivities. Overall, the results are consistent with involvement of the heat-sensitive channel TRPV1 in the sensory irritation of both stimuli together with one or more additional channels (e.g., acid-sensing channel, epithelial sodium channel, TRPA1) that are insensitive to heat and may possibly be sensitive to cooling.
Collapse
Affiliation(s)
- Danielle Nachtigal
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kendra Andrew
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Barry G Green
- The John B. Pierce Laboratory, Yale School of Medicine, Yale University, New Haven, CT, USA.,Department of Surgery (Otolaryngology), Yale School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
19
|
Schier LA, Spector AC. The Functional and Neurobiological Properties of Bad Taste. Physiol Rev 2019; 99:605-663. [PMID: 30475657 PMCID: PMC6442928 DOI: 10.1152/physrev.00044.2017] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 05/18/2018] [Accepted: 06/30/2018] [Indexed: 12/12/2022] Open
Abstract
The gustatory system serves as a critical line of defense against ingesting harmful substances. Technological advances have fostered the characterization of peripheral receptors and have created opportunities for more selective manipulations of the nervous system, yet the neurobiological mechanisms underlying taste-based avoidance and aversion remain poorly understood. One conceptual obstacle stems from a lack of recognition that taste signals subserve several behavioral and physiological functions which likely engage partially segregated neural circuits. Moreover, although the gustatory system evolved to respond expediently to broad classes of biologically relevant chemicals, innate repertoires are often not in register with the actual consequences of a food. The mammalian brain exhibits tremendous flexibility; responses to taste can be modified in a specific manner according to bodily needs and the learned consequences of ingestion. Therefore, experimental strategies that distinguish between the functional properties of various taste-guided behaviors and link them to specific neural circuits need to be applied. Given the close relationship between the gustatory and visceroceptive systems, a full reckoning of the neural architecture of bad taste requires an understanding of how these respective sensory signals are integrated in the brain.
Collapse
Affiliation(s)
- Lindsey A Schier
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Alan C Spector
- Department of Biological Sciences, University of Southern California , Los Angeles, California ; and Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
20
|
Mast TG, Breza JM, Contreras RJ. Thirst Increases Chorda Tympani Responses to Sodium Chloride. Chem Senses 2017; 42:675-681. [PMID: 28981824 DOI: 10.1093/chemse/bjx052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In nature, water is present as a low-salt solution, thus we hypothesized that thirst would increase taste responses to low-salt solutions. We investigated the effect of thirst on the 2 different salt detection mechanisms present in the rat chorda tympani (CT) nerve. The first mechanism is dependent upon the epithelial sodium channel (ENaC), is blocked by benzamil, and is specific to the cation sodium. The second mechanism, while undefined, is independent of ENaC, and detects multiple cations. We expected thirst to increase benzamil-sensitive sodium responses due to mechanistically increasing the benzamil-sensitive ENaC. We recorded CT whole-nerve electrophysiological responses to lingual application of NaCl, KCl (30, 75, 150, 300, 500, and 600 mM), and imitation rainwater in both control and 24-h water-restricted male rats. NaCl solutions were presented in artificial saliva before and after lingual application of 5µM benzamil. Water restriction significantly increased the integrated CT responses to NaCl but not to KCl or imitation rainwater. Consistent with our hypothesis, only the benzamil-sensitive, and not the benzamil-insensitive, CT sodium response significantly increased. Additionally, CT responses to salt were recorded following induction of either osmotic or volemic thirst. Both thirsts significantly enhanced the integrated CT responses to NaCl and KCl, but not imitation rainwater. Interestingly, osmotic and volemic thirsts increased CT responses by increasing both the benzamil-sensitive and benzamil-insensitive CT sodium responses. We propose that thirst increases the sensitivity of the CT nerve to sodium.
