1
|
Li ZX, Li YJ, Wang Q, He ZG, Feng MH, Xiang HB. Characterization of novel lncRNAs in upper thoracic spinal cords of rats with myocardial ischemia-reperfusion injuries. Exp Ther Med 2021; 21:352. [PMID: 33732325 PMCID: PMC7903382 DOI: 10.3892/etm.2021.9783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a significant problem in clinical cardiology, and refers to a more serious myocardial injury caused by blood recanalization after a period of myocardial ischemia, as compared with injury caused by vascular occlusion. The spinal cord, as the primary afferent and efferent center of cardiac sensory and sympathetic nerve fibres, has received increased attention in recent years with regards to the regulation of MIRIs. Previous studies have revealed that MIRI has a strong correlation with the abnormal expression of long non-coding (lnc)RNAs in the myocardium; however, there are limited reports on the effects of the altered expression of lncRNAs in the spinal cord following MIRI. To investigate the expression patterns of lncRNAs in the spinal cord after MIRI and their potential role in the early stage of reperfusion, a MIRI model was established in rats. After 30 min of myocardial ischemia and 2 h of reperfusion, the upper thoracic spinal cord tissues were immediately dissected and isolated. lncRNAs and mRNAs in spinal cord tissues were screened using transcriptome sequencing technology, and the expression of several highly deregulated mRNAs, including Frs3, Zfp52, Dnajc6, Nedd4l, Tep1, Myef2, Tgfbr1, Fgf12, Mef2c, Tfdp1 and lncRNA, including ENSRNOT00000080713, ENSRNOT00000090564, ENSRNOT00000082588, ENSRNOT00000091080, ENSRNOT00000091570, ENSRNOT00000087777, ENSRNOT00000082061, ENSRNOT00000091108, ENSRNOT00000087028, ENSRNOT00000086475, were further validated via reverse transcription-quantitative PCR. The number of altered expressed lncRNAs was 126, among which there were 41 upregulated probe sets and 85 downregulated sets. A total of 470 mRNAs were differentially expressed, in which 231 probe sets were upregulated and 239 were downregulated. Gene Ontology analysis indicated that dysregulated transcripts related to biological processes were mainly associated with ‘cell-cell signaling’. Moreover, pathway analysis demonstrated significant changes in the ‘PI3K/Akt signaling pathway’ and the ‘p53 signaling pathway’. Thus, the altered expression of lncRNAs in the spinal cord may be of considerable importance in the process of MIRI. The present results could provide an insight into the potential roles and mechanism of lncRNAs during the early stage of reperfusion.
Collapse
Affiliation(s)
- Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mao-Hui Feng
- Department of Gastrointestinal Surgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, P.R. China.,The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Provence, Key Laboratory of Tumor Biological Behavior of Hubei Provence, Wuhan, Hubei 430071, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
2
|
Subramanian M, Edwards L, Melton A, Branen L, Herron A, Sivasubramanian MK, Monteiro R, Stansbury S, Balasubramanian P, Morris L, Elkholey K, Niewiadomska M, Stavrakis S. Non-invasive vagus nerve stimulation attenuates proinflammatory cytokines and augments antioxidant levels in the brainstem and forebrain regions of Dahl salt sensitive rats. Sci Rep 2020; 10:17576. [PMID: 33067477 PMCID: PMC7567801 DOI: 10.1038/s41598-020-74257-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
The anti-inflammatory effects of vagus nerve stimulation are well known. It has recently been shown that low-level, transcutaneous stimulation of vagus nerve at the tragus (LLTS) reduces cardiac inflammation in a rat model of heart failure with preserved ejection fraction (HFpEF). The mechanisms by which LLTS affect the central neural circuits within the brain regions that are important for the regulation of cardiac vagal tone are not clear. Female Dahl salt-sensitive rats were initially fed with either low salt (LS) or high salt (HS) diet for a period of 6 weeks, followed by sham or active stimulation (LLTS) for 30 min daily for 4 weeks. To study the central effects of LLTS, four brainstem (SP5, NAb, NTS, and RVLM) and two forebrain sites (PVN and SFO) were examined. HS diet significantly increased the gene expression of proinflammatory cytokines in the SP5 and SFO. LLTS reversed HS diet-induced changes at both these sites. Furthermore, LLTS augmented the levels of antioxidant Nrf2 in the SP5 and SFO. Taken together, these findings suggest that LLTS has central anti-inflammatory and antioxidant properties that could mediate the neuromodulation of cardiac vagal tone in the rat model of HFpEF.
