1
|
Yang X, Yu B, Song C, Feng C, Zhang J, Wang X, Cheng G, Yang R, Wang W, Zhu Y. The Effect of Long-Term Moderate Static Magnetic Field Exposure on Adult Female Mice. BIOLOGY 2022; 11:biology11111585. [PMID: 36358286 PMCID: PMC9687991 DOI: 10.3390/biology11111585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Because of the high cost and safety of ultra-high magnetic resonance imaging (MRI), its application has certain limitations. Whereas 0.5−3 T MRI has been widely applied in hospitals, static magnetic fields (SMFs) have been shown to improve mice mental health and have anti-tumor potentials. Here, we compared the effects of the upward and downward 150 mT SMF groups with the sham group on C57BL/6J adult female mice. Locomotor and exploratory activity were also measured by behavioral tests, including the open field and elevated plus test. Additionally, physiology, pathology indicators and gut microbiota were examined. We found that 150 mT SMFs long-term exposure enhanced locomotive and exploratory activity of mice, especially the downward 150 mT SMF. Compared with the downward 150 mT SMF group, the movement speed and distance in the center area of the sham group were increased by 65.99% (p < 0.0001) and 68.58% (p = 0.0038), respectively. Moreover, compared to the sham group, downward 150 mT SMF increased the number of entrances to the center area by 67.0% (p = 0.0082) and time in the center area by 77.12% (p = 0.0054). Additionally, we observed that upward 150 mT SMF improved the number of follicles (~2.5 times, p = 0.0325) and uterine glands through increasing the total antioxidant capacity and reducing lipid peroxidation level in mice. Gut microbiome analysis showed that 150 mT SMFs long-term exposure improved the microbiota abundance (Clostridium, Bifidobacterium, Ralstonia and Yaniella) in the genus level, which may affect metabolism, anxiety and behavior in adult female mice. Our results demonstrated that 150 mT SMFs long-term exposure not only had good biosafety, but also improved athletic performance, emotion and the function of ovarian, uterine and gut microbiota abundance in adult female mice, which unraveled the potential of moderate long-term SMF exposure in clinical applications.
Collapse
Affiliation(s)
- Xingxing Yang
- School of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Biao Yu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chao Song
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanlin Feng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jing Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xinyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Guofeng Cheng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Rui Yang
- School of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Wei Wang
- School of Life Sciences, Hefei Normal University, Hefei 230601, China
| | - Yong Zhu
- School of Life Sciences, Hefei Normal University, Hefei 230601, China
- Correspondence:
| |
Collapse
|
2
|
Static magnetic field induces abnormality of glucose metabolism in rats' brain and results in anxiety-like behavior. J Chem Neuroanat 2021; 113:101923. [PMID: 33549700 DOI: 10.1016/j.jchemneu.2021.101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
In this study, fifty-four male Wistar rats were randomly divided into four groups according to the static magnetic field (SMF) intensity, namely, control, low-intensity, moderate-intensity, and high-intensity groups. The rats' whole body was exposed to a superconducting magnet exposure source. The exposure SMF intensity for the low-intensity, moderate-intensity, and high-intensity groups was 50 m T, 100 m T, and 200 m T, respectively, and the exposure time was 1 h/day for consecutive 15 days. After different exposure times, glucose metabolism in rats' brain was evaluated by micro-positron emission tomography (micro-PET), and the expression of hexokinase 1(HK1) and 6-phosphate fructokinase-1(PFK1) was detected by western blot. The exploration and locomotion abilities of the rats were evaluated by conducting open field test (OFT). Furthermore, pathological changes of rats' brain were observed under a microscope by using hematoxylin-eosin staining. PET results showed that moderate-intensity SMFs could cause fluctuant changes in glucose metabolism in rats' brain and the abnormalities were SMF intensity dependent. The expression of the two rate-limiting enzymes HK1 and PFK1 in glucose metabolism in brain significantly decreased after SMF exposure. The OFT showed that the total distance, surrounding distance, activity time, and climbing and standing times significantly decreased after SMF exposure. The main pathological changes in the brain were pyknosis, edema of neurons, and slight widening of the perivascular space, which occurred after 15 times of exposure. This study indicated that SMF exposure could lead to abnormal glucose metabolism in the brain and might result in anxiety-like behaviors.