Collapse
Affiliation(s)
- Thomas G Mast
- Department of Biology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA.,Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| | - Joseph M Breza
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA.,Department of Psychology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | - Robert J Contreras
- Department of Psychology, Program in Neuroscience, Florida State University, 1107 West Call Street, Tallahassee, FL 30306, USA
| |
Collapse
|
21
|
Lemon CH. Modulation of taste processing by temperature. Am J Physiol Regul Integr Comp Physiol 2017; 313:R305-R321. [PMID: 28794101 DOI: 10.1152/ajpregu.00089.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 02/02/2023]
Abstract
Taste stimuli have a temperature that can stimulate thermosensitive neural machinery in the mouth during gustatory experience. Although taste and oral temperature are sometimes discussed as different oral sensory modalities, there is a body of literature that demonstrates temperature is an important component and modulator of the intensity of gustatory neural and perceptual responses. Available data indicate that the influence of temperature on taste, herein referred to as "thermogustation," can vary across taste qualities, can also vary among stimuli presumed to share a common taste quality, and is conditioned on taste stimulus concentration, with neuronal and psychophysical data revealing larger modulatory effects of temperature on gustatory responding to weakened taste solutions compared with concentrated. What is more, thermogustation is evidenced to involve interplay between mouth and stimulus temperature. Given these and other dependencies, identifying principles by which thermal input affects gustatory information flow in the nervous system may be important for ultimately unravelling the organization of neural circuits for taste and defining their involvement with multisensory processing related to flavor. Yet thermal effects are relatively understudied in gustatory neuroscience. Major gaps in our understanding of the mechanisms and consequences of thermogustation include delineating supporting receptors, the potential involvement of oral thermal and somatosensory trigeminal neurons in thermogustatory interactions, and the broader operational roles of temperature in gustatory processing. This review will discuss these and other issues in the context of the literature relevant to understanding thermogustation.
Collapse
|
22
|
Houghton JW, Hans J, Pesaro M, Ley JP, Carpenter GH, Proctor G. Sensory effects of transient receptor potential channel agonists on whole mouth saliva extensional rheology. J Texture Stud 2017; 48:313-317. [DOI: 10.1111/jtxs.12260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/24/2017] [Accepted: 02/10/2017] [Indexed: 01/16/2023]
Affiliation(s)
- Jack William Houghton
- Division of Mucosal and Salivary Biology, King's College London; London United Kingdom
| | | | | | | | - Guy Howard Carpenter
- Division of Mucosal and Salivary Biology, King's College London; London United Kingdom
| | - Gordon Proctor
- Division of Mucosal and Salivary Biology, King's College London; London United Kingdom
| |
Collapse
|
23
|
Park S, Zhang X, Lee NR, Jin HS. TRPV1 Gene Polymorphisms Are Associated with Type 2 Diabetes by Their Interaction with Fat Consumption in the Korean Genome Epidemiology Study. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 9:47-61. [DOI: 10.1159/000446499] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/25/2016] [Indexed: 11/19/2022]
|
24
|
Lemon CH, Kang Y, Li J. Separate functions for responses to oral temperature in thermo-gustatory and trigeminal neurons. Chem Senses 2016; 41:457-71. [PMID: 26976122 PMCID: PMC4910675 DOI: 10.1093/chemse/bjw022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oral temperature is a component and modifier of taste perception. Both trigeminal (V) and taste-sensitive cells, including those in the nucleus of the solitary tract (NTS), can respond to oral temperature. However, functional associations in thermal sensitivity between V and gustatory neurons are poorly understood. To study this we recorded electrophysiological responses to oral stimulation with cool (9, 15, 25, 32, and 34 °C) and warm (40 and 45 °C) temperatures from medullary V (n = 45) and taste-sensitive NTS (n = 27) neurons in anesthetized mice. Results showed temperatures below 34 °C activated the majority of V neurons but only a minority of NTS units. V neurons displayed larger responses to cooling and responded to temperatures that poorly stimulated NTS cells. Multivariate analyses revealed different temperatures induced larger differences in responses across V compared with NTS neurons, indicating V pathways possess greater capacity to signal temperature. Conversely, responses to temperature in NTS units associated with gustatory tuning. Further analyses identified two types of cooling-sensitive V neurons oriented toward innocuous or noxious cooling. Multivariate analyses indicated the combined response of these cells afforded distinction among a broad range of cool temperatures, suggesting multiple types of V neurons work together to represent oral cooling.
