1
|
Sadie-Van Gijsen H, Kotzé-Hörstmann L. Rat models of diet-induced obesity and metabolic dysregulation: Current trends, shortcomings and considerations for future research. Obes Res Clin Pract 2023; 17:449-457. [PMID: 37788944 DOI: 10.1016/j.orcp.2023.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Rat diet-induced obesity and metabolic dysregulation (DIO/DIMD) is widely used as a pre-clinical model for human obesity and for testing weight-loss interventions. The aim of this review was to utilise a systematic literature survey of rat DIO/DIMD studies as a tool to document trends around study design and metabolic outcomes of these studies, and to consider ways in which the design of these studies may be improved to enhance the relevance thereof for human obesity research. In total, 110 comparisons between control and obesogenic dietary groups were included in the survey. Young male rats were found to be the model of choice, but fewer than 50% of studies provided comprehensive information about diet composition and energy intake. In addition, it was found that the majority of expected DIO/DIMD responses (hyperglycemia, hyperinsulinemia, dyslipidemia, hypoadiponectinemia) occurred at < 80% frequency, drawing into question the concept of a "typical" or "appropriate" response. We discuss the impact of differences in diet composition and energy intake on metabolic outcomes against the context of large heterogeneity of obesogenic diets employed in rat DIO/DIMD studies, and provide recommendations for the improvement of reporting standards around diet composition and dietary intake. In addition, we highlight the lack of data from female and older rats and describe considerations around the inclusion of sex and age as a variable in rat DIO/DIMD studies, aiming towards improving the applicability of these studies as a model of human obesity, which is most prevalent in women and older individuals.
Collapse
Affiliation(s)
- Hanél Sadie-Van Gijsen
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa.
| | - Liske Kotzé-Hörstmann
- Centre for Cardio-metabolic Research in Africa (CARMA), Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa; Institute for Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University Tygerberg Campus, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
2
|
Kim K. Effects of Endurance Exercise Training on Adipose Tissue Inflammatory Gene Expression in Elderly Rats with Diet-Induced Obesity. THE ASIAN JOURNAL OF KINESIOLOGY 2019. [DOI: 10.15758/ajk.2019.21.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
3
|
Kawakami M, Yokota-Nakagi N, Uji M, Yoshida KI, Tazumi S, Takamata A, Uchida Y, Morimoto K. Estrogen replacement enhances insulin-induced AS160 activation and improves insulin sensitivity in ovariectomized rats. Am J Physiol Endocrinol Metab 2018; 315:E1296-E1304. [PMID: 30179516 DOI: 10.1152/ajpendo.00131.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Menopause predisposes women to impaired glucose metabolism, but the role of estrogen remains unclear. In this study, we examined the effects of chronic estrogen replacement on whole body insulin sensitivity and insulin signaling in ovariectomized rats. Female Wistar rats aged 9 wk were ovariectomized under anesthesia. After 4 wk, pellets containing either 17β-estradiol (E2) or placebo (Pla) were subcutaneously implanted in the rats. After 4 wk of treatment, the intra-abdominal fat accumulation was greater in the Pla group than that in the E2 group. Hyperinsulinemic-euglycemic clamp analysis and intravenous glucose tolerance test revealed that insulin sensitivity was significantly lower in the Pla group than in the E2 group. In addition, Western blotting showed that in vivo insulin stimulation increased protein kinase B (Akt) phosphorylation to a similar degree in the gastrocnemius and liver of both groups, but phosphorylated Akt2 Ser474 was enhanced in the muscle of the E2 group compared with the Pla group. Moreover, insulin-stimulated phosphorylation of Akt substrate of 160 kDa (AS160) Thr642 was observed only in the E2 group, resulting in the difference between the two groups. Additionally, AS160 protein and mRNA levels were higher in muscle of the E2 group than the Pla group. In contrast, E2 replacement had no effect on glucose transporter 4 protein levels in muscle and glycogen synthase kinase-3β in muscle and liver. These results suggest that estrogen replacement improves insulin sensitivity by activating the Akt2/AS160 pathway in the insulin-stimulated muscle of ovariectomized rats.