Collapse
|
3
|
Nishimura T, Tada H, Nakatani E, Matsuda K, Teramukai S, Fukushima M. Stronger geomagnetic fields may be a risk factor of male suicides. Psychiatry Clin Neurosci 2014; 68:404-9. [PMID: 24612477 DOI: 10.1111/pcn.12149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 12/01/2013] [Accepted: 12/02/2013] [Indexed: 11/30/2022]
Abstract
AIM Some previous studies have shown a positive relation between geomagnetic disturbances and an increased incidence of suicide. If such a relation exists, stronger geomagnetic fields may affect the number of suicides, because stronger geomagnetic fields generally cause larger geomagnetic field disturbances. Therefore, we here investigated the relation between local geomagnetic field magnetic flux density and the standardized morbidity ratios (SMR) for suicide by each prefecture in Japan. METHODS Monthly suicide data for each prefecture in the period January 1999 to December 2008 was obtained, and it was found that a total of 216 171 male individuals and 85 154 female individuals committed suicide during this period. A multiple linear regression analysis was carried out with a backward elimination procedure. The SMR for suicide by each prefecture was taken as the response variable and the explanatory variables were each prefecture's local geomagnetic field magnetic flux density (nT), north latitude (°), monthly mean unemployment rate (%), monthly mean air pressure (hPa), monthly mean air temperature (°C), monthly mean humidity (%), and monthly total day length (hours). Analyses were carried out separately for each sex. RESULTS In the multiple linear regression analysis for male subjects, the local geomagnetic field magnetic flux density (nT), monthly mean unemployment rate (%), and monthly mean humidity (%) were associated with the incidence of suicide, but in the multiple linear regression analysis of female subjects, only north latitude was associated with that. CONCLUSION In this study, we generated a hypothesis that stronger geomagnetic fields affect the number of cases of male suicide.
Collapse
|
4
|
Effect of sex on ethanol consumption and conditioned taste aversion in adolescent and adult rats. Psychopharmacology (Berl) 2014; 231:1831-9. [PMID: 24158502 PMCID: PMC4058910 DOI: 10.1007/s00213-013-3319-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/05/2013] [Indexed: 12/14/2022]
Abstract
RATIONALE Vulnerability to alcoholism is determined by many factors, including the balance of pleasurable vs. aversive alcohol-induced sensations: pleasurable sensations increase intake, while aversive sensations decrease it. Female sex and adolescent age are associated with lower sensitivity to intake-reducing effects and more rapid development of alcohol abuse. OBJECTIVES This study assessed voluntary drinking and the aversive effects of alcohol to determine whether these measures are inversely related across the sexes and development. METHODS Voluntary drinking of 20 % ethanol in an every-other-day (EOD) availability pattern and the dose-response relationship of ethanol conditioned taste aversion (CTA) were assessed in male and female adolescent and adult rats. RESULTS CTA was sex specific in adult but not adolescent rats, with adult females exhibiting less aversion. Voluntary ethanol consumption varied according to age and individual differences but was not sex specific. Adolescents initially drank more than adults, exhibited greater day-to-day variation in consumption, were more susceptible to the alcohol deprivation effect, and took longer to establish individual differences in consumption patterns. CONCLUSIONS These results show that the emergence of intake patterns differs between adolescents and adults. Adolescents as a group initiate drinking at high levels but decrease intake as they mature. A subset of adolescents maintained high drinking levels into adulthood. In contrast, most adults consumed at steady, low levels, but a small subset quickly established and maintained high-consumption patterns. Adolescents also showed marked deprivation-induced increases. Sex differences were not observed in EOD drinking during either adolescence or adulthood.