Collapse
Affiliation(s)
- Christian H Lemon
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Yi Kang
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | - Jinrong Li
- Department of Biology, The University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| |
Collapse
|
25
|
Kumarhia D, He L, McCluskey LP. Inflammatory stimuli acutely modulate peripheral taste function. J Neurophysiol 2016; 115:2964-75. [PMID: 27009163 DOI: 10.1152/jn.01104.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/23/2016] [Indexed: 12/30/2022] Open
Abstract
Inflammation-mediated changes in taste perception can affect health outcomes in patients, but little is known about the underlying mechanisms. In the present work, we hypothesized that proinflammatory cytokines directly modulate Na(+) transport in taste buds. To test this, we measured acute changes in Na(+) flux in polarized fungiform taste buds loaded with a Na(+) indicator dye. IL-1β elicited an amiloride-sensitive increase in Na(+) transport in taste buds. In contrast, TNF-α dramatically and reversibly decreased Na(+) flux in polarized taste buds via amiloride-sensitive and amiloride-insensitive Na(+) transport systems. The speed and partial amiloride sensitivity of these changes in Na(+) flux indicate that IL-1β and TNF-α modulate epithelial Na(+) channel (ENaC) function. A portion of the TNF-mediated decrease in Na(+) flux is also blocked by the TRPV1 antagonist capsazepine, although TNF-α further reduced Na(+) transport independently of both amiloride and capsazepine. We also assessed taste function in vivo in a model of infection and inflammation that elevates these and additional cytokines. In rats administered systemic lipopolysaccharide (LPS), CT responses to Na(+) were significantly elevated between 1 and 2 h after LPS treatment. Low, normally preferred concentrations of NaCl and sodium acetate elicited high response magnitudes. Consistent with this outcome, codelivery of IL-1β and TNF-α enhanced Na(+) flux in polarized taste buds. These results demonstrate that inflammation elicits swift changes in Na(+) taste function, which may limit salt consumption during illness.
Collapse
Affiliation(s)
- Devaki Kumarhia
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and Graduate Program in Molecular Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Lianying He
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| | - Lynnette Phillips McCluskey
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia; and
| |
Collapse
|
26
|
|
27
|
|
28
|
The histaminergic system as a target for the prevention of obesity and metabolic syndrome. Neuropharmacology 2015; 106:3-12. [PMID: 26164344 DOI: 10.1016/j.neuropharm.2015.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 11/21/2022]
Abstract
The control of food intake and body weight is very complex. Key factors driving eating behavior are hunger and satiety that are controlled by an interplay of several central and peripheral neuroendocrine systems, environmental factors, the behavioral state and circadian rhythm, which all concur to alter homeostatic aspects of appetite and energy expenditure. Brain histamine plays a fundamental role in eating behavior as it induces loss of appetite and has long been considered a satiety signal that is released during food intake (Sakata et al., 1997). Animal studies have shown that brain histamine is released during the appetitive phase to provide a high level of arousal preparatory to feeding, but also mediates satiety. Furthermore, histamine regulates peripheral mechanisms such as glucose uptake and insulin function. Preclinical research indicates that activation of H1 and H3 receptors is crucial for the regulation of the diurnal rhythm of food consumption; furthermore, these receptors have been specifically recognized as mediators of energy intake and expenditure. Despite encouraging preclinical data, though, no brain penetrating H1 receptor agonists have been identified that would have anti-obesity effects. The potential role of the H3 receptor as a target of anti-obesity therapeutics was explored in clinical trials that did not meet up to the expectations or were interrupted (clinicaltrials.gov). Nonetheless, interesting results are emerging from clinical trials that evaluated the attenuating effect of betahistine (an H1 agonist/H3 antagonist) on metabolic side effects associated with chronic antipsychotics treatment. Aim of this review is to summarize recent results that suggest the clinical relevance of the histaminergic system for the treatment of feeding disorders and provide an up-to-date summary of preclinical research. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
|
29
|
