1
|
Furukawa F, Aoyagi A, Sano K, Sameshima K, Goto M, Tseng YC, Ikeda D, Lin CC, Uchida K, Okumura SI, Yasumoto K, Jimbo M, Hwang PP. Gluconeogenesis in the extraembryonic yolk syncytial layer of the zebrafish embryo. PNAS NEXUS 2024; 3:pgae125. [PMID: 38585339 PMCID: PMC10997050 DOI: 10.1093/pnasnexus/pgae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Yolk-consuming (lecithotrophic) embryos of oviparous animals, such as those of fish, need to make do with the maternally derived yolk. However, in many cases, yolk possesses little carbohydrates and sugars, including glucose, the essential monosaccharide. Interestingly, increases in the glucose content were found in embryos of some teleost fishes; however, the origin of this glucose has been unknown. Unveiling new metabolic strategies in fish embryos has a potential for better aquaculture technologies. In the present study, using zebrafish, we assessed how these embryos obtain the glucose. We employed stable isotope (13C)-labeled substrates and injected them to the zebrafish embryos. Our liquid chromatography-mass spectrometry-based isotope tracking revealed that among all tested substrate, glutamate was most actively metabolized to produce glucose in the zebrafish embryos. Expression analysis for gluconeogenic genes found that many of these were expressed in the yolk syncytial layer (YSL), an extraembryonic tissue found in teleost fishes. Generation 0 (G0) knockout of pck2, a gene encoding the key enzyme for gluconeogenesis from Krebs cycle intermediates, reduced gluconeogenesis from glutamate, suggesting that this gene is responsible for gluconeogenesis from glutamate in the zebrafish embryos. These results showed that teleost YSL undergoes gluconeogenesis, likely contributing to the glucose supplementation to the embryos with limited glucose source. Since many other animal lineages lack YSL, further comparative analysis will be interesting.
Collapse
Affiliation(s)
- Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Akihiro Aoyagi
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Keita Sameshima
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Miku Goto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ching-Chun Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Katsuhisa Uchida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Sei-ichi Okumura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| |
Collapse
|
2
|
Inoue Y, Fukushima M, Hirasawa G, Furukawa F, Takeda H, Umatani C. Maternal High-Fat Diet Affects the Contents of Eggs and Causes Abnormal Development in the Medaka Fish. Endocrinology 2024; 165:bqae006. [PMID: 38279936 DOI: 10.1210/endocr/bqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 01/29/2024]
Abstract
Maternal nutritional status can affect development and metabolic phenotypes of progeny in animals. The effects of maternal diet are thought to be mediated mainly by changes inside oocytes such as organelles, maternal RNAs, and metabolites. However, to what extent each factor contributes to offspring phenotypes remains uncertain, especially in viviparous mammalian systems, where factors other than oocytes, such as placenta and milk, need to be considered. Here, using the medaka fish as an oviparous vertebrate model, we examined whether maternal high-fat diet (mHFD) feeding affects offspring development and what kind of changes occur in the contents of mature eggs. We found that mHFD caused the high frequency of embryonic deformities of offspring, accompanied by downregulation of transcription- and translation-related genes and zygotic transcripts at the blastula stage. Transcriptomic and metabolomic analyses of mature eggs suggested decreased catabolism of amino acids and glycogen, moderate upregulation of endoplasmic reticulum stress-related genes, and elevated lipid levels in mHFD eggs. Furthermore, high-fat diet females showed a higher incidence of oocyte atresia and downregulation of egg protein genes in the liver. These data suggest that attenuated amino acid catabolism triggered by decreased yolk protein load/processing, as well as elevated lipid levels inside eggs, are the prime candidates that account for the higher incidence of embryonic deformities in mHFD offspring. Our study presents a comprehensive data on the changes inside eggs in a mHFD model of nonmammalian vertebrates and provides insights into the mechanisms of parental nutritional effects on offspring.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Manatsu Fukushima
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Go Hirasawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Kanagawa 252-0373, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Chie Umatani
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Division of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
3
|
Beauclercq S, Grenier O, Arnold AA, Warschawski DE, Wikfors GH, Genard B, Tremblay R, Marcotte I. Metabolomics and lipidomics reveal the effects of the toxic dinoflagellate Alexandrium catenella on immune cells of the blue mussel, Mytilus edulis. HARMFUL ALGAE 2023; 129:102529. [PMID: 37951624 DOI: 10.1016/j.hal.2023.102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023]
Abstract
The increasing occurrence of harmful algal blooms, mostly of the dinoflagellate Alexandrium catenella in Canada, profoundly disrupts mussel aquaculture. These filter-feeding shellfish feed on A. catenella and accumulate paralytic shellfish toxins, such as saxitoxin, in tissues, making them unsafe for human consumption. Algal toxins also have detrimental effects upon several physiological functions in mussels, but particularly on the activity of hemocytes - the mussel immune cells. The objective of this work was to determine the effects of experimental exposure to A. catenella upon hemocyte metabolism and activity in the blue mussel, Mytilus edulis. To do so, mussels were exposed to cultures of the toxic dinoflagellate A. catenella for 120 h. The resulting mussel saxitoxin load had measurable effects upon survival of hemocytes and induced a stress response measured as increased ROS production. The neutral lipid fraction of mussel hemocytes decreased two-fold, suggesting a differential use of lipids. Metabolomic 1H nuclear magnetic resonance (NMR) analysis showed that A. catenella modified the energy metabolism of hemocytes as well as hemocyte osmolyte composition. The modified energy metabolism was reenforced by contrasting plasma metabolomes between control and exposed mussels, suggesting that the blue mussel may reduce feed assimilation when exposed to A. catenella.
