1
|
Poursharif S, Hamza S, Braam B. Changes in Proximal Tubular Reabsorption Modulate Microvascular Regulation via the TGF System. Int J Mol Sci 2022; 23:ijms231911203. [PMID: 36232506 PMCID: PMC9569689 DOI: 10.3390/ijms231911203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
This review paper considers the consequences of modulating tubular reabsorption proximal to the macula densa by sodium–glucose co-transporter 2 (SGLT2) inhibitors, acetazolamide, and furosemide in states of glomerular hyperfiltration. SGLT2 inhibitors improve renal function in early and advanced diabetic nephropathy by decreasing the glomerular filtration rate (GFR), presumably by activating the tubuloglomerular feedback (TGF) mechanism. Central in this paper is that the renoprotective effects of SGLT2 inhibitors in diabetic nephropathy can only be partially explained by TGF activation, and there are alternative explanations. The sustained activation of TGF leans on two prerequisites: no or only partial adaptation should occur in reabsorption proximal to macula densa, and no or only partial adaptation should occur in the TGF response. The main proximal tubular and loop of Henle sodium transporters are sodium–hydrogen exchanger 3 (NHE3), SGLT2, and the Na-K-2Cl co-transporter (NKCC2). SGLT2 inhibitors, acetazolamide, and furosemide are the most important compounds; inhibiting these transporters would decrease sodium reabsorption upstream of the macula densa and increase TGF activity. This could directly or indirectly affect TGF responsiveness, which could oppose sustained TGF activation. Only SGLT2 inhibitors can sustainably activate the TGF as there is only partial compensation in tubular reabsorption and TGF response. SGLT2 inhibitors have been shown to preserve GFR in both early and advanced diabetic nephropathy. Other than for early diabetic nephropathy, a solid physiological basis for these effects in advanced nephropathy is lacking. In addition, TGF has hardly been studied in humans, and therefore this role of TGF remains elusive. This review also considers alternative explanations for the renoprotective effects of SGLT2 inhibitors in diabetic patients such as the enhancement of microvascular network function. Furthermore, combination use of SGLT2 inhibitors and angiotensin-converting enzyme inhibitors (ACEi) or angiotensin receptor blockers (ARBs). in diabetes can decrease inflammatory pathways, improve renal oxygenation, and delay the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Shayan Poursharif
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Shereen Hamza
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Branko Braam
- Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1867
| |
Collapse
|
2
|
Hultström M, Peng D, Becirovic Agic M, Cupples CG, Cupples WA, Mitrou N. Surgical trauma is associated with renal immune cell activation in rats: A microarray study. Physiol Rep 2021; 9:e15142. [PMID: 34889077 PMCID: PMC8661512 DOI: 10.14814/phy2.15142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/20/2022] Open
Abstract
Acute kidney injury (AKI) is a common perioperative complication that is associated with increased mortality. This study investigates the renal gene expression in male Long-Evans rats after prolonged anesthesia and surgery to detect molecular mechanisms that could predispose the kidneys to injury upon further insults. Healthy and streptozotocin diabetic rats that underwent autoregulatory investigation in an earlier study were compared to rats that were sacrificed quickly for mRNA quantification in the same study. Prolonged surgery caused massive changes in renal mRNA expression by microarray analysis, which was validated by quantitative real-time PCR with good correlation. Furthermore, bioinformatics analysis using gene ontology and pathway analysis identified biological processes involved in immune system activation, such as immune system processes (p = 1.3 × 10-80 ), immune response (p = 1.3 × 10-60 ), and regulation of cytokine production (p = 1.7 × 10-52 ). PCR analysis of specific cell type markers indicated that the gene activation in kidneys was most probably macrophages, while granulocytes and T cell appeared less activated. Immunohistochemistry was used to quantify immune cell infiltration and showed no difference between groups indicating that the genetic activation depends on the activation of resident cells, or infiltration of a relatively small number of highly activated cells. In follow-up experiments, surgery was performed on healthy rats under standard and sterile condition showing similar expression of immune cell markers, which suggests that the inflammation was indeed caused by the surgical trauma rather than by bacterial infection. In conclusion, surgical trauma is associated with rapid activation of immune cells, most likely macrophages in rat kidneys.