Collapse
Affiliation(s)
- Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA.
| | - Laura Edwards
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Avery Melton
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Lyndee Branen
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Angela Herron
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Samantha Stansbury
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, 277 McElroy Hall, Stillwater, OK, 74078, USA
| | - Priya Balasubramanian
- Reynolds Oklahoma Center On Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lynsie Morris
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA
| | - Khaled Elkholey
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Monika Niewiadomska
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stavros Stavrakis
- Department of Medicine, Cardiovascular Section, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Medicine, Heart Rhythm Institute, University of Oklahoma Health Sciences Center, 800 Stanton L Young Blvd, Suite 5400, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
3
|
Salavatian S, Ardell SM, Hammer M, Gibbons D, Armour JA, Ardell JL. Thoracic spinal cord neuromodulation obtunds dorsal root ganglion afferent neuronal transduction of the ischemic ventricle. Am J Physiol Heart Circ Physiol 2019; 317:H1134-H1141. [PMID: 31538809 DOI: 10.1152/ajpheart.00257.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. The study objective was to determine whether thoracic spinal dorsal column stimulation (SCS) modulates cardiac afferent sensory transduction of the ischemic ventricle. In anesthetized canines (n = 16), extracellular activity generated by 62 dorsal root ganglia (DRG) soma (T1-T3), with verified myocardial ischemic (MI) sensitivity, were evaluated with and without 20-min preemptive SCS (T1-T3 spinal level; 50 Hz, 90% motor threshold). Transient MI was induced by 1-min coronary artery occlusion (CAO) of the left anterior descending (LAD) or circumflex (LCX) artery, randomized as to sequence. LAD and LCX CAO activated cardiac-related DRG neurons (LAD: 0.15 ± 0.04-1.05 ± 0.20 Hz, P < 0.00002; LCX: 0.08 ± 0.02-1.90 ± 0.45 Hz, P < 0.0003). SCS decreased basal neuronal activity of neurons that responded to LAD (0.15 ± 0.04 to 0.02 ± 0.01 Hz, P < 0.006) and LCX (0.08 ± 0.02 to 0.02 ± 0.01 Hz, P < 0.003). SCS suppressed responsiveness to transient MI (LAD: 1.05 ± 0.20-0.03 ± 0.01 Hz; P < 0.0001; LCX: 1.90 ± 0.45-0.03 ± 0.01 Hz; P < 0.001). Suprathreshold SCS (1 Hz) did not activate DRG neurons antidromically (n = 10 animals). Ventricular fibrillation (VF) was associated with a rapid increase in DRG activity to a maximum of 4.39 ± 1.07 Hz at 20 s after VF induction and a return to 90% of baseline within 10 s thereafter. SCS obtunds the capacity of DRG ventricular neurites to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress, thereby contributing to its capacity to cardioprotect.NEW & NOTEWORTHY Aberrant afferent signaling drives adverse remodeling of the cardiac nervous system in ischemic heart disease. This study determined that thoracic spinal column stimulation (SCS) obtunds the capacity of dorsal root ganglia ventricular afferent neurons to transduce the ischemic myocardium to second-order spinal neurons, a mechanism that would blunt reflex sympathoexcitation to myocardial ischemic stress. This modulation does not reflect antidromic actions of SCS but likely reflects efferent-mediated changes at the myocyte-sensory neurite interface.
