1
|
Purinoceptor: a novel target for hypertension. Purinergic Signal 2023; 19:185-197. [PMID: 35181831 PMCID: PMC9984596 DOI: 10.1007/s11302-022-09852-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.
Collapse
|
2
|
Liu R, Juncos LA, Lu Y, Wei J, Zhang J, Wang L, Lai EY, Carlstrom M, Persson AEG. The Role of Macula Densa Nitric Oxide Synthase 1 Beta Splice Variant in Modulating Tubuloglomerular Feedback. Compr Physiol 2023; 13:4215-4229. [PMID: 36715280 PMCID: PMC9990375 DOI: 10.1002/cphy.c210043] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormalities in renal electrolyte and water excretion may result in inappropriate salt and water retention, which facilitates the development and maintenance of hypertension, as well as acid-base and electrolyte disorders. A key mechanism by which the kidney regulates renal hemodynamics and electrolyte excretion is via tubuloglomerular feedback (TGF), an intrarenal negative feedback between tubules and arterioles. TGF is initiated by an increase of NaCl delivery at the macula densa cells. The increased NaCl activates luminal Na-K-2Cl cotransporter (NKCC2) of the macula densa cells, which leads to activation of several intracellular processes followed by the production of paracrine signals that ultimately result in a constriction of the afferent arteriole and a tonic inhibition of single nephron glomerular filtration rate. Neuronal nitric oxide (NOS1) is highly expressed in the macula densa. NOS1β is the major splice variant and accounts for most of NO generation by the macula densa, which inhibits TGF response. Macula densa NOS1β-mediated modulation of TGF responses plays an essential role in control of sodium excretion, volume and electrolyte hemostasis, and blood pressure. In this article, we describe the mechanisms that regulate macula densa-derived NO and their effect on TGF response in physiologic and pathologic conditions. © 2023 American Physiological Society. Compr Physiol 13:4215-4229, 2023.
Collapse
Affiliation(s)
- Ruisheng Liu
- Department of Molecular Pharmacology & Physiology
- Hypertension and Kidney Research Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Luis A. Juncos
- Department of Internal Medicine, Central Arkansas Veterans Healthcare System, Little Rock, AR
| | - Yan Lu
- Division of Nephrology, University of Alabama at Birmingham, Birmingham AL
| | - Jin Wei
- Department of Molecular Pharmacology & Physiology
| | - Jie Zhang
- Department of Molecular Pharmacology & Physiology
| | - Lei Wang
- Department of Molecular Pharmacology & Physiology
| | - En Yin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Mattias Carlstrom
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - A. Erik G Persson
- Division of Integrative Physiology, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Zhang K, Zhang H, Wang F, Gao S, Sun C. HSPA8 Is Identified as a Novel Regulator of Hypertensive Disorders in Pregnancy by Modulating the β-Arrestin1/A1AR Axis. Reprod Sci 2021; 29:564-577. [PMID: 34582004 DOI: 10.1007/s43032-021-00719-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/14/2021] [Indexed: 11/27/2022]
Abstract
Heat shock protein alpha 8 (HSPA8) was found to be downregulated in the placentas of patients with hypertensive disorders in pregnancy (HDP). We aim to explore the underlying role and mechanism of HSPA8 in HDP progression. Herein, HSPA8 mRNA expression in placentas and peripheral blood of patients with HDP and normal pregnant controls was measured with RT-qPCR. We found that HSPA8 expression was downregulated in placentas and peripheral blood of patients with HDP. HTR8/SVneo human trophoblast cells were transfected with pcDNA-HSPA8 or si-HSPA8. HSPA8 overexpression promoted cell proliferation, migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while HSPA8 silencing showed the opposite results. Co-immunoprecipitation assay validated the binding between HSPA8 and β-arrestin1, as well as β-arrestin1 and A1AR proteins. HSPA8 bound with β-arrestin1 protein and promoted β-arrestin1 expression. β-arrestin1 bound with A1AR protein and inhibited A1AR expression. Then, HTR8/SVneo cells were transfected with pcDNA-HSPA8 alone or together with si-β-arrestin1, as well as transfected with pcDNA-β-arrestin1 alone or together with pcDNA-A1AR. β-arrestin1 silencing reversed the effects of HSPA8 overexpression on HTR8/SVneo cell functions. β-arrestin1 overexpression promoted cell proliferation migration, and MMP-2 and MMP-9 protein levels, and inhibited apoptosis, while these effects were reversed by A1AR overexpression. Lentivirus HSPA8 overexpression vector (Lv-HSPA8) was injected into a preeclampsia (PE) rat model, which attenuated blood pressure and fetal detrimental changes in PE rats. In conclusion, HSPA8 promoted proliferation and migration and inhibited apoptosis in trophoblast cells, and attenuated the symptoms of PE rats by modulating the β-arrestin1/A1AR axis. Our study provided a novel theoretical evidence and potential strategy for HDP treatment.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China.