Collapse
Affiliation(s)
- Mizuho Kawakami
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Naoko Yokota-Nakagi
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Masami Uji
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University , Tokyo , Japan
| | - Shoko Tazumi
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Akira Takamata
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Yuki Uchida
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| | - Keiko Morimoto
- Faculty of Human Life and Environment, Department of Environmental Health, Nara Women's University , Nara , Japan
| |
Collapse
|
4
|
Blesson CS, Chinnathambi V, Kumar S, Yallampalli C. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats. Endocrinology 2017; 158:756-767. [PMID: 28324067 PMCID: PMC5460798 DOI: 10.1210/en.2016-1675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/23/2017] [Indexed: 01/18/2023]
Abstract
Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)-3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis.
Collapse
Affiliation(s)
| | - Vijayakumar Chinnathambi
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Sathish Kumar
- Department of Obstetrics & Gynecology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Chandrasekhar Yallampalli
- Basic Sciences Perinatology Research Laboratories, Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
5
|
Lymphocyte Phospho-Ser-9-GSK-3β/Total GSK-3β Protein Levels Ratio Is Not Affected by Chronic Lithium or Valproate Treatment in Euthymic Patients With Bipolar Disorder. J Clin Psychopharmacol 2017; 37:226-230. [PMID: 28106616 DOI: 10.1097/jcp.0000000000000654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Glycogen synthase kinase-3 (GSK-3) inhibition by lithium has been well established in vitro, but proof that this biochemical effect mediates lithium's beneficial action in patients with bipolar disorder is lacking. We studied whether lymphocyte GSK-3β activity measured indirectly in lithium- or valproate (VPA)-treated euthymic patients with bipolar disorder is different from controls. METHODS Lymphocyte total and Ser-9-phospho-GSK-3β (inactive) levels were measured by Western blotting. Forty-seven patients with bipolar disorder and 32 age- and sex-matched control subjects were studied. RESULTS No significant differences were found between lithium- and VPA-treated patients and controls in phospho-GSK-3β, total GSK-3β, or their ratio. CONCLUSIONS The data do not support the concept that in vivo, during chronic treatment of bipolar illness, GSK-3β is inhibited either by lithium or by VPA.
Collapse
|
6
|
Hunter I, Soler A, Joseph G, Hutcheson B, Bradford C, Zhang FF, Potter B, Proctor S, Rocic P. Cardiovascular function in male and female JCR:LA-cp rats: effect of high-fat/high-sucrose diet. Am J Physiol Heart Circ Physiol 2017; 312:H742-H751. [PMID: 28087518 DOI: 10.1152/ajpheart.00535.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
Thirty percent of the world population is diagnosed with metabolic syndrome. High-fat/high-sucrose (HF/HS) diet (Western diet) correlates with metabolic syndrome prevalence. We characterized effects of the HF/HS diet on vascular (arterial stiffness, vasoreactivity, and coronary collateral development) and cardiac (echocardiography) function, oxidative stress, and inflammation in a rat model of metabolic syndrome (JCR rats). Furthermore, we determined whether male versus female animals were affected differentially by the Western diet. Cardiovascular function in JCR male rats was impaired versus normal Sprague-Dawley (SD) rats. HF/HS diet compromised cardiovascular (dys)function in JCR but not SD male rats. In contrast, cardiovascular function was minimally impaired in JCR female rats on normal chow. However, cardiovascular function in JCR female rats on the HF/HS diet deteriorated to levels comparable to JCR male rats on the HF/HS diet. Similarly, oxidative stress was markedly increased in male but not female JCR rats on normal chow but was equally exacerbated by the HF/HS diet in male and female JCR rats. These results indicate that the Western diet enhances oxidative stress and cardiovascular dysfunction in metabolic syndrome and eliminates the protective effect of female sex on cardiovascular function, implying that both males and females with metabolic syndrome are at equal risk for cardiovascular disease.NEW & NOTEWORTHY Western diet abolished protective effect of sex against cardiovascular disease (CVD) development in premenopausal animals with metabolic syndrome. Western diet accelerates progression of CVD in male and female animals with preexisting metabolic syndrome but not normal animals. Exacerbation of baseline oxidative stress correlates with accelerated progression of CVD in metabolic syndrome animals on Western diet.