Soto J, Sheng Y, Standing JF, Orlu Gul M, Tuleu C. Development of a model for robust and exploratory analysis of the rodent brief-access taste aversion data. Eur J Pharm Biopharm 2015; 91:47-51. [DOI: 10.1016/j.ejpb.2015.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/14/2015] [Indexed: 02/02/2023]
|
30
|
Spector AC, Blonde GD, Henderson RP, Treesukosol Y, Hendrick P, Newsome R, Fletcher FH, Tang T, Donaldson JA. A new gustometer for taste testing in rodents. Chem Senses 2015; 40:187-96. [PMID: 25616763 DOI: 10.1093/chemse/bju072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for one's needs.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ross P Henderson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Yada Treesukosol
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hendrick
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ryan Newsome
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Fred H Fletcher
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - James A Donaldson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| |
Collapse
|
31
|
Abstract
TRP channels are expressed in taste buds, nerve fibers, and keratinocytes in the oronasal cavity. These channels play integral roles in transducing chemical stimuli, giving rise to sensations of taste, irritation, warmth, coolness, and pungency. Specifically, TRPM5 acts downstream of taste receptors in the taste transduction pathway. TRPM5 channels convert taste-evoked intracellular Ca(2+) release into membrane depolarization to trigger taste transmitter secretion. PKD2L1 is expressed in acid-sensitive (sour) taste bud cells but is unlikely to be the transducer for sour taste. TRPV1 is a receptor for pungent chemical stimuli such as capsaicin and for several irritants (chemesthesis). It is controversial whether TRPV1 is present in the taste buds and plays a direct role in taste. Instead, TRPV1 is expressed in non-gustatory sensory afferent fibers and in keratinocytes of the oronasal cavity. In many sensory fibers and epithelial cells lining the oronasal cavity, TRPA1 is also co-expressed with TRPV1. As with TRPV1, TRPA1 transduces a wide variety of irritants and, in combination with TRPV1, assures that there is a broad response to noxious chemical stimuli. Other TRP channels, including TRPM8, TRPV3, and TRPV4, play less prominent roles in chemesthesis and no known role in taste, per se. The pungency of foods and beverages is likely highly influenced by the temperature at which they are consumed, their acidity, and, for beverages, their carbonation. All these factors modulate the activity of TRP channels in taste buds and in the oronasal mucosa.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, 1600 NW 10th Ave., Miami, FL, 33136, USA,
| |
Collapse
|
32
|
Kim MJ, Son HJ, Kim Y, Kweon HJ, Suh BC, Lyall V, Rhyu MR. Selective activation of hTRPV1 by N-geranyl cyclopropylcarboxamide, an amiloride-insensitive salt taste enhancer. PLoS One 2014; 9:e89062. [PMID: 24586504 PMCID: PMC3930709 DOI: 10.1371/journal.pone.0089062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 01/14/2014] [Indexed: 02/06/2023] Open
Abstract
TRPV1t, a variant of the transient receptor potential vanilloid-1 (TRPV1) has been proposed as a constitutively active, non-selective cation channel as a putative amiloride-insensitive salt taste receptor and shares many properties with TRPV1. Based on our previous chorda tympani taste nerve recordings in rodents and human sensory evaluations, we proposed that N-geranylcyclopropylcarboxamide (NGCC), a novel synthetic compound, acts as a salt taste enhancer by modulating the amiloride/benzamil-insensitive Na+ entry pathways. As an extension of this work, we investigated NGCC-induced human TRPV1 (hTRPV1) activation using a Ca2+-flux signaling assay in cultured cells. NGCC enhanced Ca2+ influx in hTRPV1-expressing cells in a dose-dependent manner (EC50 = 115 µM). NGCC-induced Ca2+ influx was significantly attenuated by ruthenium red (RR; 30 µM), a non-specific blocker of TRP channels and capsazepine (CZP; 5 µM), a specific antagonist of TRPV1, implying that NGCC directly activates hTRPV1. TRPA1 is often co-expressed with TRPV1 in sensory neurons. Therefore, we also investigated the effects of NGCC on hTRPA1-expressing cells. Similar to hTRPV1, NGCC enhanced Ca2+ influx in hTRPA1-expressing cells (EC50 = 83.65 µM). The NGCC-induced Ca2+ influx in hTRPA1-expressing cells was blocked by RR (30 µM) and HC-030031 (100 µM), a specific antagonist of TRPA1. These results suggested that NGCC selectively activates TRPV1 and TRPA1 in cultured cells. These data may provide additional support for our previous hypothesis that NGCC interacts with TRPV1 variant cation channel, a putative amiloride/benzamil-insensitive salt taste pathway in the anterior taste receptive field.
