1
|
Hutchinson AJ, Staples JF, Gugleilmo CG. The mitochondrial physiology of torpor in ruby-throated hummingbirds, Archilochus colubris. J Exp Biol 2024; 227:jeb248027. [PMID: 39319364 DOI: 10.1242/jeb.248027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Hummingbirds save energy by facultatively entering torpor, but the physiological mechanisms underlying this metabolic suppression are largely unknown. We compared whole-animal and pectoralis mitochondrial metabolism between torpid and normothermic ruby-throated hummingbirds (Archilochus colubris). When fasting, hummingbirds were exposed to 10°C ambient temperature at night and they entered torpor; average body temperature decreased by nearly 25°C (from ∼37 to ∼13°C) and whole-animal metabolic rate (V̇O2) decreased by 95% compared with normothermia, a much greater metabolic suppression compared with that of mammalian daily heterotherms. We then measured pectoralis mitochondrial oxidative phosphorylation (OXPHOS) fueled by either carbohydrate or fatty acid substrates at both 39°C and 10°C in torpid and normothermic hummingbirds. Aside from a 20% decrease in electron transport system complex I-supported respiration with pyruvate, the capacity for OXPHOS at a common in vivo temperature did not differ in isolated mitochondria between torpor and normothermia. Similarly, the activities of pectoralis pyruvate dehydrogenase and 3-hydroxyacyl-CoA dehydrogenase did not differ between the states. Unlike heterothermic mammals, hummingbirds do not suppress muscle mitochondrial metabolism in torpor by active, temperature-independent mechanisms. Other mechanisms that may underly this impressive whole-animal metabolic suppression include decreasing ATP demand or relying on rapid passive cooling facilitated by the very small body size of A. colubris.
Collapse
Affiliation(s)
- Amalie J Hutchinson
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - James F Staples
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
| | - Christopher G Gugleilmo
- Department of Biology, The University of Western Ontario, London, ON, Canada, N6A 3K7
- Center for Animals on the Move, The University of Western Ontario, London, ON, Canada, N6A 3K7
| |
Collapse
|
2
|
Roussel D, Janillon S, Teulier L, Pichaud N. Succinate oxidation rescues mitochondrial ATP synthesis at high temperature in Drosophila melanogaster. FEBS Lett 2023; 597:2221-2229. [PMID: 37463836 DOI: 10.1002/1873-3468.14701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
Decreased NADH-induced and increased reduced FADH2 -induced respiration rates at high temperatures are associated with thermal tolerance in Drosophila. Here, we determined whether this change was associated with adjustments of adenosine triphosphate (ATP) production rate and coupling efficiency (ATP/O) in Drosophila melanogaster. We show that decreased pyruvate + malate oxidation at 35°C is associated with a collapse of ATP synthesis and a drop in ATP/O ratio. However, adding succinate triggered a full compensation of both oxygen consumption and ATP synthesis rates at this high temperature. Addition of glycerol-3-phosphate (G3P) led to a huge increase in respiration with no further advantage in terms of ATP production. We conclude that succinate is the only alternative substrate able to compensate both oxygen consumption and ATP production rates during oxidative phosphorylation at high temperature, which has important implications for thermal adaptation.
Collapse
Affiliation(s)
- Damien Roussel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Sonia Janillon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, Villeurbanne, France
| | - Loïc Teulier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, New Brunswick, Canada
| |
Collapse
|
3
|
Nogueira-de-Sá PG, Bicudo JEPW, Chaui-Berlinck JG. Energy and time optimization during exit from torpor in vertebrate endotherms. J Comp Physiol B 2023:10.1007/s00360-023-01494-5. [PMID: 37171656 DOI: 10.1007/s00360-023-01494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/25/2023] [Indexed: 05/13/2023]
Abstract
Torpor is used in small sized birds and mammals as an energy conservation trait. Considerable effort has been put towards elucidating the mechanisms underlying its entry and maintenance, but little attention has been paid regarding the exit. Firstly, we demonstrate that the arousal phase has a stereotyped dynamic: there is a sharp increase in metabolic rate followed by an increase in body temperature and, then, a damped oscillation in body temperature and metabolism. Moreover, the metabolic peak is around two-fold greater than the corresponding euthermic resting metabolic rate. We then hypothesized that either time or energy could be crucial variables to this event and constructed a model from a collection of first principles of physiology, control engineering and thermodynamics. From the model, we show that the stereotyped pattern of the arousal is a solution to save both time and energy. We extended the analysis to the scaling of the use of torpor by endotherms and show that variables related to the control system of body temperature emerge as relevant to the arousal dynamics. In this sense, the stereotyped dynamics of the arousal phase necessitates a certain profile of these variables which is not maintained as body size increases.
Collapse
Affiliation(s)
- Pedro Goes Nogueira-de-Sá
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil
| | | | | |
Collapse
|
4
|
Gerber L, MacSween CE, Staples JF, Gamperl AK. Cold-induced metabolic depression in cunner (Tautogolabrus adspersus): A multifaceted cellular event. PLoS One 2022; 17:e0271086. [PMID: 35917356 PMCID: PMC9345476 DOI: 10.1371/journal.pone.0271086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Metabolic depression and dormancy (i.e., stopping/greatly reducing activity and feeding) are strategies used by many animals to survive winter conditions characterized by food shortages and cold temperatures. However, controversy exists on whether the reduced metabolism of some fishes at cold temperatures is due to dormancy alone, or also involves active metabolic depression. Thus, we acclimated winter-dormant cunner [Tautogolabrus adspersus, a north temperate wrasse which in Newfoundland is at the northern limit of its distribution] and winter-active Atlantic salmon (Salmo salar) to winter (0°C; 8h light: 16h dark) and summer (10°C; 16h light: 8 h dark) conditions, and measured the thermal sensitivity of ATP-producing and O2-consuming processes in isolated liver mitochondria and hepatocytes when exposed in vitro to temperatures from 20 to 0°C and 10 to 0°C, respectively. We found that: 1) liver mitochondrial State 3 respiration and hepatocyte O2 consumption in cunner were only ~ one-third and two-thirds of that measured in salmon, respectively, at all measurement temperatures; 2) cunner mitochondria also have proton conductance and leak respiration (State 4) values that are only approximately one-third of those in salmon; 3) the mitochondria of cunner show a dramatic reduction in respiratory control ratio (from ~ 8 to 3), and a much greater drop in State 3 respiration, between 10 and 5°C (Q10 values in 10- and 0°C-acclimated fish of 14.5 and 141.2, respectively), as compared with salmon (3.9 and 9.6, respectively); and 4) lowering temperature from 5 to 0°C resulted in ~ 40 and 30% reductions in hepatocyte O2 consumption due to non-mitochondrial respiration and Na+-K+-ATPase activity, respectively, in cunner, but not in salmon. Collectively, these results highlight the intrinsic capacity for metabolic depression in hepatocytes and mitochondria of cunner, and clearly suggest that several cellular processes play a role in the reduced metabolic rates exhibited by some fishes at cold temperatures.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - Courtney E. MacSween
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
| | - James F. Staples
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John’s, NL, Canada
- * E-mail:
| |
Collapse
|
5
|
A thermodynamic-based approach to model the entry into metabolic depression by mammals and birds. J Comp Physiol B 2022; 192:593-610. [PMID: 35737097 DOI: 10.1007/s00360-022-01442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/05/2022] [Accepted: 05/15/2022] [Indexed: 10/17/2022]
Abstract
For decades, there was an intense debate in relation to the mechanism behind the entry into metabolic depression (EMD) of mammals and birds. The fulcrum of the argument was whether the depression of metabolic rate ([Formula: see text]) was caused by the drop in body temperature, the so-called "Q10 effect", or whether it was caused by a metabolic downregulation. One present-day model of this process is a qualitative (textual) description: the initial step of EDM would be a downregulation in [Formula: see text] from the value maintaining euthermia at a given ambient temperature to the basal metabolic rate of the animal and, then, Q10 effect would take over and drop [Formula: see text] to its lower levels. Despite widely accepted, this qualitative description still misses a theoretical analysis. Here, we transpose the descriptive model to a formal quantitative one and analyze it under necessary thermodynamic conditions of a system. We, then, compare the results of the formal model to empirical data of EMD by mammals and birds. The comparisons indicate that the metabolic evolution in the course of the entry phase does not follow the descriptive model. Instead, as proposed by alternate models, EMD is a downregulated process as a whole until a new equilibrium Tb is attained.