| | - Hailing Zhang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Fang Wang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Shanshan Gao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| | - Caiping Sun
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhengzhou University, No. 2, Jingba Road, Jinshui District, Zhengzhou, 450014, Henan Province, China
| |
Collapse
|
5
|
Barsha G, Mirabito Colafella KM, Walton SL, Gaspari TA, Spizzo I, Pinar AA, Hilliard Krause LM, Widdop RE, Samuel CS, Denton KM. In Aged Females, the Enhanced Pressor Response to Angiotensin II Is Attenuated By Estrogen Replacement via an Angiotensin Type 2 Receptor-Mediated Mechanism. Hypertension 2021; 78:128-137. [PMID: 33966450 DOI: 10.1161/hypertensionaha.121.17164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Katrina M Mirabito Colafella
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Sarah L Walton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Tracey A Gaspari
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Iresha Spizzo
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| | - Robert E Widdop
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Chrishan S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Pharmacology (T.A.G., I.S., A.A.P., R.E.W., C.S.S.), Monash University, Melbourne, Victoria, Australia
| | - Kate M Denton
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute (G.B., K.M.M.C., S.L.W., T.A.G., I.S., A.A.P., L.M.H.K., R.E.W., C.S.S., K.M.D.), Monash University, Melbourne, Victoria, Australia.,Department of Physiology (G.B., KM.M.C., S.L.W., L.M.H.K., K.M.D.), Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Zaika O, Tomilin VN, Pochynyuk O. Adenosine inhibits the basolateral Cl - ClC-K2/b channel in collecting duct intercalated cells. Am J Physiol Renal Physiol 2020; 318:F870-F877. [PMID: 31984792 DOI: 10.1152/ajprenal.00572.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adenosine plays an important role in various aspects of kidney physiology, but the specific targets and mechanisms of actions are not completely understood. The collecting duct has the highest expression of adenosine receptors, particularly adenosine A1 receptors (A1Rs). Interstitial adenosine levels are greatly increased up to a micromolar range in response to dietary salt loading. We have previously shown that the basolateral membrane of principal cells has primarily K+ conductance mediated by Kir4.1/5.1 channels to mediate K+ recycling and to set up a favorable driving force for Na+/K+ exchange (47). Intercalated cells express the Cl- ClC-K2/b channel mediating transcellular Cl- reabsorption. Using patch-clamp electrophysiology in freshly isolated mouse collecting ducts, we found that acute application of adenosine reversely inhibits ClC-K2/b open probability from 0.31 ± 0.04 to 0.17 ± 0.06 and to 0.10 ± 0.05 for 1 and 10 µM, respectively. In contrast, adenosine (10 µM) had no measureable effect on Kir4.1/5.1 channel activity in principal cells. The inhibitory effect of adenosine on ClC-K2/b was abolished in the presence of the A1R blocker 8-cyclopentyl-1,3-dipropylxanthine (10 µM). Consistently, application of the A1R agonist N6-cyclohexyladenosine (1 µM) recapitulated the inhibitory action of adenosine on ClC-K2/b open probability. The effects of adenosine signaling in the collecting duct were independent from its purinergic counterpartner, ATP, having no measurable actions on ClC-K2/b and Kir4.1/5.1. Overall, we demonstrated that adenosine selectively inhibits ClC-K2/b activity in intercalated cells by targeting A1Rs. We propose that inhibition of transcellular Cl- reabsorption in the collecting duct by adenosine would aid in augmenting NaCl excretion during high salt intake.
Collapse
Affiliation(s)
- Oleg Zaika
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Viktor N Tomilin
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
7
|
Jackson EK, Gillespie DG, Mi Z, Cheng D. Adenosine Receptors Influence Hypertension in Dahl Salt-Sensitive Rats. Hypertension 2018; 72:511-521. [DOI: 10.1161/hypertensionaha.117.10765] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/03/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Edwin K. Jackson
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Delbert G. Gillespie
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Zaichuan Mi
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| | - Dongmei Cheng
- From the Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA
| |
Collapse
|
8
|
Barsha G, Denton KM, Mirabito Colafella KM. Sex- and age-related differences in arterial pressure and albuminuria in mice. Biol Sex Differ 2016; 7:57. [PMID: 27895890 PMCID: PMC5109725 DOI: 10.1186/s13293-016-0110-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022] Open
Abstract
Background Animal models have become valuable experimental tools for understanding the pathophysiology and therapeutic interventions in cardiovascular disease. Yet to date, few studies document the age- and sex-related differences in arterial pressure, circadian rhythm, and renal function in normotensive mice under basal conditions, across the life span. We hypothesized that mice display similar sex- and age-related differences in arterial pressure and renal function to humans. Methods Mean arterial pressure (MAP) and circadian rhythm of arterial pressure were measured over 3 days via radiotelemetry, in 3- and 5-month-old (adult) and 14- and 18-month-old (aged) FVB/N and in 5-month-old (adult) C57BL/6 male and female normotensive mice. In FVB/N mice, albuminuria from 24-h urine samples as well as body, heart, and kidney weights were measured at each age. Results Twenty-four-hour MAP was greater in males than females at 3, 5, and 14 months of age. A similar sex difference in arterial pressure was observed in C57BL/6 mice at 5 months of age. In FVB/N mice, 24-h MAP increased with age, with females displaying a greater increase between 3 and 18 months of age than males, such that MAP was no longer different between the sexes at 18 months of age. A circadian pattern was observed in arterial pressure, heart rate, and locomotor activity, with values for each greater during the active (night/dark) than the inactive (day/light) period. The night-day dip in MAP was greater in males and increased with age in both sexes. Albuminuria was greater in males than females, increased with age in both sexes, and rose to a greater level in males than females at 18 months of age. Conclusions Arterial pressure and albuminuria increase in an age- and sex-specific manner in mice, similar to patterns observed in humans. Thus, mice represent a useful model for studying age and sex differences in the regulation of arterial pressure and renal disease. Understanding the mechanisms that underlie the pathophysiology of cardiovascular disease may lead to new and better-tailored therapies for men and women.