Collapse
Affiliation(s)
- Ian Hunter
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Amanda Soler
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Gregory Joseph
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Brenda Hutcheson
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | | | - Frank Fan Zhang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Barry Potter
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | - Spencer Proctor
- Metabolic and Cardiovascular Diseases Laboratory, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, Canada
| | - Petra Rocic
- Department of Pharmacology, New York Medical College, Valhalla, New York;
| |
Collapse
|
7
|
Castorena CM, Arias EB, Sharma N, Cartee GD. Effects of a brief high-fat diet and acute exercise on the mTORC1 and IKK/NF-κB pathways in rat skeletal muscle. Appl Physiol Nutr Metab 2014; 40:251-62. [PMID: 25706655 DOI: 10.1139/apnm-2014-0412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One exercise session can improve subsequent insulin-stimulated glucose uptake by skeletal muscle in healthy and insulin-resistant individuals. Our first aim was to determine whether a brief (2 weeks) high-fat diet (HFD) that caused muscle insulin resistance would activate the mammalian target of rapamycin complex 1 (mTORC1) and/or inhibitor of κB kinase/nuclear factor κB (IKK/NF-κB) pathways, which are potentially linked to induction of insulin resistance. Our second aim was to determine whether acute exercise that improved insulin-stimulated glucose uptake by muscles would attenuate activation of these pathways. We compared HFD-fed rats with rats fed a low-fat diet (LFD). Some animals from each diet group were sedentary and others were studied 3 h postexercise, when insulin-stimulated glucose uptake was increased. The results did not provide evidence that brief HFD activated either the mTORC1 (including phosphorylation of mTOR(Ser2448), TSC2(Ser939), p70S6K(Thr412), and RPS6(Ser235/236)) or the IKK/NF-κB (including abundance of IκBα or phosphorylation of NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)) pathway in insulin-resistant muscles. Exercise did not oppose the activation of either pathway, as evidenced by no attenuation of phosphorylation of key proteins in the IKK/NF-κB pathway (NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)), unaltered IκBα abundance, and no attenuation of phosphorylation of key proteins in the mTORC1 pathway (mTOR(Ser2448), TSC2(Ser939), and RPS6(Ser235/236)). Instead, exercise induced greater phosphorylation of 2 proteins of the mTORC1 pathway (PRAS40(Thr246) and p70S6K(Thr412)) in insulin-stimulated muscles, regardless of diet. Insulin resistance induced by a brief HFD was not attributable to greater activation of the mTORC1 or the IKK/NF-κB pathway in muscle, and exercise-induced improvement in insulin sensitivity was not attributable to attenuated activation of these pathways in muscle.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | | | |
Collapse
|
8
|
Rosmarinic acid, a polyphenol, ameliorates hyperglycemia by regulating the key enzymes of carbohydrate metabolism in high fat diet – STZ induced experimental diabetes mellitus. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2014.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Fu J, Han Y, Wang H, Wang Z, Liu Y, Chen X, Cai Y, Guan W, Yang D, Asico LD, Zhou L, Jose PA, Zeng C. Impaired dopamine D1 receptor-mediated vasorelaxation of mesenteric arteries in obese Zucker rats. Cardiovasc Diabetol 2014; 13:50. [PMID: 24559270 PMCID: PMC3938077 DOI: 10.1186/1475-2840-13-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/20/2014] [Indexed: 12/18/2022] Open
Abstract