Collapse
|
6
|
Sgarbi G, Hitrec T, Amici R, Baracca A, Di Cristoforo A, Liuzzi F, Luppi M, Solaini G, Squarcio F, Zamboni G, Cerri M. Mitochondrial respiration in rats during hypothermia resulting from central drug administration. J Comp Physiol B 2022; 192:349-360. [PMID: 35001173 DOI: 10.1007/s00360-021-01421-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 11/11/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022]
Abstract
The ability to induce a hypothermia resembling that of natural torpor would be greatly beneficial in medical and non-medical fields. At present, two procedures based on central nervous pharmacological manipulation have been shown to be effective in bringing core body temperature well below 30 °C in the rat, a non-hibernator: the first, based on the inhibition of a key relay in the central thermoregulatory pathway, the other, based on the activation of central adenosine A1 receptors. Although the role of mitochondria in the activation and maintenance of torpor has been extensively studied, no data are available for centrally induced hypothermia in non-hibernators. Thus, in the present work the respiration rate of mitochondria in the liver and in the kidney of rats following the aforementioned hypothermia-inducing treatments was studied. Moreover, to have an internal control, the same parameters were assessed in a well-consolidated model, i.e., mice during fasting-induced torpor. Our results show that state 3 respiration rate, which significantly decreased in the liver of mice, was unchanged in rats. An increase of state 4 respiration rate was observed in both species, although it was not statistically significant in rats under central adenosine stimulation. Also, a significant decrease of the respiratory control ratio was detected in both species. Finally, no effects were detected in kidney mitochondria in both species. Overall, in these hypothermic conditions liver mitochondria of rats remained active and apparently ready to be re-activated to produce energy and warm up the cells. These findings can be interpreted as encouraging in view of the finalization of a translational approach to humans.
Collapse
Affiliation(s)
- Gianluca Sgarbi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Timna Hitrec
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Roberto Amici
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Alessandra Baracca
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Alessia Di Cristoforo
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Francesca Liuzzi
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Marco Luppi
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giancarlo Solaini
- Laboratory of Biochemistry and Mitochondrial Pathophysiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Piazza di Porta S. Donato, 2, 40126, Bologna, Italy
| | - Fabio Squarcio
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Giovanni Zamboni
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Matteo Cerri
- Laboratory of Autonomic and Behavioral Physiology, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| |
Collapse
|
7
|
Steffen JBM, Haider F, Sokolov EP, Bock C, Sokolova IM. Mitochondrial capacity and reactive oxygen species production during hypoxia and reoxygenation in the ocean quahog, Arctica islandica. J Exp Biol 2021; 224:272605. [PMID: 34697625 DOI: 10.1242/jeb.243082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/06/2021] [Indexed: 11/20/2022]
Abstract
Oxygen fluctuations are common in marine waters, and hypoxia-reoxygenation (H-R) stress can negatively affect mitochondrial metabolism. The long-lived ocean quahog, Arctica islandica, is known for its hypoxia tolerance associated with metabolic rate depression, yet the mechanisms that sustain mitochondrial function during oxygen fluctuations are not well understood. We used top-down metabolic control analysis (MCA) to determine aerobic capacity and control over oxygen flux in the mitochondria of quahogs exposed to short-term hypoxia (24 h <0.01% O2) and subsequent reoxygenation (1.5 h 21% O2) compared with normoxic control animals (21% O2). We demonstrated that flux capacity of the substrate oxidation and proton leak subsystems were not affected by hypoxia, while the capacity of the phosphorylation subsystem was enhanced during hypoxia associated with a depolarization of the mitochondrial membrane. Reoxygenation decreased the oxygen flux capacity of all three mitochondrial subsystems. Control over oxidative phosphorylation (OXPHOS) respiration was mostly exerted by substrate oxidation regardless of H-R stress, whereas control by the proton leak subsystem of LEAK respiration increased during hypoxia and returned to normoxic levels during reoxygenation. During hypoxia, reactive oxygen species (ROS) efflux was elevated in the LEAK state, whereas it was suppressed in the OXPHOS state. Mitochondrial ROS efflux returned to normoxic control levels during reoxygenation. Thus, mitochondria of A. islandica appear robust to hypoxia by maintaining stable substrate oxidation and upregulating phosphorylation capacity, but remain sensitive to reoxygenation. This mitochondrial phenotype might reflect adaptation of A. islandica to environments with unpredictable oxygen fluctuations and its behavioural preference for low oxygen levels.
Collapse
Affiliation(s)
- Jennifer B M Steffen
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Fouzia Haider
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany
| | - Eugene P Sokolov
- Leibniz Institute for Baltic Research, Leibniz Science Campus Phosphorus Research Rostock, Warnemünde, 18119 Rostock, Germany
| | - Christian Bock
- Integrative Ecophysiology, Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, 18059 Rostock, Germany.,Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, 18059 Rostock, Germany
| |
Collapse
|
8
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
9
|
Roussel D, Voituron Y. Mitochondrial Costs of Being Hot: Effects of Acute Thermal Change on Liver Bioenergetics in Toads ( Bufo bufo). Front Physiol 2020; 11:153. [PMID: 32218742 PMCID: PMC7078649 DOI: 10.3389/fphys.2020.00153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/12/2020] [Indexed: 01/21/2023] Open
Abstract
Global climatic warming is predicted to drive extreme thermal events, especially in temperate terrestrial environments. Hence, describing how physiological parameters are affected by acute temperature changes would allow us to understand the energy management of organisms facing such non-predictable and constraining events. As mitochondria play a key role in the conversion of energy from food into ATP but also produce harmful reactive oxygen species, the understanding of its functioning is crucial to determine the proximal causes of potential decline in an animal's performance. Here we studied the effects of acute temperature changes (between 20 and 30°C) on mitochondrial respiration, ATP synthesis rate, oxidative phosphorylation efficiency (ATP/O), and H2O2 generation in isolated liver mitochondria of a terrestrial ectotherm, the common toad (Bufo bufo). Using succinate as the respiratory substrate, we found that the mitochondrial rates of oxygen consumption, ATP synthesis, and H2O2 generation increased as the temperature increased, being 65, 52, and 66% higher at 30°C than at 20°C, respectively. We also found that the mitochondrial coupling efficiency (ATP/O) decreased, while the oxidative cost of ATP production (H2O2/ATP ratio) increased. The present results further indicate that between 40 and 60% of temperature effects on mitochondrial ATP production and H2O2 generation was at minima driven by an action on the oxidative capacity of the mitochondria. These results suggest that B. bufo may need to allocate extra energy to maintain ATP production and protect cells from oxidative stress, reducing the energy allocable performances.
Collapse
Affiliation(s)
- Damien Roussel
- CNRS, UMR 5023, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Claude Bernard Lyon 1, Lyon, France
| | | |
Collapse
|
10
|
Pang YY, Zhang C, Xu MJ, Huang GY, Cheng YX, Yang XZ. The transcriptome sequencing and functional analysis of eyestalk ganglions in Chinese mitten crab (Eriocheir sinensis) treated with different photoperiods. PLoS One 2019; 14:e0210414. [PMID: 30645610 PMCID: PMC6333377 DOI: 10.1371/journal.pone.0210414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Photoperiod plays an important role in individual growth, development, and metabolism in crustaceans. The growth and reproduction of crabs are closely related to the photoperiod. However, as of yet, there are still no transcriptomic reports of eyestalk ganglions treated under different photoperiods in the Chinese mitten crab (Eriocheir sinensis), which is a benthonic crab with high commercial value in Asia. In this study, we collected the eyestalk ganglions of crabs that were reared under different photoperiods, including a control group (L: D = 12 h: 12 h, named CC), a constant light group (L: D = 24 h: 0 h, named LL) and a constant darkness group (L: D = 0 h: 24 h, named DD). RNA sequencing was performed on these tissues in order to examine the effects of different photoperiods. The total numbers of clean reads from the CC, LL and DD groups were 48,772,584 bp, 53,943,281 bp and 53,815,178 bp, respectively. After de novo assembly, 161,380 unigenes were obtained and were matched with different databases. The DEGs were significantly enriched in phototransduction and energy metabolism pathways. Results from RT-qPCR showed that TRP channel protein (TRP) in the phototransduction pathway had a significantly higher level of expression in LL and DD groups than in the CC group. We found that the downregulation of the pyruvate dehydrogenase complex (PDC) gene and the upregulation phosphoenolpyruvate carboxykinase (PPC) gene were involved in energy metabolism processes in LL or DD. In addition, we also found that the upregulation of the expression level of the genes Gαq, pyruvate kinase (PK), NADH peroxidase (NADH) and ATPase is involved in phototransduction and energy metabolism. These results may shed some light on the molecular mechanism underlying the effect of photoperiod in physiological activity of E. sinensis.