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| | - Kate M Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| | - Katrina M Mirabito Colafella
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Physiology, Monash University, 26 Innovation Walk (Building 13F), Clayton, VIC 3800 Australia
| |
Collapse
|
9
|
Wang X, Chandrashekar K, Wang L, Lai EY, Wei J, Zhang G, Wang S, Zhang J, Juncos LA, Liu R. Inhibition of Nitric Oxide Synthase 1 Induces Salt-Sensitive Hypertension in Nitric Oxide Synthase 1α Knockout and Wild-Type Mice. Hypertension 2016; 67:792-9. [PMID: 26883268 DOI: 10.1161/hypertensionaha.115.07032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 01/18/2016] [Indexed: 01/10/2023]
Abstract
We recently showed that α, β, and γ splice variants of neuronal nitric oxide synthase (NOS1) expressed in the macula densa and NOS1β accounts for most of the NO generation. We have also demonstrated that the mice with deletion of NOS1 specifically from the macula densa developed salt-sensitive hypertension. However, the global NOS1 knockout (NOS1KO) strain is neither hypertensive nor salt sensitive. This global NOS1KO strain is actually an NOS1αKO model. Consequently, we hypothesized that inhibition of NOS1β in NOS1αKO mice induces salt-sensitive hypertension. NOS1αKO and C57BL/6 wild-type (WT) mice were implanted with telemetry transmitters and divided into 7-nitroindazole (10 mg/kg/d)-treated and nontreated groups. All of the mice were fed a normal salt (0.4% NaCl) diet for 5 days, followed by a high-salt diet (4% NaCl). NO generation by the macula densa was inhibited by >90% in WT and NOS1αKO mice treated with 7-nitroindazole. Glomerular filtration rate in conscious mice was increased by ≈ 40% after a high-salt diet in both NOS1αKO and WT mice. In response to acute volume expansion, glomerular filtration rate, diuretic and natriuretic response were significantly blunted in the WT and knockout mice treated with 7-nitroindazole. Mean arterial pressure had no significant changes in mice fed a high-salt diet, but increased ≈ 15 mm Hg similarly in NOS1αKO and WT mice treated with 7-nitroindazole. We conclude that NOS1β, but not NOS1α, plays an important role in control of sodium excretion and hemodynamics in response to either an acute or a chronic salt loading.
Collapse
Affiliation(s)
- Ximing Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Kiran Chandrashekar
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Lei Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - En Yin Lai
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jin Wei
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Gensheng Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Shaohui Wang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Jie Zhang
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Luis A Juncos
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.)
| | - Ruisheng Liu
- From the Department of Molecular Pharmacology and Physiology, University of South Florida College of Medicine, Tampa (X.W., L.W., J.W., G.Z., S.W., J.Z., R.L.); Shandong Medical Imaging Research Institute, Shandong Provincial Key Laboratory of Diagnosis and Treatment of Cardio-Cerebral Vascular Disease, Shandong University, Jinan, Shandong, China (X.W.); Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson (K.C., L.A.J.); and Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China (E.Y.L., G.Z.).