Background Obesity plays an important role in the pathogenesis of hypertension. Renal dopamine D1-like receptor-mediated diuresis and natriuresis are impaired in the obese Zucker rat, an obesity-related hypertensive rat model. The role of arterial D1 receptors in the hypertension of obese Zucker rats is not clear. Methods Plasma glucose and insulin concentrations and blood pressure were measured. The vasodilatory response of isolated mesenteric arteries was evaluated using a small vessel myograph. The expression and phosphorylation of D1 receptors were quantified by co-immunoprecipitation and immunoblotting To determine the effect of hyperinsulinemia and hyperglycemia on the function of the arterial D1 receptor, we studied obese Zucker rats (six to eight-weeks old) fed (6 weeks) vehicle or rosiglitazone, an insulin sensitizer (10 mg/kg per day) and lean Zucker rats (eight to ten-weeks old), fed high-fat diet to induce hyperinsulinemia or injected intraperitoneally with streptomycin (STZ) to induce hyperglycemia. Results In obese Zucker rats, the vasorelaxant effect of D1-like receptors was impaired that could be ascribed to decreased arterial D1 receptor expression and increased D1 receptor phosphorylation. In these obese rats, rosiglitazone normalized the arterial D1 receptor expression and phosphorylation and improved the D1-like receptor-mediated vasorelaxation. We also found that D1 receptor-dependent vasorelaxation was decreased in lean Zucker rats with hyperinsulinemia or hyperglycemia but the D1 receptor dysfunction was greater in the former than in the latter group. The ability of insulin and glucose to decrease D1 receptor expression and increase its phosphorylation were confirmed in studies of rat aortic smooth muscle cells. Conclusions Both hyperinsulinemia and hyperglycemia caused D1 receptor dysfunction by decreasing arterial D1 receptor expression and increasing D1 receptor phosphorylation. Impaired D1 receptor-mediated vasorelaxation is involved in the pathogenesis of obesity-related hypertension.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, P,R, China.
| | | | | |
Collapse
|
10
|
Antihyperglycemic effect of carvacrol in combination with rosiglitazone in high-fat diet-induced type 2 diabetic C57BL/6J mice. Mol Cell Biochem 2013; 385:23-31. [DOI: 10.1007/s11010-013-1810-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/09/2013] [Indexed: 10/26/2022]
|
11
|
Ebenezer PJ, Mariappan N, Elks C, Haque M, Francis J. Diet-induced renal changes in Zucker rats are ameliorated by the superoxide dismutase mimetic TEMPOL. Obesity (Silver Spring) 2009; 17:1994-2002. [PMID: 19424163 PMCID: PMC2784093 DOI: 10.1038/oby.2009.137] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Diabetic nephropathy is the leading cause of renal failure in the United States. The obese Zucker rat (OZR; fa/fa) is a commonly used model of type 2 diabetes and metabolic syndrome (MetS), and of the nephropathy and renal oxidative stress commonly seen in these disorders. Heterozygous lean Zucker rats (LZRs; fa/+) are susceptible to high-fat diet (HFD)-induced obesity and MetS. The present study was designed to investigate whether 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL), a membrane-permeable radical scavenger, could alleviate the renal effects of MetS in OZR and LZR fed a HFD, which resembles the typical "Western" diet. OZR and LZR were fed a HFD (OZR-HFD and LZR-HFD) or regular diet (OZR-RD and LZR-RD) and allowed free access to drinking water or water containing 1 mmol/l TEMPOL for 10 weeks. When compared to OZR-RD animals, OZR-HFD animals exhibited significantly higher levels of total renal cortical reactive oxygen species (ROS) production, plasma lipids, insulin, C-reactive protein, blood urea nitrogen (BUN), creatinine (Cr), and urinary albumin excretion (P < 0.05); these changes were accompanied by a significant decrease in plasma high-density lipoprotein levels (P < 0.05). The mRNA expression levels of desmin, tumor necrosis factor-alpha (TNF-alpha), nuclear factor kappaB (NFkappaB), and NAD(P)H oxidase-1 (NOX-1) were significantly higher in the renal cortical tissues of OZR-HFD animals; NFkappaB p65 DNA binding activity as determined by electrophoretic mobility shift assay was also significantly higher in these animals. The same trends were noted in LZR-HFD animals. Our data demonstrate that TEMPOL may prove beneficial in treating the early stages of the nephropathy often associated with MetS.
Collapse
Affiliation(s)
- Philip J. Ebenezer
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Nithya Mariappan
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Carrie Elks
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Masudul Haque
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Joseph Francis
- Department of Comparative Biomedical Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|