Collapse
Affiliation(s)
- Yang-yang Pang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Cong Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Min-jie Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Gen-yong Huang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yong-xu Cheng
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| | - Xiao-zhen Yang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
- * E-mail: (XZY); (YXC)
| |
Collapse
|
11
|
Hibernating astronauts-science or fiction? Pflugers Arch 2018; 471:819-828. [PMID: 30569200 PMCID: PMC6533228 DOI: 10.1007/s00424-018-2244-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
For long-duration manned space missions to Mars and beyond, reduction of astronaut metabolism by torpor, the metabolic state during hibernation of animals, would be a game changer: Water and food intake could be reduced by up to 75% and thus reducing payload of the spacecraft. Metabolic rate reduction in natural torpor is linked to profound changes in biochemical processes, i.e., shift from glycolysis to lipolysis and ketone utilization, intensive but reversible alterations in organs like the brain and kidney, and in heart rate control via Ca2+. This state would prevent degenerative processes due to organ disuse and increase resistance against radiation defects. Neuro-endocrine factors have been identified as main targets to induce torpor although the exact mechanisms are not known yet. The widespread occurrence of torpor in mammals and examples of human hypometabolic states support the idea of human torpor and its beneficial applications in medicine and space exploration.
Collapse
|
12
|
Polymeropoulos ET, Oelkrug R, Jastroch M. Mitochondrial Proton Leak Compensates for Reduced Oxidative Power during Frequent Hypothermic Events in a Protoendothermic Mammal, Echinops telfairi. Front Physiol 2017; 8:909. [PMID: 29176953 PMCID: PMC5686090 DOI: 10.3389/fphys.2017.00909] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022] Open
Abstract
The lesser hedgehog tenrec (Echinops telfairi) displays reptile-like thermoregulatory behavior with markedly high variability in body temperature and metabolic rate. To understand how energy metabolism copes with this flexibility, we studied the bioenergetics of isolated liver mitochondria from cold (20°C) and warm (27°C) acclimated tenrecs. Different acclimation temperatures had no impact on mitochondrial respiration using succinate as the substrate. Mimicking the variation of body temperature by changing assay temperatures from 22 to 32°C highlighted temperature-sensitivity of respiration. The 40% reduction of respiratory control ratio (RCR) at 22°C compared to 32°C, a common estimate for mitochondrial efficiency, was caused by reduced substrate oxidation capacity. The simultaneous measurement of mitochondrial membrane potential enabled the precise assessment of efficiency with corrected respiration rates. Using this method, we show that proton leak respiration at the highest common membrane potential was not affected by acclimation temperature but was markedly decreased by assay temperature. Using membrane potential corrected respiration values, we show that the fraction of ATP-linked respiration (coupling efficiency) was maintained (70–85%) at lower temperatures. Collectively, we demonstrate that compromised substrate oxidation was temperature-compensated by the reduction of proton leak, thus maintaining the efficiency of mitochondrial energy conversion. Therefore, membrane potential data suggest that adjustments of mitochondrial proton leak contribute to energy homeostasis during thermoregulatory flexibility of tenrecs.
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - R Oelkrug
- Center of Brain, Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Munich, Germany.,Helmholtz Diabetes Center, German Center for Diabetes Research (DZD), Neuherberg, Germany
| |
Collapse
|
13
|
Dugbartey GJ, Hardenberg MC, Kok WF, Boerema AS, Carey HV, Staples JF, Henning RH, Bouma HR. Renal Mitochondrial Response to Low Temperature in Non-Hibernating and Hibernating Species. Antioxid Redox Signal 2017; 27:599-617. [PMID: 28322600 DOI: 10.1089/ars.2016.6705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
SIGNIFICANCE Therapeutic hypothermia is commonly applied to limit ischemic injury in organ transplantation, during cardiac and brain surgery and after cardiopulmonary resuscitation. In these procedures, the kidneys are particularly at risk for ischemia/reperfusion injury (IRI), likely due to their high rate of metabolism. Although hypothermia mitigates ischemic kidney injury, it is not a panacea. Residual mitochondrial failure is believed to be a key event triggering loss of cellular homeostasis, and potentially cell death. Subsequent rewarming generates large amounts of reactive oxygen species that aggravate organ injury. Recent Advances: Hibernators are able to withstand periods of profoundly reduced metabolism and body temperature ("torpor"), interspersed by brief periods of rewarming ("arousal") without signs of organ injury. Specific adaptations allow maintenance of mitochondrial homeostasis, limit oxidative stress, and protect against cell death. These adaptations consist of active suppression of mitochondrial function and upregulation of anti-oxidant enzymes and anti-apoptotic pathways. CRITICAL ISSUES Unraveling the precise molecular mechanisms that allow hibernators to cycle through torpor and arousal without precipitating organ injury may translate into novel pharmacological approaches to limit IRI in patients. FUTURE DIRECTIONS Although the precise signaling routes involved in natural hibernation are not yet fully understood, torpor-like hypothermic states with increased resistance to ischemia/reperfusion can be induced pharmacologically by 5'-adenosine monophosphate (5'-AMP), adenosine, and hydrogen sulfide (H2S) in non-hibernators. In this review, we compare the molecular effects of hypothermia in non-hibernators with natural and pharmacologically induced torpor, to delineate how safe and reversible metabolic suppression may provide resistance to renal IRI. Antioxid. Redox Signal. 27, 599-617.