Collapse
Affiliation(s)
- Min Jung Kim
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Hee Jin Son
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Yiseul Kim
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| | - Hae-Jin Kweon
- Department of Brain Science, DaeguGyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Science, DaeguGyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Vijay Lyall
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Mee-Ra Rhyu
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Bundang-gu, Sungnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
33
|
Bachmanov AA, Bosak NP, Lin C, Matsumoto I, Ohmoto M, Reed DR, Nelson TM. Genetics of taste receptors. Curr Pharm Des 2014; 20:2669-83. [PMID: 23886383 PMCID: PMC4764331 DOI: 10.2174/13816128113199990566] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/24/2013] [Indexed: 12/19/2022]
Abstract
Taste receptors function as one of the interfaces between internal and external milieus. Taste receptors for sweet and umami (T1R [taste receptor, type 1]), bitter (T2R [taste receptor, type 2]), and salty (ENaC [epithelial sodium channel]) have been discovered in the recent years, but transduction mechanisms of sour taste and ENaC-independent salt taste are still poorly understood. In addition to these five main taste qualities, the taste system detects such noncanonical "tastes" as water, fat, and complex carbohydrates, but their reception mechanisms require further research. Variations in taste receptor genes between and within vertebrate species contribute to individual and species differences in taste-related behaviors. These variations are shaped by evolutionary forces and reflect species adaptations to their chemical environments and feeding ecology. Principles of drug discovery can be applied to taste receptors as targets in order to develop novel taste compounds to satisfy demand in better artificial sweeteners, enhancers of sugar and sodium taste, and blockers of bitterness of food ingredients and oral medications.
Collapse
|
34
|
Ren Z, Rhyu MR, Phan THT, Mummalaneni S, Murthy KS, Grider JR, DeSimone JA, Lyall V. TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response. Am J Physiol Gastrointest Liver Physiol 2013; 305:G106-17. [PMID: 23639808 PMCID: PMC3725688 DOI: 10.1152/ajpgi.00053.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Transient receptor potential (TRP) subfamily M member 5 (TRPM5) cation channel is involved in sensing sweet, bitter, umami, and fat taste stimuli, complex-tasting divalent salts, and temperature-induced changes in sweet taste. To investigate if the amiloride- and benzamil (Bz)-insensitive NaCl chorda tympani (CT) taste nerve response is also regulated in part by TRPM5, CT responses to 100 mM NaCl + 5 μM Bz (NaCl + Bz) were monitored in Sprague-Dawley rats, wild-type (WT) mice, and TRP vanilloid subfamily member 1 (TRPV1) and TRPM5 knockout (KO) mice in the presence of resiniferatoxin (RTX), a TRPV1 agonist. In rats, NaCl + Bz + RTX CT responses were also monitored in the presence of triphenylphosphine oxide, a specific TRPM5 blocker, and capsazepine and N-(3-methoxyphenyl)-4-chlorocinnamid (SB-366791), specific TRPV1 blockers. In rats and WT mice, RTX produced biphasic effects on the NaCl + Bz CT response, enhancing the response at 0.5-1 μM and inhibiting it at >1 μM. The NaCl + Bz + SB-366791 CT response in rats and WT mice and the NaCl + Bz CT response in TRPV1 KO mice were inhibited to baseline level and were RTX-insensitive. In rats, blocking TRPV1 by capsazepine or TRPM5 by triphenylphosphine oxide inhibited the tonic NaCl + Bz CT response and shifted the relationship between RTX concentration and the magnitude of the tonic CT response to higher RTX concentrations. TRPM5 KO mice elicited no constitutive NaCl + Bz tonic CT response. The relationship between RTX concentration and the magnitude of the tonic NaCl + Bz CT response was significantly attenuated and shifted to higher RTX concentrations. The results suggest that pharmacological or genetic alteration of TRPM5 activity modulates the Bz-insensitive NaCl CT response and its modulation by TRPV1 agonists.