Collapse
Affiliation(s)
- Michael Hultström
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
- Department of Surgical SciencesAnesthesia and Intensive Care MedicineUppsala UniversityUppsalaSweden
| | - Di Peng
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
| | - Mediha Becirovic Agic
- Department of Medical Cell BiologyIntegrative PhysiologyUppsala UniversityUppsalaSweden
| | - Claire G. Cupples
- Department of Molecular Biology and BiochemistrySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - William A. Cupples
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Nicholas Mitrou
- Department of Biomedical Physiology and KinesiologySimon Fraser UniversityBurnabyBritish ColumbiaCanada
- Department of SurgeryUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
3
|
Hviid AVR, Sørensen CM. Glucagon-like peptide-1 receptors in the kidney: impact on renal autoregulation. Am J Physiol Renal Physiol 2020; 318:F443-F454. [DOI: 10.1152/ajprenal.00280.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and strategies based on this blood sugar-reducing and appetite-suppressing hormone are used to treat obesity and type 2 diabetes. However, the GLP-1 receptor (GLP-1R) is also present in the kidney, where it influences renal function. The effect of GLP-1 on the kidney varies between humans and rodents. The effect of GLP-1 on kidney function also seems to vary depending on its concentration and the physiological or pathological state of the kidney. In studies with rodents or humans, acute infusion of pharmacological doses of GLP-1 stimulates natriuresis and diuresis. However, the effect on the renal vasculature is less clear. In rodents, GLP-1 infusion increases renal plasma flow and glomerular filtration rate, suggesting renal vasodilation. In humans, only a subset of the study participants exhibits increased renal plasma flow and glomerular filtration rate. Differential status of kidney function and changes in renal vascular resistance of the preglomerular arterioles may account for the different responses of the human study participants. Because renal function in patients with type 2 diabetes is already at risk or compromised, understanding the effects of GLP-1R activation on kidney function in these patients is particularly important. This review examines the distribution of GLP-1R in the kidney and the effects elicited by GLP-1 or GLP-1R agonists. By integrating results from acute and chronic studies in healthy individuals and patients with type 2 diabetes along with those from rodent studies, we provide insight into how GLP-1R activation affects renal function and autoregulation.
Collapse
Affiliation(s)
- Aleksander Vauvert R. Hviid
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M. Sørensen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Ren H, Shao Y, Wu C, Ma X, Lv C, Wang Q. Metformin alleviates oxidative stress and enhances autophagy in diabetic kidney disease via AMPK/SIRT1-FoxO1 pathway. Mol Cell Endocrinol 2020; 500:110628. [PMID: 31647955 DOI: 10.1016/j.mce.2019.110628] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 02/08/2023]
Abstract
Metformin, as the basic pharmacological therapy and the first preventive drug in type 2 diabetes mellitus (T2DM), is proved to have potential protection in diabetic kidney disease (DKD). Here, we established a diabetic rat model induced by high-fat diet and low dose streptozotocin, and high glucose cultured rat mesangial cells (RMCs) pre-treated with metformin or transfected with AMPK, SIRT1 and FoxO1 small interfering RNA, and detected oxidative stress and autophagy related factors to explore the molecular mechanisms of metformin on DKD via adenosine monophosphate-activated protein kinase (AMPK)/silent mating type information regulation 2 homolog-1 (sirtuin-1, SIRT1)-Forkhead box protein O1 (FoxO1) pathway. We found that metformin effectively alleviated the disorders of glycolipid metabolism, renal function injury in diabetic rats, and relieved oxidative stress, enhanced autophagy and slowed down abnormal cell proliferation in high glucose cultured RMCs through AMPK/SIRT1-FoxO1 pathway, indicating the protective role of metformin against the pathological process of DKD.