Collapse
Affiliation(s)
- George J Dugbartey
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,2 Division of Cardiology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Maarten C Hardenberg
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Wendelinde F Kok
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Ate S Boerema
- 3 Groningen Institute for Evolutionary Life Sciences, University of Groningen , Groningen, the Netherlands .,4 Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hannah V Carey
- 5 Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin , Madison, Wisconsin
| | - James F Staples
- 6 Department of Biology, University of Western Ontario , London, Canada
| | - Robert H Henning
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| | - Hjalmar R Bouma
- 1 Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands .,7 Department of Internal Medicine, University Medical Center Groningen, University of Groningen , Groningen, the Netherlands
| |
Collapse
|
14
|
Ivanina AV, Nesmelova I, Leamy L, Sokolov EP, Sokolova IM. Intermittent hypoxia leads to functional reorganization of mitochondria and affects cellular bioenergetics in marine molluscs. ACTA ACUST UNITED AC 2017; 219:1659-74. [PMID: 27252455 DOI: 10.1242/jeb.134700] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 03/14/2016] [Indexed: 12/11/2022]
Abstract
Fluctuations in oxygen (O2) concentrations represent a major challenge to aerobic organisms and can be extremely damaging to their mitochondria. Marine intertidal molluscs are well-adapted to frequent O2 fluctuations, yet it remains unknown how their mitochondrial functions are regulated to sustain energy metabolism and prevent cellular damage during hypoxia and reoxygenation (H/R). We used metabolic control analysis to investigate the mechanisms of mitochondrial responses to H/R stress (18 h at <0.1% O2 followed by 1 h of reoxygenation) using hypoxia-tolerant intertidal clams Mercenaria mercenaria and hypoxia-sensitive subtidal scallops Argopecten irradians as models. We also assessed H/R-induced changes in cellular energy balance, oxidative damage and unfolded protein response to determine the potential links between mitochondrial dysfunction and cellular injury. Mitochondrial responses to H/R in scallops strongly resembled those in other hypoxia-sensitive organisms. Exposure to hypoxia followed by reoxygenation led to a strong decrease in the substrate oxidation (SOX) and phosphorylation (PHOS) capacities as well as partial depolarization of mitochondria of scallops. Elevated mRNA expression of a reactive oxygen species-sensitive enzyme aconitase and Lon protease (responsible for degradation of oxidized mitochondrial proteins) during H/R stress was consistent with elevated levels of oxidative stress in mitochondria of scallops. In hypoxia-tolerant clams, mitochondrial SOX capacity was enhanced during hypoxia and continued rising during the first hour of reoxygenation. In both species, the mitochondrial PHOS capacity was suppressed during hypoxia, likely to prevent ATP wastage by the reverse action of FO,F1-ATPase. The PHOS capacity recovered after 1 h of reoxygenation in clams but not in scallops. Compared with scallops, clams showed a greater suppression of energy-consuming processes (such as protein turnover and ion transport) during hypoxia, indicated by inactivation of the translation initiation factor EIF-2α, suppression of 26S proteasome activity and a dramatic decrease in the activity of Na(+)/K(+)-ATPase. The steady-state levels of adenylates were preserved during H/R exposure and AMP-dependent protein kinase was not activated in either species, indicating that the H/R exposure did not lead to severe energy deficiency. Taken together, our findings suggest that mitochondrial reorganizations sustaining high oxidative phosphorylation flux during recovery, combined with the ability to suppress ATP-demanding cellular functions during hypoxia, may contribute to high resilience of clams to H/R stress and help maintain energy homeostasis during frequent H/R cycles in the intertidal zone.
Collapse
Affiliation(s)
- Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Irina Nesmelova
- Department of Physics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Larry Leamy
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Eugene P Sokolov
- Department of General Surgery, Carolinas Medical Center, Charlotte, NC 28232, USA
| | - Inna M Sokolova
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
15
|
Ballinger MA, Schwartz C, Andrews MT. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation. Am J Physiol Regul Integr Comp Physiol 2017; 312:R301-R310. [PMID: 28077389 DOI: 10.1152/ajpregu.00314.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 01/06/2017] [Accepted: 01/08/2017] [Indexed: 11/22/2022]
Abstract
During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring.
Collapse
Affiliation(s)
- Mallory A Ballinger
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| | - Christine Schwartz
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and.,Department of Biology, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota; and
| |
Collapse
|
16
|
Jastroch M, Giroud S, Barrett P, Geiser F, Heldmaier G, Herwig A. Seasonal Control of Mammalian Energy Balance: Recent Advances in the Understanding of Daily Torpor and Hibernation. J Neuroendocrinol 2016; 28. [PMID: 27755687 DOI: 10.1111/jne.12437] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 12/20/2022]
Abstract
Endothermic mammals and birds require intensive energy turnover to sustain high body temperatures and metabolic rates. To cope with the energetic bottlenecks associated with the change of seasons, and to minimise energy expenditure, complex mechanisms and strategies are used, such as daily torpor and hibernation. During torpor, metabolic depression and low body temperatures save energy. However, these bouts of torpor, lasting for hours to weeks, are interrupted by active 'euthermic' phases with high body temperatures. These dynamic transitions require precise communication between the brain and peripheral tissues to defend rheostasis in energetics, body mass and body temperature. The hypothalamus appears to be the major control centre in the brain, coordinating energy metabolism and body temperature. The sympathetic nervous system controls body temperature by adjustments of shivering and nonshivering thermogenesis, with the latter being primarily executed by brown adipose tissue. Over the last decade, comparative physiologists have put forward integrative studies on the ecophysiology, biochemistry and molecular regulation of energy balance in response to seasonal challenges, food availability and ambient temperature. Mammals coping with such environments comprise excellent model organisms for studying the dynamic regulation of energy metabolism. Beyond the understanding of how animals survive in nature, these studies also uncover general mechanisms of mammalian energy homeostasis. This research will benefit efforts of translational medicine aiming to combat emerging human metabolic disorders. The present review focuses on recent advances in the understanding of energy balance and its neuronal and endocrine control during the most extreme metabolic fluctuations in nature: daily torpor and hibernation.
Collapse
Affiliation(s)
- M Jastroch
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center & German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - S Giroud
- Department of Integrative Biology and Evolution, Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - P Barrett
- Rowett Institute for Nutrition and Health, University of Aberdeen, Aberdeen, UK
| | - F Geiser
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia
| | - G Heldmaier
- Animal Physiology, Philipps-Universität Marburg, Marburg, Germany
| | - A Herwig
- Zoological Institute, University of Hamburg, Hamburg, Germany
| |
Collapse
|
17
|
Ballinger MA, Hess C, Napolitano MW, Bjork JA, Andrews MT. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Am J Physiol Regul Integr Comp Physiol 2016; 311:R325-36. [PMID: 27225952 DOI: 10.1152/ajpregu.00463.2015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/24/2016] [Indexed: 12/25/2022]
Abstract
Brown adipose tissue (BAT) is a thermogenic organ that is vital for hibernation in mammals. Throughout the hibernation season, BAT mitochondrial uncoupling protein 1 (UCP1) enables rapid rewarming from hypothermic torpor to periodic interbout arousals (IBAs), as energy is dissipated as heat. However, BAT's unique ability to rewarm the body via nonshivering thermogenesis is not necessary outside the hibernation season, suggesting a potential seasonal change in the regulation of BAT function. Here, we examined the BAT mitochondrial proteome and mitochondrial bioenergetics in the thirteen-lined ground squirrel (Ictidomys tridecemlineatus) across four time points: spring, fall, torpor, and IBA. Relative mitochondrial content of BAT was estimated by measuring BAT pad mass, UCP1 protein content, and mitochondrial DNA (mtDNA) copy number. BAT mtDNA content was significantly lower in spring compared with torpor and IBA (P < 0.05). UCP1 mRNA and protein levels were highest during torpor and IBA. Respiration rates of isolated BAT mitochondria were interrogated at each complex of the electron transport chain. Respiration at complex II was significantly higher in torpor and IBA compared with spring (P < 0.05), suggesting an enhancement in mitochondrial respiratory capacity during hibernation. Additionally, proteomic iTRAQ labeling identified 778 BAT mitochondrial proteins. Proteins required for mitochondrial lipid translocation and β-oxidation were upregulated during torpor and IBA and downregulated in spring. These data imply that BAT bioenergetics and mitochondrial content are not static across the year, despite the year-round presence of UCP1.
Collapse
Affiliation(s)
| | - Clair Hess
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Max W Napolitano
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - James A Bjork
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| | - Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota
| |
Collapse
|
18
|
Chung DJ, Schulte PM. Mechanisms and costs of mitochondrial thermal acclimation in a eurythermal killifish (Fundulus heteroclitus). J Exp Biol 2015; 218:1621-31. [DOI: 10.1242/jeb.120444] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022]
Abstract
Processes acting at the level of the mitochondria have been suggested to affect the thermal limits of organisms. To determine whether changes in mitochondrial properties could underlie shifts in thermal limits, we have examined how mitochondrial properties are affected by thermal acclimation in the eurythermal killifish, Fundulus heteroclitus—a species with substantial plasticity in whole-organism thermal limits. We hypothesized that thermal acclimation would result in functional changes in the mitochondria that could result in trade-offs in function during acute thermal shifts. We measured mitochondrial respiration rates through multiple complexes of the ETS following thermal acclimation (5, 15, 33°C), and assessed maintenance of mitochondrial membrane potential (Δp), and rates of reactive oxygen species (ROS) production as an estimate of costs. Acclimation to 5°C resulted in a modest compensation of mitochondrial respiration at low temperatures, but these mitochondria were able to maintain Δp with acute exposure to high temperatures, and ROS production did not differ between acclimation groups, suggesting that these increases in mitochondrial capacity do not alter mitochondrial thermal sensitivity. Acclimation to 33°C caused suppression of mitochondrial respiration due to effects on NADH-dehydrogenase (complex I). These high-temperature acclimated fish nonetheless maintained Δp and ROS production similar to that of the other acclimation groups. This work demonstrates that killifish mitochondria can successfully acclimate to a wide range of temperatures without incurring major functional trade-offs during acute thermal shifts, and that high temperature acclimation results in a suppression of metabolism, consistent with patterns observed at the organismal level.