Collapse
Affiliation(s)
- Siamak Salavatian
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Sarah M Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Mathew Hammer
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - David Gibbons
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee
| | - J Andrew Armour
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| | - Jeffrey L Ardell
- Neurocardiology Research Program of Excellence, University of California, Los Angeles, California.,Cardiac Arrhythmia Center, University of California, Los Angeles, California
| |
Collapse
|
4
|
Li SY, Li ZX, He ZG, Wang Q, Li YJ, Yang Q, Wu DZ, Zeng HL, Xiang HB. Quantitative proteomics reveal the alterations in the spinal cord after myocardial ischemia‑reperfusion injury in rats. Int J Mol Med 2019; 44:1877-1887. [PMID: 31545482 PMCID: PMC6777674 DOI: 10.3892/ijmm.2019.4341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 08/06/2019] [Indexed: 02/05/2023] Open
Abstract
There is now substantial evidence that myocardial ischemia‑reperfusion (IR) injury affects the spinal cord and brain, and that interactions may exist between these two systems. In the present study, the spinal cord proteomes were systematically analyzed after myocardial IR injury, in an attempt to identify the proteins involved in the processes. The myocardial IR injury rat model was first established by cross clamping the left anterior descending coronary artery for 30‑min ischemia, followed by reperfusion for 2 h, which resulted in a significant histopathological and functional myocardial injury. Then using the stable isotope dimethyl labeling quantitative proteomics strategy, a total of 2,362 shared proteins with a good distribution and correlation were successfully quantified. Among these proteins, 33 were identified which were upregulated and 57 were downregulated in the spinal cord after myocardial IR injury, which were involved in various biological processes, molecular function and cellular components. Based on these proteins, the spinal cord protein interaction network regulated by IR injury, including apoptosis, microtubule dynamics, stress‑activated signaling and cellular metabolism was established. These heart‑spinal cord interactions help explain the apparent randomness of cardiac events and provide new insights into future novel therapies to prevent myocardial I/R injury.
Collapse
Affiliation(s)
- Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Qing Yang
- College of Life Science, Wuhan University, Wuhan, Hubei 430076, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, Hainan General Hospital, Haikou, Hainan 570311, P.R. China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 470030, P.R. China
| |
Collapse
|
5
|
Wang Q, Li ZX, Li YJ, He ZG, Chen YL, Feng MH, Li SY, Wu DZ, Xiang HB. Identification of lncRNA and mRNA expression profiles in rat spinal cords at various time‑points following cardiac ischemia/reperfusion. Int J Mol Med 2019; 43:2361-2375. [PMID: 30942426 PMCID: PMC6488167 DOI: 10.3892/ijmm.2019.4151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/20/2019] [Indexed: 12/21/2022] Open
Abstract
The identification of the expression patterns of long non-coding RNAs (lncRNAs) and mRNAs in the spinal cord under normal and cardiac ischemia/reperfusion (I/R) conditions is essential for understanding the genetic mechanisms underlying the pathogenesis of cardiac I/R injury. The present study used high-throughput RNA sequencing to investigate differential gene and lncRNA expression patterns in the spinal cords of rats during I/R-induced cardiac injury. Male Sprague Dawley rats were assigned to the following groups: i) Control; ii) 2 h (2 h post-reperfusion); and iii) 0.5 h (0.5 h post-reperfusion). Further mRNA/lncRNA microarray analysis revealed that the expression profiles of lncRNA and mRNA in the spinal cords differed markedly between the control and 2 h groups, and in total 7,980 differentially expressed (>2-fold) lncRNAs (234 upregulated, 7,746 downregulated) and 3,428 mRNAs (767 upregulated, 2,661 downregulated) were identified. Reverse transcription-quantitative polymerase chain reaction analysis was performed to determine the expression patterns of several lncRNAs. The results indicated that the expression levels of lncRNA NONRATT025386 were significantly upregulated in the 2 and 0.5 h groups when compared with those in the control group, whereas the expression levels of NONRATT016113, NONRATT018298 and NONRATT018300 were elevated in the 2 h group compared with those in the control group; however, there was no statistically significant difference between the 0.5 h and control groups. Furthermore, the expression of lncRNA NONRATT002188 was significantly downregulated in the 0.5 and 2 h groups when compared with the control group. The present study determined the expression pattern of lncRNAs and mRNAs in rat spinal cords during cardiac I/R. It was suggested that lncRNAs and mRNAs from spinal cords may be novel therapeutic targets for the treatment of I/R-induced cardiac injury.
Collapse
Affiliation(s)
- Qian Wang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Xiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu-Juan Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Gang He
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ying-Le Chen
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mao-Hui Feng
- Department of Oncology, Wuhan Peritoneal Cancer Clinical Medical Research Center, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei 430071, P.R. China
| | - Shun-Yuan Li
- Department of Anesthesiology, The First Affiliated Quanzhou Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Duo-Zhi Wu
- Department of Anesthesiology, People's Hospital of Hainan Province, Haikou, Hainan 570311, P.R. China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
6
|
Chemokines and Heart Disease: A Network Connecting Cardiovascular Biology to Immune and Autonomic Nervous Systems. Mediators Inflamm 2016; 2016:5902947. [PMID: 27242392 PMCID: PMC4868905 DOI: 10.1155/2016/5902947] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 02/07/2023] Open
Abstract
Among the chemokines discovered to date, nineteen are presently considered to be relevant in heart disease and are involved in all stages of cardiovascular response to injury. Chemokines are interesting as biomarkers to predict risk of cardiovascular events in apparently healthy people and as possible therapeutic targets. Moreover, they could have a role as mediators of crosstalk between immune and cardiovascular system, since they seem to act as a “working-network” in deep linkage with the autonomic nervous system. In this paper we will describe the single chemokines more involved in heart diseases; then we will present a comprehensive perspective of them as a complex network connecting the cardiovascular system to both the immune and the autonomic nervous systems. Finally, some recent evidences indicating chemokines as a possible new tool to predict cardiovascular risk will be described.