Collapse
|
5
|
Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:14-24. [DOI: 10.1016/j.pbiomolbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/11/2023]
|
6
|
Association of geomagnetic disturbances and suicides in Japan, 1999-2010. Environ Health Prev Med 2013; 19:64-71. [PMID: 24005993 DOI: 10.1007/s12199-013-0355-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 07/16/2013] [Indexed: 10/26/2022] Open
Abstract
OBJECTIVES Previous studies have shown a positive relationship between geomagnetic disturbances and an increased incidence of suicide. The Japanese suicide rate is the ninth highest in the world, but there have been no reports examining the relationship between geomagnetic disturbance and the number of suicides, and, therefore, this paper examines this relationship. METHODS The number of Japanese suicides per month from January 1999 to December 2010 was obtained, and it was found that a total of 262,596 males and 102,539 females committed suicide during this period. To adjust the other factors which affect the number of suicides, a multiple linear regression analysis with backward elimination was carried out, with the monthly number of suicides as the response variable and the monthly mean K index value, monthly mean number of sunspots, monthly mean unemployment rate, proportion of elderly people (%), monthly mean air pressure (hPa), monthly mean air temperature (°C), monthly mean humidity (%), and monthly mean day length (h) as the explanatory variables. RESULTS In the multiple linear regression analysis for males, the monthly mean K index value was associated with the monthly number of suicides, but in females, the monthly mean K index value was not associated with the monthly number of suicides. CONCLUSION In this study, we generated a hypothesis that geomagnetic disturbances may trigger male suicides.
Collapse
|
7
|
Cason AM, Kwon B, Smith JC, Houpt TA. c-Fos induction by a 14 T magnetic field in visceral and vestibular relays of the female rat brainstem is modulated by estradiol. Brain Res 2010; 1347:48-57. [PMID: 20553875 DOI: 10.1016/j.brainres.2010.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 10/19/2022]
Abstract
There is increasing evidence that high magnetic fields interact with the vestibular system of humans and rodents. In rats, exposure to high magnetic fields of 7 T or above induces locomotor circling and leads to a conditioned taste aversion if paired with a novel taste. Sex differences in the behavioral responses to magnetic field exposure have been found, such that female rats show more locomotor circling and enhanced conditioned taste aversion compared to male rats. To determine if estrogen modulates the neural response to high magnetic fields, c-Fos expression after 14 T magnetic field exposure was compared in ovariectomized rats and ovariectomized rats with estradiol replacement. Compared to sham exposure, magnetic field exposure induced significantly more c-Fos positive cells in the nucleus of the solitary tract and the parabrachial, medial vestibular, prepositus, and supragenualis nuclei. Furthermore, there was a significant asymmetry in c-Fos induction between sides of the brainstem in several regions. In ovariectomized rats, there was more c-Fos expressed in the right side compared to left side in the locus coeruleus and parabrachial, superior vestibular, and supragenualis nuclei; less expression in the right compared to left side of the medial vestibular; and no asymmetry in the prepositus nucleus and the nucleus of the solitary tract. Chronic estradiol treatment modulated the neural response in some regions: less c-Fos was induced in the superior vestibular nucleus and locus coeruleus after estradiol replacement; estradiol treatment eliminated the asymmetry of c-Fos expression in the locus coeruleus and supragenualis nucleus, created an asymmetry in the prepositus nucleus and reversed the asymmetry in the parabrachial nucleus. These results suggest that ovarian steroids may mediate sex differences in the behavioral responses to magnetic field exposure at the level of visceral and vestibular nuclei of the brainstem.
Collapse
Affiliation(s)
- Angie M Cason
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4295, USA
| | | | | | | |
Collapse
|
8
|
Houpt TA, Houpt CE. Circular swimming in mice after exposure to a high magnetic field. Physiol Behav 2010; 100:284-90. [PMID: 20206191 DOI: 10.1016/j.physbeh.2010.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field.