Collapse
Affiliation(s)
- Dillon J. Chung
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| | - Patricia M. Schulte
- Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver BC, Canada, V6T 1Z4
| |
Collapse
|
19
|
Galli GLJ, Lau GY, Richards JG. Beating oxygen: chronic anoxia exposure reduces mitochondrial F1FO-ATPase activity in turtle (Trachemys scripta) heart. ACTA ACUST UNITED AC 2014; 216:3283-93. [PMID: 23926310 DOI: 10.1242/jeb.087155] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The freshwater turtle Trachemys scripta can survive in the complete absence of O2 (anoxia) for periods lasting several months. In mammals, anoxia leads to mitochondrial dysfunction, which culminates in cellular necrosis and apoptosis. Despite the obvious clinical benefits of understanding anoxia tolerance, little is known about the effects of chronic oxygen deprivation on the function of turtle mitochondria. In this study, we compared mitochondrial function in hearts of T. scripta exposed to either normoxia or 2 weeks of complete anoxia at 5°C and during simulated acute anoxia/reoxygenation. Mitochondrial respiration, electron transport chain activities, enzyme activities, proton conductance and membrane potential were measured in permeabilised cardiac fibres and isolated mitochondria. Two weeks of anoxia exposure at 5°C resulted in an increase in lactate, and decreases in ATP, glycogen, pH and phosphocreatine in the heart. Mitochondrial proton conductance and membrane potential were similar between experimental groups, while aerobic capacity was dramatically reduced. The reduced aerobic capacity was the result of a severe downregulation of the F1FO-ATPase (Complex V), which we assessed as a decrease in enzyme activity. Furthermore, in stark contrast to mammalian paradigms, isolated turtle heart mitochondria endured 20 min of anoxia followed by reoxygenation without any impact on subsequent ADP-stimulated O2 consumption (State III respiration) or State IV respiration. Results from this study demonstrate that turtle mitochondria remodel in response to chronic anoxia exposure and a reduction in Complex V activity is a fundamental component of mitochondrial and cellular anoxia survival.
Collapse
Affiliation(s)
- Gina L J Galli
- Department of Zoology, The University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
20
|
Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels. J Comp Physiol B 2014; 184:401-14. [PMID: 24408585 DOI: 10.1007/s00360-013-0799-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 10/25/2022]
Abstract
During torpor, the metabolic rate (MR) of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is considerably lower relative to euthermia, resulting in part from temperature-independent mitochondrial metabolic suppression in liver and skeletal muscle, which together account for ~40% of basal MR. Although heart accounts for very little (<0.5%) of basal MR, in the present study, we showed that respiration rates were decreased up to 60% during torpor in both subsarcolemmal (SS) and intermyofibrillar (IM) mitochondria from cardiac muscle. We further demonstrated pronounced seasonal (summer vs. winter [i.e., interbout] euthermia) changes in respiration rates in both mitochondrial subpopulations in this tissue, consistent with a shift in fuel use away from carbohydrates and proteins and towards fatty acids and ketones. By contrast, these seasonal changes in respiration rates were not observed in either SS or IM mitochondria isolated from hind limb skeletal muscle. Both populations of skeletal muscle mitochondria, however, did exhibit metabolic suppression during torpor, and this suppression was 2- to 3-fold greater in IM mitochondria, which provide ATP for Ca(2+)- and myosin ATPases, the activities of which are likely quite low in skeletal muscle during torpor because animals are immobile. Finally, these changes in mitochondrial respiration rates were still evident when standardized to citrate synthase activity rather than to total mitochondrial protein.
Collapse
|
21
|
Zolfaghari PS, Pinto BB, Dyson A, Singer M. The metabolic phenotype of rodent sepsis: cause for concern? Intensive Care Med Exp 2013; 1:25. [PMID: 26266794 PMCID: PMC4797805 DOI: 10.1186/2197-425x-1-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/19/2023] Open
Abstract
PURPOSE Rodent models of sepsis are frequently used to investigate pathophysiological mechanisms and to evaluate putative therapeutic strategies. However, preclinical efficacy in these models has failed to translate to the clinical setting. We thus questioned the representativeness of such models and herein report a detailed comparison of the metabolic and cardiovascular phenotypes of long-term faecal peritonitis in fluid-resuscitated rats and mice with similar mortality profiles. METHODS We conducted prospective laboratory-controlled studies in adult male Wistar rats and C57 black mice. Animals were made septic by intraperitoneal injection of faecal slurry. Rats received continuous intravenous fluid resuscitation, whereas mice received intermittent fluid boluses subcutaneously. Sham-treated animals served as controls. Survival was assessed over 72 h. In separate studies, whole body metabolism (O2 consumption, CO2 production) was measured over 24 h with echocardiography performed at early (6 h) and established (24 h) phases of sepsis. Blood gas analysis was performed at 6 h (rats) and 24 h (rats, mice). RESULTS Similar survival curves were seen in both rodent models with approximately 75% mortality at 72 h. In mice, sepsis caused severity-dependent falls in core temperature and global metabolism. Oxygen consumption in severely septic mice fell by 38% within 2 h, and 80% at 22 h compared with baseline values. This was only partially restored by external warming. By contrast, septic rats maintained core temperature; only severely affected animals showed a pre-mortem decline in oxygen consumption. Significant myocardial dysfunction was seen in mice during early and established sepsis, whereas peak velocity and other hemodynamic variables in rats were similar at 6 h and significantly worse by 24 h in severely septic animals only. CONCLUSIONS Markedly differing metabolic and cardiovascular profiles were seen in long-term fluid-resuscitated rat and mouse models of bacterial sepsis despite similar mortality. The mouse model, in particular, does not represent the human condition. We urge caution in applying findings in murine models to septic patients, both with regard to our understanding of pathophysiology and the failure to translate preclinical efficacy into successful clinical trials.
Collapse
Affiliation(s)
- Parjam S Zolfaghari
- Bloomsbury Institute of Intensive Care Medicine, University College London, Cruciform Building, Gower St, London, WC1E 6BT, UK,
| | | | | | | |
Collapse
|
22
|
Grimpo K, Kutschke M, Kastl A, Meyer CW, Heldmaier G, Exner C, Jastroch M. Metabolic depression during warm torpor in the Golden spiny mouse (Acomys russatus) does not affect mitochondrial respiration and hydrogen peroxide release. Comp Biochem Physiol A Mol Integr Physiol 2013; 167:7-14. [PMID: 24021912 DOI: 10.1016/j.cbpa.2013.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 01/08/2023]
Abstract
Small mammals actively decrease metabolism during daily torpor and hibernation to save energy. Recently, depression of mitochondrial substrate oxidation in isolated liver mitochondria was observed and associated to hypothermic/hypometabolic states in Djungarian hamsters, mice and hibernators. We aimed to clarify whether hypothermia or hypometabolism causes mitochondrial depression during torpor by studying the Golden spiny mouse (Acomys russatus), a desert rodent which performs daily torpor at high ambient temperatures of 32°C. Notably, metabolic rate but not body temperature is significantly decreased under these conditions. In isolated liver, heart, skeletal muscle or kidney mitochondria we found no depression of respiration. Moderate cold exposure lowered torpor body temperature but had minor effects on minimal metabolic rate in torpor. Neither decreased body temperature nor metabolic rate impacted mitochondrial respiration. Measurements of mitochondrial proton leak kinetics and determination of P/O ratio revealed no differences in mitochondrial efficiency. Hydrogen peroxide release from mitochondria was not affected. We conclude that interspecies differences of mitochondrial depression during torpor do not support a general relationship between mitochondrial respiration, body temperature and metabolic rate. In Golden spiny mice, reduction of metabolic rate at mild temperatures is not triggered by depression of substrate oxidation as found in liver mitochondria from other cold-exposed rodents.