Collapse
|
7
|
|
8
|
Qiu Y, Li T, Li H, Zuo Y. Continuous Spinal Cord Stimulation Reduced Cardiac Ischaemia/Reperfusion Injury in a Rat Model. Heart Lung Circ 2012; 21:564-71. [DOI: 10.1016/j.hlc.2012.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/16/2012] [Indexed: 01/06/2023]
|
9
|
Steagall RJ, Sipe AL, Williams CA, Joyner WL, Singh K. Substance P release in response to cardiac ischemia from rat thoracic spinal dorsal horn is mediated by TRPV1. Neuroscience 2012; 214:106-19. [PMID: 22525132 DOI: 10.1016/j.neuroscience.2012.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 11/24/2022]
Abstract
Spinal cord stimulation (SCS) inhibits substance P (SP) release and decreases the expression of the transient receptor potential vanilloid 1 (TRPV1) in the spinal cord at thoracic 4 (T4) during cardiac ischemia in rat models (Ding et al., 2007). We hypothesized that activation of TRPV1 in the T4 spinal cord segment by intermittent occlusion of the left anterior descending coronary artery (CoAO) mediates spinal cord SP release. Experiments were conducted in urethane-anesthetized Sprague-Dawley male rats using SP antibody-coated microprobes to measure SP release at the central terminal endings of cardiac ischemic-sensitive afferent neurons (CISAN) in the spinal T4 dorsal horns. Vehicle, capsaicin (CAP; TRPV1 agonist) and capsazepine (CZP; TRPV1 antagonist) were injected into the left T4 prior to stimulation of CISAN by intermittent CoAO (with or without upper cervical SCS). CAP induced endogenous SP release from laminae I and II in the T4 spinal cord above baseline. Conversely, CZP injections significantly inhibited SP release from laminae I-VII in the T4 spinal cord segment below baseline. CZP also attenuated CoAO-induced SP release, while T4 injections of CZP with SCS completely restored SP release to basal levels during CoAO activation. CAP increased the number of c-Fos (a marker for CISAN activation) positive T4 dorsal horn neurons compared to sham-operated animals, while CZP (alone or during CoAO and SCS+CoAO) significantly reduced the number of c-Fos positive neurons. These results suggest that spinal release of the putative nociceptive transmitter SP occurs, at least in part, via a TRPV1 mechanism.
Collapse
Affiliation(s)
- R J Steagall
- Department of Physiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, United States.
| | | | | | | | | |
Collapse
|
10
|
Implication of Substance P in myocardial contractile function during ischemia in rats. ACTA ACUST UNITED AC 2011; 167:185-91. [PMID: 21256875 DOI: 10.1016/j.regpep.2011.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/03/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
Abstract
Evidence suggests that substance P (SP) participates in the pathology of acute myocardial ischemia and infarction but the profiles of the peptide in regulation of cardiac functions are still elusive. The aim of this study was to investigate the role of substance P in regulation of cardiac functions and its association with adrenergic mechanism in acute myocardial ischemia and infarction with rodent models. The experiments were carried out in Sprague-Dawley rats. SP and norepinephrine were significantly up-regulated in myocardium at 15min, 30min and 60min of coronary artery occlusion. Pretreatment of the rats with a specific antagonist of neurokinin-1 receptor, D-SP, significant increased+dp/dt and decreased -dp/dt, compared with the controls, pretreated with 0.9% saline. Pretreatment of the isolated CAO hearts with substance P (10(-7)mol/L) significantly increased left ventricular end diastolic pressure. SP producing no effects on cardiac functions when given alone to isolated (non-CAO) heart caused significant attenuation of the changes in the contractility and diastolic functions induced by norepinephrine, when given with norepinephrine. SP attenuated the increase in the activity of PKA provoked by norepinephrine in cultured myocytes. In conclusion, the findings may indicate SP regulates cardiac functions via modulation of adrenergic activity, through suppression of over-activation of PKA.