Collapse
Affiliation(s)
- Huiwen Ren
- Department of Endocrinology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Shao
- Department of Endocrinology, the Second Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Can Wu
- Department of Gastroenterology and Endoscopy, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaoyu Ma
- The Cadre Department, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chuan Lv
- Department of Endocrinology, the People's Hospital of Liaoning Province, Shenyang, Liaoning, China
| | - Qiuyue Wang
- Department of Endocrinology, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
5
|
Abstract
The myogenic response is a key autoregulatory mechanism in the mammalian kidney. Triggered by blood pressure perturbations, it is well established that the myogenic response is initiated in the renal afferent arteriole and mediated by alterations in muscle tone and vascular diameter that counterbalance hemodynamic perturbations. The entire process involves several subcellular, cellular, and vascular mechanisms whose interactions remain poorly understood. Here, we model and investigate the myogenic response of a multicellular segment of an afferent arteriole. Extending existing work, we focus on providing an accurate—but still computationally tractable—representation of the coupling among the involved levels. For individual muscle cells, we include detailed Ca2+ signaling, transmembrane transport of ions, kinetics of myosin light chain phosphorylation, and contraction mechanics. Intercellular interactions are mediated by gap junctions between muscle or endothelial cells. Additional interactions are mediated by hemodynamics. Simulations of time-independent pressure changes reveal regular vasoresponses throughout the model segment and stabilization of a physiological range of blood pressures (80–180 mmHg) in agreement with other modeling and experimental studies that assess steady autoregulation. Simulations of time-dependent perturbations reveal irregular vasoresponses and complex dynamics that may contribute to the complexity of dynamic autoregulation observed in vivo. The ability of the developed model to represent the myogenic response in a multiscale and realistic fashion, under feasible computational load, suggests that it can be incorporated as a key component into larger models of integrated renal hemodynamic regulation.
Collapse
|
6
|
Mitrou N, Braam B, Cupples WA. A gap junction inhibitor, carbenoxolone, induces spatiotemporal dispersion of renal cortical perfusion and impairs autoregulation. Am J Physiol Heart Circ Physiol 2016; 311:H582-91. [PMID: 27371687 DOI: 10.1152/ajpheart.00941.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/27/2016] [Indexed: 11/22/2022]
Abstract
Renal autoregulation dynamics originating from the myogenic response (MR) and tubuloglomerular feedback (TGF) can synchronize over large regions of the kidney surface, likely through gap junction-mediated electrotonic conduction and reflecting distributed operation of autoregulation. We tested the hypotheses that inhibition of gap junctions reduces spatial synchronization of autoregulation dynamics, abrogates spatial and temporal smoothing of renal perfusion, and impairs renal autoregulation. In male Long-Evans rats, we infused the gap junction inhibitor carbenoxolone (CBX) or the related glycyrrhizic acid (GZA) that does not block gap junctions into the renal artery and monitored renal blood flow (RBF) and surface perfusion by laser speckle contrast imaging. Neither CBX nor GZA altered RBF or mean surface perfusion. CBX preferentially increased spatial and temporal variation in the distribution of surface perfusion, increased spatial variation in the operating frequencies of the MR and TGF, and reduced phase coherence of TGF and increased its dispersion. CBX, but not GZA, impaired dynamic and steady-state autoregulation. Separately, infusion of the Rho kinase inhibitor Y-27632 paralyzed smooth muscle, grossly impaired dynamic autoregulation, and monotonically increased spatial variation of surface perfusion. These data suggest CBX inhibited gap junction communication, which in turn reduced the ability of TGF to synchronize among groups of nephrons. The results indicate that impaired autoregulation resulted from degraded synchronization, rather than the reverse. We show that network behavior in the renal vasculature is necessary for effective RBF autoregulation.
Collapse
Affiliation(s)
- Nicholas Mitrou
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| | - Branko Braam
- Department of Physiology and Department of Medicine, Division of Nephrology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - William A Cupples
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada; and
| |
Collapse
|