Collapse
Affiliation(s)
- Kirsten Grimpo
- Philipps-Universität Marburg, Faculty of Biology, Department of Animal Physiology, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Hand LE, Saer BRC, Hui ST, Jinnah HA, Steinlechner S, Loudon ASI, Bechtold DA. Induction of the metabolic regulator Txnip in fasting-induced and natural torpor. Endocrinology 2013; 154:2081-91. [PMID: 23584857 PMCID: PMC3740491 DOI: 10.1210/en.2012-2051] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Torpor is a physiological state characterized by controlled lowering of metabolic rate and core body temperature, allowing substantial energy savings during periods of reduced food availability or harsh environmental conditions. The hypothalamus coordinates energy homeostasis and thermoregulation and plays a key role in directing torpor. We recently showed that mice lacking the orphan G protein-coupled receptor Gpr50 readily enter torpor in response to fasting and have now used these mice to conduct a microarray analysis of hypothalamic gene expression changes related to the torpor state. This revealed a strong induction of thioredoxin-interacting protein (Txnip) in the hypothalamus of torpid mice, which was confirmed by quantitative RT-PCR and Western blot analyses. In situ hybridization identified the ependyma lining the third ventricle as the principal site of torpor-related expression of Txnip. To characterize further the relationship between Txnip and torpor, we profiled Txnip expression in mice during prolonged fasting, cold exposure, and 2-deoxyglucose-induced hypometabolism, as well as in naturally occurring torpor bouts in the Siberian hamster. Strikingly, pronounced up-regulation of Txnip expression was only observed in wild-type mice when driven into torpor and during torpor in the Siberian hamster. Increase of Txnip was not limited to the hypothalamus, with exaggerated expression in white adipose tissue, brown adipose tissue, and liver also demonstrated in torpid mice. Given the recent identification of Txnip as a molecular nutrient sensor important in the regulation of energy metabolism, our data suggest that elevated Txnip expression is critical to regulating energy expenditure and fuel use during the extreme hypometabolic state of torpor.
Collapse
Affiliation(s)
- Laura E Hand
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
24
|
Kutschke M, Grimpo K, Kastl A, Schneider S, Heldmaier G, Exner C, Jastroch M. Depression of mitochondrial respiration during daily torpor of the Djungarian hamster, Phodopus sungorus, is specific for liver and correlates with body temperature. Comp Biochem Physiol A Mol Integr Physiol 2013; 164:584-9. [DOI: 10.1016/j.cbpa.2013.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 02/04/2023]
|
25
|
Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z, Sims HF, Cerqua R, Cade WT, Han X, Gross RW. Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 2013; 54:1312-25. [PMID: 23410936 DOI: 10.1194/jlr.m034728] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Barth syndrome is a complex metabolic disorder caused by mutations in the mitochondrial transacylase tafazzin. Recently, an inducible tafazzin shRNA knockdown mouse model was generated to deconvolute the complex bioenergetic phenotype of this disease. To investigate the underlying cause of hemodynamic dysfunction in Barth syndrome, we interrogated the cardiac structural and signaling lipidome of this mouse model as well as its myocardial bioenergetic phenotype. A decrease in the distribution of cardiolipin molecular species and robust increases in monolysocardiolipin and dilysocardiolipin were demonstrated. Additionally, the contents of choline and ethanolamine glycerophospholipid molecular species containing precursors for lipid signaling at the sn-2 position were altered. Lipidomic analyses revealed specific dysregulation of HETEs and prostanoids, as well as oxidized linoleic and docosahexaenoic metabolites. Bioenergetic interrogation uncovered differential substrate utilization as well as decreases in Complex III and V activities. Transgenic expression of cardiolipin synthase or iPLA2γ ablation in tafazzin-deficient mice did not rescue the observed phenotype. These results underscore the complex nature of alterations in cardiolipin metabolism mediated by tafazzin loss of function. Collectively, we identified specific lipidomic, bioenergetic, and signaling alterations in a murine model that parallel those of Barth syndrome thereby providing novel insights into the pathophysiology of this debilitating disease.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Departments of Medicine, Washington University School of Medicine, St. Louis, MO 63110; and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Martin N, Bureau DP, Marty Y, Kraffe E, Guderley H. Dietary lipid quality and mitochondrial membrane composition in trout: responses of membrane enzymes and oxidative capacities. J Comp Physiol B 2012; 183:393-408. [PMID: 23052948 DOI: 10.1007/s00360-012-0712-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 08/16/2012] [Accepted: 09/08/2012] [Indexed: 01/03/2023]
Abstract
To examine whether membrane fatty acid (FA) composition has a greater impact upon specific components of oxidative phosphorylation or on overall properties of muscle mitochondria, rainbow trout (Oncorhynchus mykiss) were fed two diets differing only in FA composition. Diet 1 was enriched in 18:1n-9 and 18:2n-6 while Diet 2 was enriched in 22:6n-3. The FA composition of mitochondrial phospholipids was strongly affected by diet. 22:6n-3 levels were twice as high (49%) in mitochondrial phospholipids of fish fed Diet 2 than in those fed Diet 1. 18:2n-6 content of the phospholipids also followed the diets, whereas 18:1n-9 changed little. All n-6 FA, most notably 22:5n-6, were significantly higher in fish fed Diet 1. Nonetheless, total saturated FA, total monounsaturated FA and total polyunsaturated FA in mitochondrial phospholipids varied little. Despite a marked impact of diet on specific FA levels in mitochondrial phospholipids, only non-phosphorylating (state 4) rates were higher in fish fed Diet 2. Phosphorylating rates (state 3), oxygen consumption due to flux through the electron transport chain complexes as well as the corresponding spectrophotometric activities did not differ with diet. Body mass affected state 4 rates and cytochrome c oxidase and F 0 F 1 ATPase activities while complex I showed a diet-specific effect of body mass. Only the minor FA that were affected by body mass were correlated with functional properties. The regulated incorporation of dietary FA into phospholipids seems to allow fish to maintain critical membrane functions even when the lipid quality of their diets varies considerably, as is likely in their natural environment.
Collapse
Affiliation(s)
- N Martin
- Département de Biologie, Université Laval, Quebec, QC G1K 7P4, Canada.
| | | | | | | | | |
Collapse
|
27
|
Kiebish MA, Yang K, Sims HF, Jenkins CM, Liu X, Mancuso DJ, Zhao Z, Guan S, Abendschein DR, Han X, Gross RW. Myocardial regulation of lipidomic flux by cardiolipin synthase: setting the beat for bioenergetic efficiency. J Biol Chem 2012; 287:25086-97. [PMID: 22584571 DOI: 10.1074/jbc.m112.340521] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipidomic regulation of mitochondrial cardiolipin content and molecular species composition is a prominent regulator of bioenergetic efficiency. However, the mechanisms controlling cardiolipin metabolism during health or disease progression have remained elusive. Herein, we demonstrate that cardiac myocyte-specific transgenic expression of cardiolipin synthase results in accelerated cardiolipin lipidomic flux that impacts multiple aspects of mitochondrial bioenergetics and signaling. During the postnatal period, cardiolipin synthase transgene expression results in marked changes in the temporal maturation of cardiolipin molecular species during development. In adult myocardium, cardiolipin synthase transgene expression leads to a marked increase in symmetric tetra-18:2 molecular species without a change in total cardiolipin content. Mechanistic analysis demonstrated that these alterations result from increased cardiolipin remodeling by sequential phospholipase and transacylase/acyltransferase activities in conjunction with a decrease in phosphatidylglycerol content. Moreover, cardiolipin synthase transgene expression results in alterations in signaling metabolites, including a marked increase in the cardioprotective eicosanoid 14,15-epoxyeicosatrienoic acid. Examination of mitochondrial bioenergetic function by high resolution respirometry demonstrated that cardiolipin synthase transgene expression resulted in improved mitochondrial bioenergetic efficiency as evidenced by enhanced electron transport chain coupling using multiple substrates as well as by salutary changes in Complex III and IV activities. Furthermore, transgenic expression of cardiolipin synthase attenuated maladaptive cardiolipin remodeling and bioenergetic inefficiency in myocardium rendered diabetic by streptozotocin treatment. Collectively, these results demonstrate the unanticipated role of cardiolipin synthase in maintaining physiologic membrane structure and function even under metabolic stress, thereby identifying cardiolipin synthase as a novel therapeutic target to attenuate mitochondrial dysfunction in diabetic myocardium.