Collapse
|
11
|
Hou L, Tang H, Chen Y, Wang L, Zhou X, Rong W, Wang J. Presynaptic modulation of tonic and respiratory inputs to cardiovagal motoneurons by substance P. Brain Res 2009; 1284:31-40. [DOI: 10.1016/j.brainres.2009.05.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/19/2009] [Accepted: 05/25/2009] [Indexed: 02/05/2023]
|
12
|
Neurogenic hypothesis of cardiac ischemic pain. Med Hypotheses 2009; 72:402-4. [DOI: 10.1016/j.mehy.2008.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2008] [Revised: 10/18/2008] [Accepted: 12/01/2008] [Indexed: 11/23/2022]
|
13
|
Ding X, Hua F, Sutherly K, Ardell JL, Williams CA. C2 spinal cord stimulation induces dynorphin release from rat T4 spinal cord: potential modulation of myocardial ischemia-sensitive neurons. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1519-28. [PMID: 18753268 DOI: 10.1152/ajpregu.00899.2007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During myocardial ischemia, the cranial cervical spinal cord (C1-C2) modulates the central processing of the cardiac nociceptive signal. This study was done to determine 1) whether C2 SCS-induced release of an analgesic neuropeptide in the dorsal horn of the thoracic (T4) spinal cord; 2) if one of the sources of this analgesic peptide was cervical propriospinal neurons, and 3) if chemical inactivation of C2 neurons altered local T4 substance P (SP) release during concurrent C2 SCS and cardiac ischemia. Ischemia was induced by intermittent occlusion of the left anterior descending coronary artery (CoAO) in urethane-anesthetized Sprague-Dawley rats. Release of dynorphin A (1-13), (DYN) and SP was determined using antibody-coated microprobes inserted into T4. SCS alone induced DYN release from laminae I-V in T4, and this release was maintained during CoAO. C2 injection of the excitotoxin, ibotenic acid, prior to SCS, inhibited T4 DYN release during SCS and ischemia; it also reversed the inhibition of SP release from T4 dorsal laminae during C2 SCS and CoAO. Injection of the kappa-opioid antagonist, nor-binaltorphimine, into T4 also allowed an increased SP release during SCS and CoAO. CoAO increased the number of Fos-positive neurons in T4 dorsal horns but not in the intermediolateral columns (IML), while SCS (either alone or during CoAO) minimized this dorsal horn response to CoAO alone, while inducing T4 IML neuronal recruitment. These results suggest that activation of cervical propriospinal pathways induces DYN release in the thoracic spinal cord, thereby modulating nociceptive signals from the ischemic heart.
Collapse
Affiliation(s)
- Xiaohui Ding
- Dept. of Physiology, East Tennessee State Univ., Stanton-Gerber Hall B137, P.O. Box 70576, Johnson City, TN 37614-1708, USA
| | | | | | | | | |
Collapse
|
14
|
Ding X, Ardell JL, Hua F, McAuley RJ, Sutherly K, Daniel JJ, Williams CA. Modulation of cardiac ischemia-sensitive afferent neuron signaling by preemptive C2 spinal cord stimulation: effect on substance P release from rat spinal cord. Am J Physiol Regul Integr Comp Physiol 2007; 294:R93-101. [PMID: 17989135 DOI: 10.1152/ajpregu.00544.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The upper cervical spinal region functions as an intraspinal controller of thoracic spinal reflexes and contributes to neuronal regulation of the ischemic myocardium. Our objective was to determine whether stimulation of the C2 cervical spinal cord (SCS) of rats modified the input signal at the thoracic spinal cord when cardiac ischemia-sensitive (sympathetic) afferents were activated by transient occlusion of the left anterior descending coronary artery (CoAO). Changes in c-Fos expression were used as an index of neuronal activation within the spinal cord and brain stem. The pattern of substance P (SP) release, a putative nociceptive transmitter, was measured using antibody-coated microprobes. Two SCS protocols were used: reactive SCS, applied concurrently with intermittent CoAO and preemptive, sustained SCS starting 15 min before and continuing during the repeated intermittent CoAO. CoAO increased SP release from laminae I and II in the T4 spinal cord above resting levels. Intermittent SCS with CoAO resulted in greater levels of SP release from deeper laminae IV-VII in T4 than CoAO alone. In contrast, SP release from laminae I and II was inhibited when CoAO was applied during preemptive, sustained SCS. Preemptive SCS likewise reduced c-Fos expression in the T4 spinal cord (laminae I-V) and nucleus tractus solitarius but increased expression in the intermediolateral cell column of T4 compared with CoAO alone. These results suggest that preemptive SCS from the high cervical region modulates sensory afferent signaling from the ischemic myocardium.