Collapse
Affiliation(s)
- Stéphane Beauclercq
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Olivier Grenier
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada
| | - Dror E Warschawski
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, France
| | - Gary H Wikfors
- Northeast Fisheries Science Center (NEFSC), NOAA Fisheries, Milford, CT, USA
| | - Bertrand Genard
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada; Les laboratoires Iso-BioKem Inc., 367 rue Gratien-Gélinas, Rimouski, QC, Canada
| | - Réjean Tremblay
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal, QC, Canada.
| |
Collapse
|
4
|
Lee HG, Joo M, Park JM, Kim MA, Mok J, Cho SH, Sohn YC, Lee H. Lipid Profiling of Pacific Abalone ( Haliotis discus hannai) at Different Developmental Stages Using Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5822562. [PMID: 36299711 PMCID: PMC9592233 DOI: 10.1155/2022/5822562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/12/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Pacific abalone (Haliotis discus hannai) is a commercially important mollusk; therefore, improvement of its growth performance and quality has been emphasized. During embryonic development, abalones undergo a series of distinct larval stages, including swimming veliger larvae, juveniles, and mature individuals, and their biomolecular composition varies depending on the developmental stage. Therefore, in the present study, we performed untargeted lipid profiling of abalone tissues at different developmental stages as well as the hemolymph of mature female and male abalones using ultrahigh-performance liquid chromatography-tandem mass spectrometry. These profiles can provide meaningful information to understand compositional changes in lipids through abalone metamorphosis and development. A total of 132 lipids belonging to 15 classes were identified from abalone tissues at different developmental stages. Moreover, 21 lipids belonging to 8 classes were identified from the hemolymph of mature abalones. All data were processed following strict criteria to provide accurate information. Triglycerides and phosphatidylcholines were the major lipid components identified in both tissues and hemolymph, accounting for, respectively, 27% and 15% of all lipids in tissues and, respectively, 24% and 38% of all lipids in the hemolymph. Of note, lysophosphatidylcholine was only detected in the tissues of mature abalones, paving the way for further analyses of abalone lipids based on developmental stages. The present findings offer novel insights into the lipidome of abalone tissues and hemolymph at different developmental stages, building a foundation for improving the efficiency and quality of abalone aquaculture.
Collapse
Affiliation(s)
- Hey Gene Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - MinJoong Joo
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | | | - Mi Ae Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - JeongHun Mok
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Seong-Hyeon Cho
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Young Chang Sohn
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Hookeun Lee
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
5
|
Wang MC, Furukawa F, Wang CW, Peng HW, Lin CC, Lin TH, Tseng YC. Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119605. [PMID: 35691444 DOI: 10.1016/j.envpol.2022.119605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
Collapse
Affiliation(s)
- Min-Chen Wang
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan; Biodiversity Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan Normal University, Taipei City, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei City, Taiwan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, Tokyo, Japan
| | - Ching-Wei Wang
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Hui-Wen Peng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan
| | - Ching-Chun Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei City, Taiwan
| | - Tzu-Hao Lin
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, I-Lan County, Taiwan.
| |
Collapse
|
6
|
Wang L, Guo Y, Pan M, Li X, Huang D, Liu Y, Wu C, Zhang W, Mai K. Functions of Forkhead Box O on Glucose Metabolism in Abalone Haliotis discus hannai and Its Responses to High Levels of Dietary Lipid. Genes (Basel) 2021; 12:genes12020297. [PMID: 33672704 PMCID: PMC7924355 DOI: 10.3390/genes12020297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The forkhead box O (FoxO) subfamily is a member of the forkhead transcription factor family. It has regulation functions in glucose metabolism in mammals and fish. In the present study, a gene of the foxo homolog in abalone Haliotis discus hannai was cloned. A conservative forkhead (FH) domain and a transactivation (FoxO-TAD) domain were identified. Abalone foxo-specific siRNA (small interfering RNA) was injected to investigate the functions of foxo on glucose metabolism. Knockdown of foxo inhibited expression of phosphoenolpyruvate carboxykinase (pepck) and significantly increased expressions of hexokinase (hk) and pyruvate kinase (pk), but it failed to inhibit the relative mRNA level of glucose-6-phosphatase (g6pase). Then, a 100-day feeding trial was conducted to investigate the response of foxo and glucose metabolism in abalone fed with 1.57% (LFD, low-fat diet), 3.82% (MFD, middle-fat diet) and 6.72% (HFD, high-fat diet) of dietary lipid, respectively. The insulin-signaling pathway (AKT) was depressed and FoxO was activated by the HFD, but it did not inhibit glycolysis (hk) or improved gluconeogenesis significantly (pepck and g6pase). At the same time, impaired hepatopancreas glycogen storage raised hemolymph glucose levels. In conclusion, abalone foxo can be regulated by dietary lipid and can regulate gluconeogenesis or glycolysis in response to changes of dietary lipid levels, in which glycogen metabolism plays an important role.
Collapse
Affiliation(s)
- Liu Wang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Yanlin Guo
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Mingzhu Pan
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Xinxin Li
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Dong Huang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Yue Liu
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| | - Chenglong Wu
- School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China
- Correspondence: (C.W.); (W.Z.); Tel.: +86-532-8203-2145 (W.Z.)
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
- Correspondence: (C.W.); (W.Z.); Tel.: +86-532-8203-2145 (W.Z.)
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds (Ministry of Agriculture and Rural Affairs), the Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao 266003, China; (L.W.); (Y.G.); (M.P.); (X.L.); (D.H.); (Y.L.); (K.M.)
| |
Collapse
|