1
|
Abedpoor N, Taghian F, Hajibabaie F. Physical activity ameliorates the function of organs via adipose tissue in metabolic diseases. Acta Histochem 2022; 124:151844. [PMID: 35045377 DOI: 10.1016/j.acthis.2022.151844] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a dynamic organ in the endocrine system that can connect organs by secreting molecules and bioactive. Hence, adipose tissue really plays a pivotal role in regulating metabolism, inflammation, energy homeostasis, and thermogenesis. Disruption of hub bioactive molecules secretion such as adipokines leads to dysregulate metabolic communication between adipose tissue and other organs in non-communicable disorders. Moreover, a sedentary lifestyle may be a risk factor for adipose tissue function. Physical inactivity leads to fat tissue accumulation and promotes obesity, Type 2 diabetes, cardiovascular disease, neurodegenerative disease, fatty liver, osteoporosis, and inflammatory bowel disease. On the other hand, physical activity may ameliorate and protect the body against metabolic disorders, triggering thermogenesis, metabolism, mitochondrial biogenesis, β-oxidation, and glucose uptake. Furthermore, physical activity provides an inter-organ association and cross-talk between different tissues by improving adipose tissue function, reprogramming gene expression, modulating molecules and bioactive factors. Also, physical activity decreases chronic inflammation, oxidative stress and improves metabolic features in adipose tissue. The current review focuses on the beneficial effect of physical activity on the cardiovascular, locomotor, digestive, and nervous systems. In addition, we visualize protein-protein interactions networks between hub proteins involved in dysregulating metabolic induced by adipose tissue.
Collapse
Affiliation(s)
- Navid Abedpoor
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Farzaneh Taghian
- Department of Sports Physiology, Faculty of Sports Sciences, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| | - Fatemeh Hajibabaie
- Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
2
|
Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC. Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia-Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. J Cardiovasc Pharmacol Ther 2019; 24:18-30. [PMID: 30041547 PMCID: PMC7236859 DOI: 10.1177/1074248418788575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Similar to ischemic preconditioning, high-intensity exercise has been shown to decrease infarct size following myocardial infarction. In this article, we review the literature on beneficial effects of exercise, exercise requirements for cardioprotection, common methods utilized in laboratories to study this phenomenon, and discuss possible mechanisms for exercise-mediated cardioprotection.
Collapse
Affiliation(s)
- Mohammed Andaleeb Chowdhury
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Haden K Sholl
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Megan S Sharrett
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Steven T Haller
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Christopher C Cooper
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Rajesh Gupta
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lijun C Liu
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
3
|
Mutikainen M, Tuomainen T, Naumenko N, Huusko J, Smirin B, Laidinen S, Kokki K, Hynynen H, Ylä-Herttuala S, Heinäniemi M, Ruas JL, Tavi P. Peroxisome proliferator-activated receptor-γ coactivator 1 α1 induces a cardiac excitation-contraction coupling phenotype without metabolic remodelling. J Physiol 2017; 594:7049-7071. [PMID: 27716916 DOI: 10.1113/jp272847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Transcriptional co-activator PGC-1α1 has been shown to regulate energy metabolism and to mediate metabolic adaptations in pathological and physiological cardiac hypertrophy but other functional implications of PGC-1α1 expression are not known. Transgenic PGC-1α1 overexpression within the physiological range in mouse heart induces purposive changes in contractile properties, electrophysiology and calcium signalling but does not induce substantial metabolic remodelling. The phenotype of the PGC-1α1 transgenic mouse heart recapitulates most of the functional modifications usually associated with the exercise-induced heart phenotype, but does not protect the heart against load-induced pathological hypertrophy. Transcriptional effects of PGC-1α1 show clear dose-dependence with diverse changes in genes in circadian clock, heat shock, excitability, calcium signalling and contraction pathways at low overexpression levels, while metabolic genes are recruited at much higher PGC-1α1 expression levels. These results imply that the physiological role of PGC-1α1 is to promote a beneficial excitation-contraction coupling phenotype in the heart. ABSTRACT The transcriptional coactivator PGC-1α1 has been identified as a central factor mediating metabolic adaptations of the heart. However, to what extent physiological changes in PGC-1α1 expression levels actually contribute to the functional adaptation of the heart is still mostly unresolved. The aim of this study was to characterize the transcriptional and functional effects of physiologically relevant, moderate PGC-1α1 expression in the heart. In vivo and ex vivo physiological analysis shows that expression of PGC-1α1 within a physiological range in mouse heart does not induce the expected metabolic alterations, but instead induces a unique excitation-contraction (EC) coupling phenotype recapitulating features typically seen in physiological hypertrophy. Transcriptional screening of PGC-1α1 overexpressing mouse heart and myocyte cultures with higher, acute adenovirus-induced PGC-1α1 expression, highlights PGC-1α1 as a transcriptional coactivator with a number of binding partners in various pathways (such as heat shock factors and the circadian clock) through which it acts as a pleiotropic transcriptional regulator in the heart, to both augment and repress the expression of its target genes in a dose-dependent fashion. At low levels of overexpression PGC-1α1 elicits a diverse transcriptional response altering the expression state of circadian clock, heat shock, excitability, calcium signalling and contraction pathways, while metabolic targets of PGC-1α1 are recruited at higher PGC-1α1 expression levels. Together these findings demonstrate that PGC-1α1 elicits a dual effect on cardiac transcription and phenotype. Further, our results imply that the physiological role of PGC-1α1 is to promote a beneficial EC coupling phenotype in the heart.