Collapse
Affiliation(s)
- Xiaohui Ding
- Department of Physiology, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Ding X, Mountain DJH, Subramanian V, Singh K, Williams CA. The effect of high cervical spinal cord stimulation on the expression of SP, NK-1 and TRPV1 mRNAs during cardiac ischemia in rat. Neurosci Lett 2007; 424:139-44. [PMID: 17714867 DOI: 10.1016/j.neulet.2007.07.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 07/13/2007] [Accepted: 07/26/2007] [Indexed: 10/23/2022]
Abstract
Spinal cord stimulation (SCS) is used to reduce angina that accompanies cardiac ischemia, but little is known about the molecular mechanisms mediating this effect. We studied the expression of SP, neurokinin-1 (NK-1) receptor, and transient receptor potential vanilloid type 1 (TRPV1) mRNA in the rat spinal cord at thoracic 4 (T4), cervical 2 (C2) and caudal brain stem by RT-PCR during intermittent occlusion of the left anterior descending coronary artery (CoAO), during sustained SCS by itself at the C2 spinal segment, and during sustained SCS plus intermittent CoAO. Only SP mRNA was increased significantly in T4 and brainstem during CoAO, while SCS decreased the mRNA levels of SP, NK-1 and TRPV1 significantly in T4 and the brainstem. SCS attenuated the increase of SP and TRPV1 mRNA levels at T4 level induced by intermittent CoAO when the stimulation was applied prior to the initiation of the cardiac ischemia. These results support the role for SP as a putative neurotransmitter for the myocardial ischemia-sensitive afferent neuron signal to the spinal level. They suggest that modification of the ischemic cardiac nociceptive afferent signal by SCS involves a change in SP and TRPV1 expression.
Collapse
Affiliation(s)
- Xiaohui Ding
- Department of Physiology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, United States
| | | | | | | | | |
Collapse
|
16
|
Guo Z, Niu YL, Zhang JW, Yao TP. Coronary artery occlusion alters expression of substance P and its mRNA in spinal dorsal horn in rats. Neuroscience 2006; 145:669-75. [PMID: 17258861 DOI: 10.1016/j.neuroscience.2006.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 12/01/2006] [Accepted: 12/05/2006] [Indexed: 11/17/2022]
Abstract
The painful sensation during acute myocardial ischemia or infarction is a common symptom and results from neural activity in humans. Little is known about the role of neuropeptides in this effect of myocardial ischemia. The aim of the current study was to investigate the role of substance P in mediating the noxious neural signals in spinal cord in acute myocardial ischemia by exploring the change in substance P and its mRNA in thoracic dorsal root ganglia and spinal dorsal horn (T1-T5) after coronary artery occlusion. The experiment was performed with immunohistochemistry, enzyme immunoassay and real time reverse transcription-polymerase chain reaction techniques on rats' hearts. In acute myocardial ischemia (<6 h), substance P and preprotachykinin mRNA were up-regulated in the neurons of the dorsal root ganglia and spinal dorsal horn. The increase in the density of immunoreactive material was mainly observed in small-diameter neurons of the dorsal root ganglia and the superficial laminae (I and II) of the spinal cord. The increase in the expressions was statistically significant compared with the control and the sham surgery groups (P<0.05). The results suggest that substance P is involved in the mediation of the noxious neural signals of acute myocardial ischemia in spinal cord. The pathophysiological role and significance need to be investigated.