| |
Collapse
|
10
|
Chaston DJ, Haddock RE, Howitt L, Morton SK, Brown RD, Matthaei KI, Hill CE. Perturbation of chemical coupling by an endothelial Cx40 mutant attenuates endothelium-dependent vasodilation by KCa channels and elevates blood pressure in mice. Pflugers Arch 2015; 467:1997-2009. [PMID: 25369777 DOI: 10.1007/s00424-014-1640-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/16/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Mutant forms of connexin40 (Cx40) exist in the human population and predispose carriers to atrial fibrillation. Since endothelial expression of Cx40 is important for electrical and chemical communication within the arterial wall, carriers of mutant Cx40 proteins may be predisposed to peripheral arterial dysfunction and dysregulation of blood pressure. We have therefore studied mice expressing either a chemically dysfunctional mutant, Cx40T202S, or wild-type Cx40, with native Cx40, specifically in the endothelium. Blood pressure was measured by telemetry under normal conditions and during cardiovascular stress induced by locomotor activity, phenylephrine or nitric oxide blockade (N(ɷ)-nitro-L-arginine methyl ester hydroxide, L-NAME). Blood pressure of Cx40T202STg mice was significantly elevated at night when compared with wild-type or Cx40Tg mice, without change in mean heart rate, pulse pressure or locomotor activity. Analysis over 24 h showed that blood pressure of Cx40T202STg mice was significantly elevated at rest and additionally during locomotor activity. In contrast, neither plasma renin concentration nor pressor responses to phenylephrine or L-NAME were altered, the latter indicating that nitric oxide bioavailability was normal. In isolated, pressurised mesenteric arteries, hyperpolarisation and vasodilation evoked by SKA-31, the selective modulator of SKCa and IKCa channels, was significantly reduced in Cx40T202STg mice, due to attenuation of the SKCa component. Acetylcholine-induced ascending vasodilation in vivo was also significantly attenuated in cremaster muscle arterioles of Cx40T202STg mice, compared to wild-type and Cx40Tg mice. We conclude that endothelial expression of the chemically dysfunctional Cx40T202S reduces peripheral vasodilator capacity mediated by SKCa-dependent hyperpolarisation and also increases blood pressure.
Collapse
Affiliation(s)
- Daniel J Chaston
- John Curtin School of Medical Research, Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
Gao X, Peleli M, Zollbrecht C, Patzak A, Persson AEG, Carlström M. Adenosine A1 receptor-dependent and independent pathways in modulating renal vascular responses to angiotensin II. Acta Physiol (Oxf) 2015; 213:268-76. [PMID: 25251152 DOI: 10.1111/apha.12399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/09/2014] [Accepted: 09/17/2014] [Indexed: 11/28/2022]
Abstract
AIM Renal afferent arterioles are the effector site for autoregulation of glomerular perfusion and filtration. There is synergistic interaction between angiotensin II (ANG II) and adenosine (Ado) in regulating arteriolar contraction; however, the mechanisms are not clear. In this context, this study investigated the contribution of A1 receptor-dependent and independent signalling mechanisms. METHODS Isolated perfused afferent arterioles from transgenic mice (A1 (+/+) and A1 (-/-) ) were used for vascular reactivity studies. Cultured vascular smooth muscle cells (VSMC) were used for phosphorylation studies of signalling proteins that induce arteriolar contraction. RESULTS Maximal arteriolar contraction to ANG II was attenuated in A1 (-/-) (22%) compared with A1 (+/+) (40%). Simultaneous incubation with low-dose ado (10(-8) mol L(-1) ) enhanced ANG II-induced contraction in A1 (+/+) (58%), but also in A1 (-/-) (42%). An ado transporter inhibitor (NBTI) abolished this synergistic effect in A1 (-/-) , but not in wild-type mice. Incubation with Ado + ANG II increased p38 phosphorylation in aortic VSMC from both genotypes, but treatment with NBTI only blocked phosphorylation in A1 (-/-) . Combination of ANG II + Ado also increased MLC phosphorylation in A1 (+/+) but not significantly in A1 (-/-) , and NBTI had no effects. In agreement, Ado + ANG II-induced phosphorylation of p38 and MLC in rat pre-glomerular VSMC was not affected by NBTI. However, during pharmacological inhibition of the A1 receptor simultaneous treatment with NBTI reduced phosphorylation of both p38 and MLC to control levels. CONCLUSION Interaction between ANG II and Ado in VSMC normally involves A1 receptor signalling, but this can be compensated by receptor independent actions that phosphorylate p38 MAPK and MLC.