Collapse
Affiliation(s)
- Michael A Kiebish
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Liu S, Chen JF. Strategies for therapeutic hypometabothermia. JOURNAL OF EXPERIMENTAL STROKE & TRANSLATIONAL MEDICINE 2012; 5:31-42. [PMID: 24179563 PMCID: PMC3811165 DOI: 10.6030/1939-067x-5.1.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal therapy that may cause more systemic as well as regional problems other than providing protection. These problems are commonly seen in hypothermia and barbiturate coma. The main innovative concept of this review is to propose thermogenically optimal and synergistic reduction of core temperature and metabolic rate in therapeutic hypometabothermia using novel and clinically practical approaches. When metabolism and body temperature are reduced in a systematically synergistic manner, the outcome will be maximal protection and safe recovery, which happen in natural process, such as in hibernation, daily torpor and estivation.
Collapse
Affiliation(s)
- Shimin Liu
- Department of Neurology, Boston University School of Medicine, Boston, USA
| | - Jiang-Fan Chen
- Department of Neurology, Boston University School of Medicine, Boston, USA
| |
Collapse
|
29
|
Brown JCL, Chung DJ, Belgrave KR, Staples JF. Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels. Am J Physiol Regul Integr Comp Physiol 2012; 302:R15-28. [DOI: 10.1152/ajpregu.00230.2011] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hibernation, animals cycle between periods of torpor, during which body temperature (Tb) and metabolic rate (MR) are suppressed for days, and interbout euthermia (IBE), during which Tb and MR return to resting levels for several hours. In this study, we measured respiration rates, membrane potentials, and reactive oxygen species (ROS) production of liver and skeletal muscle mitochondria isolated from ground squirrels ( Ictidomys tridecemlineatus ) during torpor and IBE to determine how mitochondrial metabolism is suppressed during torpor and how this suppression affects oxidative stress. In liver and skeletal muscle, state 3 respiration measured at 37°C with succinate was 70% and 30% lower, respectively, during torpor. In liver, this suppression was achieved largely via inhibition of substrate oxidation, likely at succinate dehydrogenase. In both tissues, respiration by torpid mitochondria further declined up to 88% when mitochondria were cooled to 10°C, close to torpid Tb. In liver, this passive thermal effect on respiration rate reflected reduced activity of all components of oxidative phosphorylation (substrate oxidation, phosphorylation, and proton leak). With glutamate + malate and succinate, mitochondrial free radical leak (FRL; proportion of electrons leading to ROS production) was higher in torpor than IBE, but only in liver. With succinate, higher FRL likely resulted from increased reduction state of complex III during torpor. With glutamate + malate, higher FRL resulted from active suppression of complex I ROS production during IBE, which may limit ROS production during arousal. In both tissues, ROS production and FRL declined with temperature, suggesting ROS production is also reduced during torpor by passive thermal effects.
Collapse
Affiliation(s)
- Jason C. L. Brown
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Dillon J. Chung
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | | | - James F. Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
30
|
Turbill C, Smith S, Deimel C, Ruf T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol Lett 2011; 8:304-7. [PMID: 21920955 DOI: 10.1098/rsbl.2011.0758] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ageing can progress at different rates according to an individual's physiological state. Natural hypothermia, including torpor and hibernation, is a common adaptation of small mammals to survive intermittent or seasonal declines in environmental conditions. In addition to allowing energy savings, hypothermia and torpor have been associated with retarded ageing and increased longevity. We tested the hypothesis that torpor use slows ageing by measuring changes in the relative telomere length (RTL) of Djungarian hamsters, Phodopus sungorus, a highly seasonal rodent using spontaneous daily torpor, over 180 days of exposure to a short-day photoperiod and warm (approx. 20°C) or cold (approx. 9°C) air temperatures. Multi-model inference showed that change in RTL within individuals was best explained by positive effects of frequency of torpor use, particularly at low body temperatures, as well as the change in body mass and initial RTL. Telomere dynamics have been linked to future survival and proposed as an index of rates of biological ageing. Our results therefore support the hypothesis that daily torpor is associated with physiological changes that increase somatic maintenance and slow the processes of ageing.
Collapse
Affiliation(s)
- Christopher Turbill
- Department of Integrative Biology and Ecology, Research Institute for Wildlife Ecology, University of Veterinary Medicine, Vienna 1160, Austria.
| | | | | | | |
Collapse
|
31
|
Brown JCL, Staples JF. Mitochondrial Metabolic Suppression in Fasting and Daily Torpor: Consequences for Reactive Oxygen Species Production. Physiol Biochem Zool 2011; 84:467-80. [DOI: 10.1086/661639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Polymeropoulos ET, Heldmaier G, Frappell PB, McAllan BM, Withers KW, Klingenspor M, White CR, Jastroch M. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak. Proc Biol Sci 2011; 279:185-93. [PMID: 21632624 DOI: 10.1098/rspb.2011.0881] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.
Collapse
|
33
|
Duerr JM, Podrabsky JE. Mitochondrial physiology of diapausing and developing embryos of the annual killifish Austrofundulus limnaeus: implications for extreme anoxia tolerance. J Comp Physiol B 2010; 180:991-1003. [PMID: 20473761 DOI: 10.1007/s00360-010-0478-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/11/2010] [Accepted: 04/24/2010] [Indexed: 02/03/2023]
Abstract
Diapausing embryos of the annual killifish Austrofundulus limnaeus have the highest reported anoxia tolerance of any vertebrate and previous studies indicate modified mitochondrial physiology likely supports anoxic metabolism. Functional mitochondria isolated from diapausing and developing embryos of the annual killifish exhibited VO(2), respiratory control ratios (RCR), and P:O ratios consistent with those obtained from other ectothermic vertebrate species. Reduced oxygen consumption associated with dormancy in whole animal respiration rates are correlated with maximal respiration rates of mitochondria isolated from diapausing versus developing embryos. P:O ratios for developing embryos were similar to those obtained from adult liver, but were diminished in mitochondria from diapausing embryos suggesting decreased oxidative efficiency. Proton leak in adult liver corresponded with that of developing embryos but was elevated in mitochondria isolated from diapausing embryos. In metabolically suppressed diapause II embryos, over 95% of the mitochondrial oxygen consumption is accounted for by proton leak across the inner mitochondrial membrane. Decreased activity of mitochondrial respiratory chain complexes correlates with diminished oxidative capacity of isolated mitochondria, especially during diapause. Respiratory complexes exhibited suppressed activity in mitochondria with the ATP synthase exhibiting the greatest inhibition during diapause II. Mitochondria isolated from diapause II embryos are not poised to produce ATP, but rather to shuttle carbon and electrons through the Kreb's cycle while minimizing the generation of a proton motive force. This particular mitochondrial physiology is likely a mechanism to avoid production of reactive oxygen species during large-scale changes in flux through oxidative phosphorylation pathways associated with metabolic transitions into and out of dormancy and anoxia.