Collapse
Affiliation(s)
- Z Guo
- Departments of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, 86 South Xinjian Nan Road, Taiyuan 030001, Shanxi, PR China.
| | | | | | | |
Collapse
|
17
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|
18
|
Li PC, Li SC, Lin YJ, Liang JT, Chien CT, Shaw CF. Thoracic Vagal Efferent Nerve Stimulation Evokes Substance P-Induced Early Airway Bronchonstriction and Late Proinflammatory and Oxidative Injury in the Rat Respiratory Tract. J Biomed Sci 2005; 12:671-81. [PMID: 16078002 DOI: 10.1007/s11373-005-7892-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/25/2005] [Indexed: 10/25/2022] Open
Abstract
Electrical stimulation of efferent thoracic vagus nerve (TVN) evoked neurogenic inflammation in respiratory tract of atropine-treated rats by an undefined mechanism. We explored whether efferent TVN stimulation via substance P facilitates neurogenic inflammation via action of nuclear factor-kappaB (NF-kappaB) activation and reactive oxygen species (ROS) production. Our results showed that increased frequency of TVN stimulation concomitantly increased substance P-enhanced hypotension, and bronchoconstriction (increases in smooth muscle electromyographic activity and total pulmonary resistance). The enhanced SP release evoked the appearance of endothelial gap in silver-stained leaky venules, India-ink labeled extravasation, and accumulations of inflammatory cells in the respiratory tract, contributing to trachea plasma extravasation as well as increases in blood O (2)(-) and H(2)O(2) ROS amount. L-732138 (NK(1) receptor antagonist), SR-48968 (NK(2) receptor antagonist), dimethylthiourea (H(2)O(2) scavenger) or catechins (O (2)(-) and H(2)O(2) scavenger) pretreatment reduced efferent TVN stimulation-enhanced hypotension, bronchoconstriction, and plasma extravasation. Increased frequency of TVN stimulation significantly upregulated the expression of nuclear factor-kappaB (NF-kappaB) in nuclear protein and intercellular adhesion molecule-1 (ICAM-1) in total protein of the lower respiratory tract tissue. The upregulation of NF-kappaB and ICAM-1 was attenuated by NK receptor antagonist and antioxidants. In conclusion, TVN efferent stimulation increases substance P release to trigger NF-kappaB mediated ICAM-1 expression and O (2)(-) and H(2)O(2) ROS production in the respiratory tract.
Collapse
Affiliation(s)
- Ping-Chia Li
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, ROC
| | | | | | | | | | | |
Collapse
|
19
|
Hua F, Harrison T, Qin C, Reifsteck A, Ricketts B, Carnel C, Williams CA. c-Fos expression in rat brain stem and spinal cord in response to activation of cardiac ischemia-sensitive afferent neurons and electrostimulatory modulation. Am J Physiol Heart Circ Physiol 2004; 287:H2728-38. [PMID: 15284072 DOI: 10.1152/ajpheart.00180.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to identify central neuronal sites activated by stimulation of cardiac ischemia-sensitive afferent neurons and determine whether electrical stimulation of left vagal afferent fibers modified the pattern of neuronal activation. Fos-like immunoreactivity (Fos-LI) was used as an index of neuronal activation in selected levels of cervical and thoracic spinal cord and brain stem. Adult Sprague-Dawley rats were anesthetized with urethane and underwent intrapericardial infusion of an “inflammatory exudate solution” (IES) containing algogenic substances that are released during ischemia (10 mM adenosine, bradykinin, prostaglandin E2, and 5-hydroxytryptamine) or occlusion of the left anterior descending coronary artery (CoAO) to activate cardiac ischemia-sensitive (nociceptive) afferent fibers. IES and CoAO increased Fos-LI above resting levels in dorsal horns in laminae I–V at C2 and T4 and in the caudal nucleus tractus solitarius. Dorsal rhizotomy virtually eliminated Fos-LI in the spinal cord as well as the brain stem. Neuromodulation of the ischemic signal by electrical stimulation of the central end of the left thoracic vagus excited neurons at the cervical and brain stem level but inhibited neurons at the thoracic spinal cord during IES or CoAO. These results suggest that stimulation of the left thoracic vagus excites descending inhibitory pathways. Inhibition at the thoracic spinal level that suppresses the ischemic (nociceptive) input signal may occur by a short-loop descending pathway via signals from cervical propriospinal circuits and/or a longer-loop descending pathway via signals from the nucleus tractus solitarius.
Collapse
Affiliation(s)
- Fang Hua
- Dept. of Physiology, Quillen College of Medicine, East Tennessee State Univ., Stanton-Gerber Hall B-137, PO Box 70576, Johnson City, TN 37614-1708, USA
| | | | | | | | | | | | | |
Collapse
|