Collapse
Affiliation(s)
- X. Gao
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - M. Peleli
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - C. Zollbrecht
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| | - A. Patzak
- Institute of Vegetative Physiology; Charité-Universitätsmedizin Berlin; Berlin Germany
| | - A. E. G. Persson
- Department of Medical Cell Biology; Uppsala University; Uppsala Sweden
| | - M. Carlström
- Department of Physiology & Pharmacology; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
12
|
Kim SM, Mizel D, Qin Y, Huang Y, Schnermann J. Blood pressure, heart rate and tubuloglomerular feedback in A1AR-deficient mice with different genetic backgrounds. Acta Physiol (Oxf) 2015; 213:259-67. [PMID: 25182861 DOI: 10.1111/apha.12377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/28/2014] [Accepted: 08/27/2014] [Indexed: 01/11/2023]
Abstract
AIM Differences in genetic background between control mice and mice with targeted gene mutations have been recognized as a potential cause for phenotypic differences. In this study, we have used A1AR-deficient mice in a C57Bl/6 and SWR/J congenic background to assess the influence of background on the effect of A1AR-deficiency on cardiovascular and renal functional parameters. METHODS In A1AR+/+ and A1AR-/- mice in C57Bl/6 and SWR/J congenic backgrounds, we assessed blood pressure and heart rate using radio-telemetry, plasma renin concentrations and tubuloglomerular feedback. RESULTS We did not detect significant differences in arterial blood pressure (MAP) and heart rates (HR) between A1AR+/+ and A1AR-/- mice in either C57Bl/6, SWR/J or mixed backgrounds. MAP and HR were significantly higher in SWR/J than in C57Bl/6 mice. A high NaCl intake increased MAP in A1AR-/- mice on C57Bl/6 background while there was less or no salt sensitivity in the SWR/J background. No significant differences in plasma renin concentration were detected between A1AR-/- and A1AR+/+ mice in any of the strains. Tubuloglomerular feedback was found to be absent in A1AR-/- mice with SWR/J genetic background. CONCLUSIONS While this study confirmed important differences between inbred mouse strains, we did not identify phenotypic modifications of A1AR-related effects on blood pressure, heart rate and plasma renin by differences in genetic background.
Collapse
Affiliation(s)
- S. M. Kim
- Department of Physiology; Chonbuk National University Medical School; Jeonju South Korea
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - D. Mizel
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - Y. Qin
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - Y. Huang
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| | - J. Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases; NIH; Bethesda Maryland
| |
Collapse
|
13
|
Abstract
High salt (4% NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A(2A) receptor (A(2A)AR). Evidence suggests that A(2A)AR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A(2A)AR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A(2A)AR⁺/⁺, but exaggerates contraction in A(2A)AR⁻/⁻. Organ bath and Western blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A(2A)AR⁺/⁺ and A(2A)AR⁻/⁻ mice aorta. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A(2A)AR⁺/⁺, whereas contraction was observed in A(2A)AR⁻/⁻ mice and this was attenuated by A₁AR antagonist (DPCPX). CGS 21680 (selective A(2A)AR agonist) enhanced relaxation in HS-A(2A)AR⁺/⁺ versus NS-A(2A)AR⁺/⁺, which was blocked by EETs antagonist (14,15-EEZE). Compared with NS, HS significantly upregulated the expression of vasodilators A(2A)AR and cyp2c29, whereas vasoconstrictors A₁AR and cyp4a in A(2A)AR⁺/⁺ were downregulated. In A(2A)AR⁻/⁻ mice, however, HS significantly downregulated the expression of cyp2c29, whereas A₁AR and cyp4a were upregulated compared with A(2A)AR⁺/⁺ mice. Hence, our data suggest that in A(2A)AR⁺/⁺, HS enhances A(2A)AR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A₁AR levels, whereas in A(2A)AR⁻/⁻, HS exaggerates contraction through decreased cyp-epoxygenases and increased A₁AR levels.
Collapse
|
14
|
Schweda F. Salt feedback on the renin-angiotensin-aldosterone system. Pflugers Arch 2014; 467:565-76. [DOI: 10.1007/s00424-014-1668-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/02/2014] [Indexed: 12/21/2022]
|
15
|
Mirabito KM, Hilliard LM, Head GA, Widdop RE, Denton KM. Pressor responsiveness to angiotensin II in female mice is enhanced with age: role of the angiotensin type 2 receptor. Biol Sex Differ 2014; 5:13. [PMID: 25774285 PMCID: PMC4358320 DOI: 10.1186/s13293-014-0013-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/02/2014] [Indexed: 11/10/2022] Open
Abstract
Background The pressor response to angiotensin II (AngII) is attenuated in adult females as compared to males via an angiotensin type 2 receptor (AT2R)-dependent pathway. We hypothesized that adult female mice are protected against AngII-induced hypertension via an enhanced AT2R-mediated pathway and that in reproductively senescent females this pathway is no longer operative. Methods Mean arterial pressure was measured via telemetry in 4-month-old (adult) and 16-month-old (aged) and aged ovariectomized (aged-OVX) wild-type and AT2R knockout (AT2R-KO) female mice during baseline and 14-day infusion of vehicle (saline) or AngII (600 ng/kg/min s.c.). Real-time reverse transcription polymerase chain reaction (RT-PCR) was used to determine renal gene expression of angiotensin receptors and angiotensin-converting enzyme 2 in response to 14-day treatment with vehicle or AngII. Results Basal mean arterial pressure was similar between the groups. The pressor response to AngII was augmented in adult AT2R-KO compared to adult wild-type mice (29 ± 3 mmHg versus 10 ± 4 mmHg, respectively, on day 14 as compared to basal mean arterial pressure, P = 0.002). In wild-type mice, pressor responsiveness to AngII was augmented with age, such that the pressor response to AngII was similar between aged AT2R-KO and wild-type female mice (31 ± 4 mmHg versus 34 ± 3 mmHg, respectively, on day 14, P = 0.9). There were no significant differences in pressor responsiveness to AngII between aged and aged-OVX mice. Vehicle-treated aged wild-type mice had a lower renal AT2R/AT1R balance as compared to adult counterparts. In response to AngII, the renal AT2R/AT1R balance in aged wild-type females was greater than that observed in vehicle-treated aged wild-type females and adult wild-type females, yet the protective effects of AT2R activation were not restored. Conclusions The protective role of the AT2R depressor pathway is lost with age in female mice. Therefore, targeting deficits in AT2R expression and/or signaling may represent a novel anti-hypertensive approach in aged females.