Collapse
Affiliation(s)
- ZuoJun Ren
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - Mee-Ra Rhyu
- 2Korea Food Research Institute, Gyeonggi-do, Korea
| | - Tam-Hao T. Phan
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - Shobha Mummalaneni
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - Karnam S. Murthy
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - John R. Grider
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - John A. DeSimone
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| | - Vijay Lyall
- 1Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia; and
| |
Collapse
|
35
|
Wu W, Mast TG, Ziembko C, Breza JM, Contreras RJ. Statistical analysis and decoding of neural activity in the rodent geniculate ganglion using a metric-based inference system. PLoS One 2013; 8:e65439. [PMID: 23738016 PMCID: PMC3667800 DOI: 10.1371/journal.pone.0065439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
We analyzed the spike discharge patterns of two types of neurons in the rodent peripheral gustatory system, Na specialists (NS) and acid generalists (AG) to lingual stimulation with NaCl, acetic acid, and mixtures of the two stimuli. Previous computational investigations found that both spike rate and spike timing contribute to taste quality coding. These studies used commonly accepted computational methods, but they do not provide a consistent statistical evaluation of spike trains. In this paper, we adopted a new computational framework that treated each spike train as an individual data point for computing summary statistics such as mean and variance in the spike train space. We found that these statistical summaries properly characterized the firing patterns (e. g. template and variability) and quantified the differences between NS and AG neurons. The same framework was also used to assess the discrimination performance of NS and AG neurons and to remove spontaneous background activity or "noise" from the spike train responses. The results indicated that the new metric system provided the desired decoding performance and noise-removal improved stimulus classification accuracy, especially of neurons with high spontaneous rates. In summary, this new method naturally conducts statistical analysis and neural decoding under one consistent framework, and the results demonstrated that individual peripheral-gustatory neurons generate a unique and reliable firing pattern during sensory stimulation and that this pattern can be reliably decoded.
Collapse
Affiliation(s)
- Wei Wu
- Program in Neuroscience, Florida State University, Tallahassee, Florida, USA
| | | | | | | | | |
Collapse
|
36
|
Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol 2013; 164:1-76. [PMID: 23605179 DOI: 10.1007/112_2013_11] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spicy food does not only provide an important hedonic input in daily life, but has also been anedoctically associated to beneficial effects on our health. In this context, the discovery of chemesthetic trigeminal receptors and their spicy ligands has provided the mechanistic basis and the pharmacological means to investigate this enticing possibility. This review discusses in molecular terms the connection between the neurophysiology of pungent spices and the "systemic" effects associated to their trigeminality. It commences with a cultural and historical overview on the Western fascination for spices, and, after analysing in detail the mechanisms underlying the trigeminality of food, the main dietary players from the transient receptor potential (TRP) family of cation channels are introduced, also discussing the "alien" distribution of taste receptors outside the oro-pharingeal cavity. The modulation of TRPV1 and TRPA1 by spices is next described, discussing how spicy sensations can be turned into hedonic pungency, and analyzing the mechanistic bases for the health benefits that have been associated to the consumption of spices. These include, in addition to a beneficial modulation of gastro-intestinal and cardio-vascular function, slimming, the optimization of skeletal muscle performance, the reduction of chronic inflammation, and the prevention of metabolic syndrome and diabetes. We conclude by reviewing the role of electrophilic spice constituents on cancer prevention in the light of their action on pro-inflammatory and pro-cancerogenic nuclear factors like NFκB, and on their interaction with the electrophile sensor protein Keap1 and the ensuing Nrf2-mediated transcriptional activity. Spicy compounds have a complex polypharmacology, and just like any other bioactive agent, show a balance of beneficial and bad actions. However, at least for moderate consumption, the balance seems definitely in favour of the positive side, suggesting that a spicy diet, a caveman-era technology, could be seriously considered in addition to caloric control and exercise as a measurement to prevent and control many chronic diseases associate to malnutrition from a Western diet.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium,
| | | |
Collapse
|