Collapse
Affiliation(s)
- Maija Mutikainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Boris Smirin
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Krista Kokki
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hynynen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
4
|
Exercise-Induced Alterations in Skeletal Muscle, Heart, Liver, and Serum Metabolome Identified by Non-Targeted Metabolomics Analysis. Metabolites 2017; 7:metabo7030040. [PMID: 28786928 PMCID: PMC5618325 DOI: 10.3390/metabo7030040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 02/08/2023] Open
Abstract
Background: The metabolic and physiologic responses to exercise are increasingly interesting, given that regular physical activity enhances antioxidant capacity, improves cardiac function, and protects against type 2 diabetes. The metabolic interactions between tissues and the heart illustrate a critical cross-talk we know little about. Methods: To better understand the metabolic changes induced by exercise, we investigated skeletal muscle (plantaris, soleus), liver, serum, and heart from exercise trained (or sedentary control) animals in an established rat model of exercise-induced aerobic training via non-targeted GC-MS metabolomics. Results: Exercise-induced alterations in metabolites varied across tissues, with the soleus and serum affected the least. The alterations in the plantaris muscle and liver were most alike, with two metabolites increased in each (citric acid/isocitric acid and linoleic acid). Exercise training additionally altered nine other metabolites in the plantaris (C13 hydrocarbon, inosine/adenosine, fructose-6-phosphate, glucose-6-phosphate, 2-aminoadipic acid, heptadecanoic acid, stearic acid, alpha-tocopherol, and oleic acid). In the serum, we identified significantly decreased alpha-tocopherol levels, paralleling the increases identified in plantaris muscle. Eleven unique metabolites were increased in the heart, which were not affected in the other compartments (malic acid, serine, aspartic acid, myoinositol, glutamine, gluconic acid-6-phosphate, glutamic acid, pyrophosphate, campesterol, phosphoric acid, creatinine). These findings complement prior studies using targeted metabolomics approaches to determine the metabolic changes in exercise-trained human skeletal muscle. Specifically, exercise trained vastus lateralus biopsies had significantly increased linoleic acid, oleic acid, and stearic acid compared to the inactive groups, which were significantly increased in plantaris muscle in the present study. Conclusions: While increases in alpha-tocopherol have not been identified in muscle after exercise to our knowledge, the benefits of vitamin E (alpha-tocopherol) supplementation in attenuating exercise-induced muscle damage has been studied extensively. Skeletal muscle, liver, and the heart have primarily different metabolic changes, with few similar alterations and rare complementary alterations (alpha-tocopherol), which may illustrate the complexity of understanding exercise at the organismal level.
Collapse
|
5
|
Chen TI, Tu WC. Exercise Attenuates Intermittent Hypoxia-Induced Cardiac Fibrosis Associated with Sodium-Hydrogen Exchanger-1 in Rats. Front Physiol 2016; 7:462. [PMID: 27790155 PMCID: PMC5064604 DOI: 10.3389/fphys.2016.00462] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022] Open
Abstract
Purpose: To investigate the role of sodium–hydrogen exchanger-1 (NHE-1) and exercise training on intermittent hypoxia-induced cardiac fibrosis in obstructive sleep apnea (OSA), using an animal model mimicking the intermittent hypoxia of OSA. Methods: Eight-week-old male Sprague–Dawley rats were randomly assigned to control (CON), intermittent hypoxia (IH), exercise (EXE), or IH combined with exercise (IHEXE) groups. These groups were randomly assigned to subgroups receiving either a vehicle or the NHE-1 inhibitor cariporide. The EXE and IHEXE rats underwent exercise training on an animal treadmill for 10 weeks (5 days/week, 60 min/day, 24–30 m/min, 2–10% grade). The IH and IHEXE rats were exposed to 14 days of IH (30 s of hypoxia—nadir of 2–6% O2—followed by 45 s of normoxia) for 8 h/day. At the end of 10 weeks, rats were sacrificed and then hearts were removed to determine the myocardial levels of fibrosis index, oxidative stress, antioxidant capacity, and NHE-1 activation. Results: Compared to the CON rats, IH induced higher cardiac fibrosis, lower myocardial catalase, and superoxidative dismutase activities, higher myocardial lipid and protein peroxidation and higher NHE-1 activation (p < 0.05 for each), which were all abolished by cariporide. Compared to the IH rats, lower cardiac fibrosis, higher myocardial antioxidant capacity, lower myocardial lipid, and protein peroxidation and lower NHE-1 activation were found in the IHEXE rats (p < 0.05 for each). Conclusion: IH-induced cardiac fibrosis was associated with NHE-1 hyperactivity. However, exercise training and cariporide exerted an inhibitory effect to prevent myocardial NHE-1 hyperactivity, which contributed to reduced IH-induced cardiac fibrosis. Therefore, NHE-1 plays a critical role in the effect of exercise on IH-induced increased cardiac fibrosis.
Collapse
Affiliation(s)
- Tsung-I Chen
- Center of Physical Education, Office of General and Basic Education, Tzu Chi University Hualien, Taiwan
| | - Wei-Chia Tu
- Master program in Physiological and Anatomical Medicine, School of Medicine, Tzu Chi University Hualien, Taiwan
| |
Collapse
|