Collapse
Affiliation(s)
- Katrina M Mirabito
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| | - Lucinda M Hilliard
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| | - Geoffrey A Head
- Baker IDI Heart and Diabetes Institute, Melbourne 3004, Victoria, Australia
| | - Robert E Widdop
- Department of Pharmacology, Monash University, Building 13E, Victoria 3800, Australia
| | - Kate M Denton
- Department of Physiology, Monash University, Building 13F, Victoria 3800, Australia
| |
Collapse
|
16
|
Regulation of atherosclerosis and associated risk factors by adenosine and adenosine receptors. Curr Atheroscler Rep 2013; 14:460-8. [PMID: 22850979 DOI: 10.1007/s11883-012-0263-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine is an endogenous metabolite that has an anti-inflammatory effect across the vasculature. Extracellular adenosine activates 4 G-protein coupled receptors (A1, A3, A2A, and A2B) whose expression varies in different cells and tissues, including the vasculature and blood cells. Higher levels of adenosine are generated during stress, inflammation, and upon tissue damage. Some of the adenosine receptors (AR), such as the A2BAR, are further up-regulated following such stresses. This review discusses the role of adenosine and adenosine receptors in the development of atherosclerosis and some of the risk factors associated with this pathology. These include adenosine receptor-regulated changes in atherosclerosis, blood pressure, thrombosis, and myocardial infarction. Potential therapeutic applications are reviewed, as well as reasons for phenotypic differences occasionally observed between receptor knockout and pharmacological inhibition via drug administration.
Collapse
|
17
|
Lee DL, Bell TD, Bhupatkar J, Solis G, Welch WJ. Adenosine A1-receptor knockout mice have a decreased blood pressure response to low-dose ANG II infusion. Am J Physiol Regul Integr Comp Physiol 2012; 303:R683-8. [PMID: 22874421 DOI: 10.1152/ajpregu.00116.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine, acting on A(1)-receptors (A(1)-AR) in the nephron, increases sodium reabsorption, and also increases renal vascular resistance (RVR), via A(1)-ARs in the afferent arteriole. ANG II increases blood pressure and RVR, and it stimulates adenosine release in the kidney. We tested the hypothesis that ANG II-infused hypertension is potentiated by A(1)-ARs' influence on Na(+) reabsorption. Mean arterial pressure (MAP) was measured by radiotelemetry in A(1)-AR knockout mice (KO) and their wild-type (WT) controls, before and during ANG II (400 ng·kg(-1)·min(-1)) infusion. Baseline MAP was not different between groups. ANG II increased MAP in both groups, but on day 12, MAP was lower in A(1)-AR KO mice (KO: 128 ± 3 vs. 139 ± 3 mmHg, P < 0.01). Heart rates were significantly different during days 11-14 of ANG II. Basal sodium excretion was not different (KO: 0.15 ± 0.03 vs. WT: 0.13 ± 0.04 mmol/day, not significant) but was higher in KO mice 12 days after ANG II despite a lower MAP (KO: 0.22 ± 0.03 vs. WT: 0.11 ± 0.02 mmol/day, P < 0.05). Phosphate excretion was also higher in A(1)-AR KO mice on day 12. Renal expression of the sodium-dependent phosphate transporter and the Na(+)/glucose cotransporter were lower in the KO mice during ANG II treatment, but the expression of the sodium hydrogen exchanger isoform 3 was not different. These results indicate that the increase in blood pressure seen in A(1)-AR KO mice is lower than that seen in WT mice but was increased by ANG II nonetheless. The presence of A(1)-ARs during a low dose of ANG II-infusion limits Na(+) and phosphate excretion. This study suggests that A(1)-AR antagonists might be an effective antihypertensive agent during ANG II and volume-dependent hypertension.