Collapse
Affiliation(s)
- Jeffrey M Duerr
- Department of Biology, George Fox University, Newberg, OR 97132, USA.
| | | |
Collapse
|
34
|
Brown JC, Staples JF. Mitochondrial metabolism during fasting-induced daily torpor in mice. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:476-86. [DOI: 10.1016/j.bbabio.2010.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 01/06/2010] [Accepted: 01/11/2010] [Indexed: 11/27/2022]
|
35
|
Brown JCL, McClelland GB, Faure PA, Klaiman JM, Staples JF. Examining the mechanisms responsible for lower ROS release rates in liver mitochondria from the long-lived house sparrow (Passer domesticus) and big brown bat (Eptesicus fuscus) compared to the short-lived mouse (Mus musculus). Mech Ageing Dev 2009; 130:467-76. [PMID: 19464314 DOI: 10.1016/j.mad.2009.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/02/2009] [Accepted: 05/13/2009] [Indexed: 01/11/2023]
Abstract
Lower ROS release rate in long-lived species is likely caused by decreased reduction of electron transport chain (ETC) complexes, but how this is achieved remains largely unknown. We compared liver mitochondrial H(2)O(2) release rates among endotherms of comparable size and metabolic rate: house sparrow and big brown bat (both long-lived) and house mouse (short-lived). We hypothesized that low ROS release rates in long-lived species result from (i) lower mitochondrial respiration rate, (ii) increased mitochondrial proton conductance ('uncoupling to survive'), and/or (iii) increased ETC oxidative capacity ('spare oxidative capacity'). H(2)O(2) release rate was 70% lower in bats than mice despite similar respiration rates. Consistent with 'uncoupling to survive', proton leakiness was 3-fold higher in bats at membrane potentials above 130mV. Basal H(2)O(2) release rate and respiration rates were 2-fold higher in sparrows than mice. Consistent with 'spare oxidative capacity', subsaturating succinate decreased H(2)O(2) release rate in sparrows but not mice. Moreover, succinate:Cytochrome c oxidoreductase activity was 3-fold higher in sparrows, and ETC inhibitors increased ROS release rate 20-27-fold in sparrows (with glutamate or subsaturating succinate) but only 4-5-fold in mice. Taken together these data suggest that complexes I and III are less reduced under physiological conditions in sparrows. We conclude that different long-lived species may use distinct mechanisms to lower mitochondrial ROS release rate.
Collapse
Affiliation(s)
- Jason C L Brown
- Department of Biology, University of Western Ontario, ON, Canada.
| | | | | | | | | |
Collapse
|
36
|
Gerson AR, Brown JCL, Thomas R, Bernards MA, Staples JF. Effects of dietary polyunsaturated fatty acids on mitochondrial metabolism in mammalian hibernation. J Exp Biol 2008; 211:2689-99. [DOI: 10.1242/jeb.013714] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Thirteen-lined ground squirrels (Spermophilus tridecemlineatus)were fed one of four isocaloric, isolipemic diets containing 16, 22, 35 or 55 mg linoleic acid (18:2n-6) per gram. Mitochondrial properties were compared between hibernating and summer active states, and between diet groups. As in other studies, state 3 respiration was significantly reduced in hibernation, but only in animals fed the 22 mg g–1 18:2 diet. In the other diet groups, there was no difference in state 3 respiration between the hibernating and summer active groups. In the 22 mg g–1 18:2 diet group, there was no difference in mitochondrial proton conductance between hibernating and summer active animals, again in agreement with earlier studies. However, for all other diet groups,mitochondrial proton conductance was significantly reduced during hibernation. Mitochondrial phospholipid fatty acids changed significantly with hibernation,including increases in unsaturation indices and n-6/n-3, but no differences were found among diet groups. Mitochondrial proton conductance in hibernation showed a positive correlation with the content of linoleic acid(18:2) and arachidonic acid (20:4) in mitochondrial phospholipids. Lipid peroxidation was higher in mitochondria from hibernating animals, probably due to higher unsaturation, but there was no effect of dietary 18:2 on this pattern. Despite the dietary effects on mitochondrial metabolism, all animals hibernated with no differences in bout durations, body temperatures or whole-animal metabolic rates among the diet groups. The reduced mitochondrial proton leak in the 15, 35 and 55 mg g–1 18:2 diet groups might compensate for the inability to suppress respiration, permitting whole-animal energy savings over the hibernation season.
Collapse
Affiliation(s)
- Alexander R. Gerson
- Department of Biology, University of Western Ontario, London, Ontario,Canada, N6A 5B8
| | - Jason C. L. Brown
- Department of Biology, University of Western Ontario, London, Ontario,Canada, N6A 5B8
| | - Raymond Thomas
- Department of Biology, University of Western Ontario, London, Ontario,Canada, N6A 5B8
| | - Mark A. Bernards
- Department of Biology, University of Western Ontario, London, Ontario,Canada, N6A 5B8
| | - James F. Staples
- Department of Biology, University of Western Ontario, London, Ontario,Canada, N6A 5B8
| |
Collapse
|
37
|
Trzcionka M, Withers KW, Klingenspor M, Jastroch M. The effects of fasting and cold exposure on metabolic rate and mitochondrial proton leak in liver and skeletal muscle of an amphibian, the cane toad Bufo marinus. J Exp Biol 2008; 211:1911-8. [DOI: 10.1242/jeb.016519] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Futile cycling of protons across the mitochondrial inner membrane contributes significantly to standard metabolic rate in a variety of ectothermic and endothermic animals, but adaptations of the mitochondrial bioenergetics to different environmental conditions have rarely been studied in ectotherms. Changes in ambient temperature and nutritional status have a great effect on the physiological demands of ectothermic amphibians and may require the adjustment of mitochondrial efficiency. In order to investigate the effect of temperature and nutritional status on the mitochondrial level,we exposed male cane toads to either 10°C or 30°C and fasted half of the animals in each group. Cold exposure resulted in a fourfold reduction of the resting metabolic rate whereas nutritional status had only minor effects. The mitochondrial adjustments to each condition were observed by comparing the proton leak kinetics of isolated liver and skeletal muscle mitochondria at 25°C. In response to cold exposure, liver mitochondria showed a decrease in proton conductance while skeletal muscle mitochondria were unchanged. Additional food deprivation had minor effects in skeletal muscle, but in liver we uncovered surprising differences in energy saving mechanisms between the acclimation temperatures: in warm-acclimated toads, fasting resulted in a decrease of the proton conductance whereas in cold-acclimated toads, the activity of the respiratory chain was reduced. To investigate the molecular mechanism underlying mitochondrial proton leakage, we determined the adenine-nucleotide transporter (ANT) content, which explained tissue-specific differences in the basal proton leak, but neither the ANT nor uncoupling protein (UCP) gene expression correlated with alterations of the proton leak in response to physiological stimuli.
Collapse
Affiliation(s)
- M. Trzcionka
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - K. W. Withers
- Centre for Systems Biology, University of Southern Queensland, Toowoomba,Queensland, Australia
| | - M. Klingenspor
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| | - M. Jastroch
- Department of Animal Physiology, Faculty of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Strasse 8, 35043 Marburg, Germany
| |
Collapse
|
38
|
Mitochondrial metabolism in hibernation and daily torpor: a review. J Comp Physiol B 2008; 178:811-27. [PMID: 18551297 DOI: 10.1007/s00360-008-0282-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 05/15/2008] [Accepted: 05/26/2008] [Indexed: 01/20/2023]
Abstract
Hibernation and daily torpor involve substantial decreases in body temperature and metabolic rate, allowing birds and mammals to cope with cold environments and/or limited food. Regulated suppression of mitochondrial metabolism probably contributes to energy savings: state 3 (phosphorylating) respiration is lower in liver mitochondria isolated from mammals in hibernation or daily torpor compared to normothermic controls, although data on state 4 (non-phosphorylating) respiration are equivocal. However, no suppression is seen in skeletal muscle, and there is little reliable data from other tissues. In both daily torpor and hibernation, liver state 3 substrate oxidation is suppressed, especially upstream of electron transport chain complex IV. In hibernation respiratory suppression is reversed quickly in arousal even when body temperature is very low, implying acute regulatory mechanisms, such as oxaloacetate inhibition of succinate dehydrogenase. Respiratory suppression depends on in vitro assay temperature (no suppression is evident below approximately 30 degrees C) and (at least in hibernation) dietary polyunsaturated fats, suggesting effects on inner mitochondrial membrane phospholipids. Proton leakiness of the inner mitochondrial membrane does not change in hibernation, but this also depends on dietary polyunsaturates. In contrast proton leak increases in daily torpor, perhaps limiting reactive oxygen species production.
Collapse
|