Collapse
Affiliation(s)
- Thomas A Houpt
- Department of Biological Science, Program in Neuroscience, King Life Sciences Building, 319 Stadium Drive, The Florida State University, Tallahassee, Florida 32306-4295, USA
| | | |
Collapse
|
9
|
Houpt TA, Cassell JA, Hood A, DenBleyker M, Janowitz I, Mueller K, Ortega B, Smith JC. Repeated exposure attenuates the behavioral response of rats to static high magnetic fields. Physiol Behav 2010; 99:500-8. [PMID: 20045422 DOI: 10.1016/j.physbeh.2009.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 11/30/2009] [Accepted: 12/21/2009] [Indexed: 10/20/2022]
Abstract
Exposure of rats to high strength static magnetic fields of 7 T or above has behavioral effects such as the induction of locomotor circling, the suppression of rearing, and the acquisition of conditioned taste aversion (CTA). To determine if habituation occurs across magnetic field exposures, rats were pre-exposed two times to a 14 T static magnetic field for 30 min on two consecutive days; on the third day, rats were given access to a novel 0.125% saccharin prior to a third 30-min exposure to the 14 T magnetic field. Compared to sham-exposed rats, pre-exposed rats showed less locomotor circling and an attenuated CTA. Rearing was suppressed in all magnet-exposed groups regardless of pre-exposure, suggesting that the suppression of rearing is more sensitive than other behavioral responses to magnet exposure. Habituation was also observed when rats underwent pre-exposures at 2-3h intervals on a single day. Components of the habituation were also long-lasting; a diminished circling response was observed when rats were exposed to magnetic field 36 days after 2 pre-exposures. To control for possible effects of unconditioned stimulus pre-exposure, rats were also tested in a similar experimental design with two injections of LiCl prior to the pairing of saccharin with a third injection of LiCl. Pre-exposure to LiCl did not attenuate the LiCl-induced CTA, suggesting that 2 pre-exposures to an unconditioned stimulus are not sufficient to explain the habituation to magnet exposure. Because the effects of magnetic field exposure are dependent on an intact vestibular apparatus, and because the vestibular system can habituate to many forms of perturbation, habituation to magnetic field exposure is consistent with mediation of magnetic field effects by the vestibular system.
Collapse
Affiliation(s)
- Thomas A Houpt
- Department of Biological Science, Program in Neuroscience, The Florida State University, Tallahassee, FL 32306-4340, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Del Seppia C, Ghione S, Luschi P, Ossenkopp KP, Choleris E, Kavaliers M. Pain perception and electromagnetic fields. Neurosci Biobehav Rev 2007; 31:619-42. [PMID: 17374395 DOI: 10.1016/j.neubiorev.2007.01.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 01/17/2007] [Accepted: 01/18/2007] [Indexed: 11/22/2022]
Abstract
A substantial body of evidence has accumulated showing that exposure to electromagnetic fields (EMFs) affects pain sensitivity (nociception) and pain inhibition (analgesia). Consistent inhibitory effects of acute exposures to various EMFs on analgesia have been demonstrated in most studies. This renders examinations of changes in the expression of analgesia and nociception a particularly valuable means of addressing the biological effects of and mechanisms underlying the actions of EMFs. Here we provide an overview of the effects of various EMFs on nociceptive sensitivity and analgesia, with particular emphasis on opioid-mediated responses. We also describe the analgesic effects of particular specific EMFs, the effects of repeated exposures to EMFs and magnetic shielding, along with the dependence of EMF effects on lighting conditions. We further consider some of the underlying cellular and biophysical mechanisms along with the clinical implications of these effects of various EMFs.
Collapse
Affiliation(s)
- Cristina Del Seppia
- Institute of Clinical Physiology, National Council of Research, Pisa, Italy.
| | | | | | | | | | | |
Collapse
|