Collapse
Affiliation(s)
- Dexter L Lee
- Department of Physiology and Biophysics, Howard University, Washington, DC, USA
| | | | | | | | | |
Collapse
|
18
|
Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch 2012; 465:25-37. [DOI: 10.1007/s00424-012-1126-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/02/2012] [Accepted: 06/06/2012] [Indexed: 01/06/2023]
|
19
|
Schnermann J, Briggs JP. Synthesis and secretion of renin in mice with induced genetic mutations. Kidney Int 2012; 81:529-38. [PMID: 22258323 DOI: 10.1038/ki.2011.451] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The juxtaglomerular (JG) cell product renin is rate limiting in the generation of the bioactive octapeptide angiotensin II. Rates of synthesis and secretion of the aspartyl protease renin by JG cells are controlled by multiple afferent and efferent pathways originating in the CNS, cardiovascular system, and kidneys, and making critical contributions to the maintenance of extracellular fluid volume and arterial blood pressure. Since both excesses and deficits of angiotensin II have deleterious effects, it is not surprising that control of renin is secured by a complex system of feedforward and feedback relationships. Mice with genetic alterations have contributed to a better understanding of the networks controlling renin synthesis and secretion. Essential input for the setting of basal renin generation rates is provided by β-adrenergic receptors acting through cyclic adenosine monophosphate, the primary intracellular activation mechanism for renin mRNA generation. Other major control mechanisms include COX-2 and nNOS affecting renin through PGE2, PGI2, and nitric oxide. Angiotensin II provides strong negative feedback inhibition of renin synthesis, largely an indirect effect mediated by baroreceptor and macula densa inputs. Adenosine appears to be a dominant factor in the inhibitory arms of the baroreceptor and macula densa mechanisms. Targeted gene mutations have also shed light on a number of novel aspects related to renin processing and the regulation of renin synthesis and secretion.
Collapse
Affiliation(s)
- Jurgen Schnermann
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
20
|
Gao X, Patzak A, Sendeski M, Scheffer PG, Teerlink T, Sällström J, Fredholm BB, Persson AEG, Carlström M. Adenosine A1-receptor deficiency diminishes afferent arteriolar and blood pressure responses during nitric oxide inhibition and angiotensin II treatment. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1669-81. [DOI: 10.1152/ajpregu.00268.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine mediates tubuloglomerular feedback responses via activation of A1-receptors on the renal afferent arteriole. Increased preglomerular reactivity, due to reduced nitric oxide (NO) production or increased levels of ANG II and reactive oxygen species (ROS), has been linked to hypertension. Using A1-receptor knockout (A1−/−) and wild-type (A1+/+) mice we investigated the hypothesis that A1-receptors modulate arteriolar and blood pressure responses during NO synthase (NOS) inhibition or ANG II treatment. Blood pressure and renal afferent arteriolar responses were measured in nontreated mice and in mice with prolonged Nω-nitro-l-arginine methyl ester hydrochloride (l-NAME) or ANG II treatment. The hypertensive responses to l-NAME and ANG II were clearly attenuated in A1−/− mice. Arteriolar contractions to l-NAME (10−4 mol/l; 15 min) and cumulative ANG II application (10−12 to 10−6 mol/l) were lower in A1−/− mice. Simultaneous treatment with tempol (10−4 mol/l; 15 min) attenuated arteriolar responses in A1+/+ but not in A1−/− mice, suggesting differences in ROS formation. Chronic treatment with l-NAME or ANG II did not alter arteriolar responses in A1−/− mice, but enhanced maximal contractions in A1+/+ mice. In addition, chronic treatments were associated with higher plasma levels of dimethylarginines (asymmetrical and symmetrical) and oxidative stress marker malondialdehyde in A1+/+ mice, and gene expression analysis showed reduced upregulation of NOS-isoforms and greater upregulation of NADPH oxidases. In conclusion, adenosine A1-receptors enhance preglomerular responses during NO inhibition and ANG II treatment. Interruption of A1-receptor signaling blunts l-NAME and ANG II-induced hypertension and oxidative stress and is linked to reduced responsiveness of afferent arterioles.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Mauricio Sendeski
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Peter G. Scheffer
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Tom Teerlink
- Department of Clinical Chemistry, VU University Medical Centre, Amsterdam, Netherlands; and
| | - Johan Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Bertil B. Fredholm
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | - Mattias Carlström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Brown RD, Hilliard LM, Head GA, Jones ES, Widdop RE, Denton KM. Sex differences in the pressor and tubuloglomerular feedback response to angiotensin II. Hypertension 2011; 59:129-35. [PMID: 22124434 DOI: 10.1161/hypertensionaha.111.178715] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Awareness of sex differences in the pathology of cardiovascular disease is increasing. Previously, we have shown a role for the angiotensin type 2 receptor (AT(2)R) in the sex differences in the arterial pressure response to Ang II. Tubuloglomerular feedback (TGF) contributes in setting pressure-natriuresis properties, and its responsiveness is closely coupled to renal Ang II levels. We hypothesize that, in females, the attenuated pressor response to Ang II is mediated via an enhanced AT(2)R mechanism that, in part, offsets Ang II-induced sensitization of the TGF mechanism. Mean arterial pressure was measured via telemetry in male and female wild-type (WT) and AT(2)R knockout (AT(2)R-KO) mice receiving Ang II (600 ng/kg per minute SC). Basal 24-hour mean arterial pressure did not differ among the 4 groups. After 10 days of Ang II infusion, mean arterial pressure increased in the male WT (28±6 mm Hg), male AT(2)R-KO (26±2 mm Hg), and female AT(2)R-KO (26±4 mm Hg) mice, however, the response was attenuated in female WT mice (12±4 mm Hg; P between sex and genotype=0.016). TGF characteristics were determined before and during acute subpressor Ang II infusion (100 ng/kg per minute IV). Basal TGF responses did not differ between groups. The expected increase in maximal change in stop-flow pressure and enhancement of TGF sensitivity in response to Ang II was observed in the male WT, male AT(2)R-KO, and female AT(2)R-KO but not in the female WT mice (P between sex and genotype <0.05; both). In conclusion, these data indicate that an enhanced AT(2)R-mediated pathway counterbalances the hypertensive effects of Ang II and attenuates the Ang II-dependent resetting of TGF activity in females. Thus, the enhancement of the AT(2)R may, in part, underlie the protection that premenopausal women demonstrate against cardiovascular disease.
Collapse
Affiliation(s)
- Russell D Brown
- Department of Physiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | | | | | | | | |
Collapse
|
22
|
Andersen H, Jaff MG, Høgh D, Vanhoutte P, Hansen PB. Adenosine elicits an eNOS-independent reduction in arterial blood pressure in conscious mice that involves adenosine A2A receptors. Acta Physiol (Oxf) 2011; 203:197-207. [PMID: 21062422 DOI: 10.1111/j.1748-1716.2010.02218.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS Adenosine plays an important role in the regulation of heart rate (HR) and vascular reactivity. However, the mechanisms underlying the acute effect of adenosine on arterial blood pressure in conscious mice are unclear. Therefore, this study investigated the effect of the nucleoside on mean arterial blood pressure (MAP) and HR in conscious mice. METHODS Chronic indwelling catheters were placed in C57Bl/6J (WT) and endothelial nitric oxide synthase knockout (eNOS(-/-)) mice for continuous measurements of MAP and HR. Using PCR and myograph analysis, involvement of adenosine receptors was investigated in human and mouse renal blood vessels. RESULTS Bolus infusion of 0.5 mg kg(-1) adenosine elicited significant transient decreases in MAP (99.3 ± 2.3 to 70.4 ± 4.5 mmHg) and HR (603.2 ± 18.3 to 364.3 ± 49.2 min(-1)), which were inhibited by the A(2A) receptor antagonist ZM 241385. Activation of adenosine A(2A) receptors with CGS 21680 (0.02 mg kg(-1)) caused a significant reduction in MAP from 99.6 ± 1.2 to 73.1 ± 3.6 mmHg accompanied by tachycardia (610.5 ± 9.3 to 677.5 ± 9.5 min(-1)). The reduction in MAP observed after adenosine or CGS 21680 administrations was not significantly different in WT and eNOS(-/-) mice. In isolated human and mouse intrarenal arteries, adenosine caused a relaxation dependent on A(2A) adenosine receptor activation. A(2A) receptors were present in both human and mouse arteries whereas A(1) and A(2B) receptors were only present in mouse arteries. CONCLUSION In conclusion, acute adenosine administration and selective stimulation of adenosine A(2A) receptors results in an immediate, transient eNOS-independent reduction in MAP. A(2A) receptor activation causes relaxation of human and mouse arteries.
Collapse
Affiliation(s)
- H Andersen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | | | | | | |
Collapse
|
23
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
24
|
Ponnoth DS, Jamal Mustafa S. Adenosine receptors and vascular inflammation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1429-34. [PMID: 20832387 DOI: 10.1016/j.bbamem.2010.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have shown a positive correlation between poor lung function and respiratory disorders like asthma and the development of adverse cardiovascular events. Increased adenosine (AD) levels are associated with lung inflammation which could lead to altered vascular responses and systemic inflammation. There is relatively little known about the cardiovascular effects of adenosine in a model of allergy. We have shown that A(1) adenosine receptors (AR) are involved in altered vascular responses and vascular inflammation in allergic mice. Allergic A(1)wild-type mice showed altered vascular reactivity, increased airway responsiveness and systemic inflammation. Our data suggests that A(1) AR is pro-inflammatory systemically in this model of asthma. There are also reports of the A(2B) receptor having anti-inflammatory effects in vascular stress; however its role in allergy with respect to vascular effects has not been fully explored. In this review, we have focused on the role of adenosine receptors in allergic asthma and the cardiovascular system and possible mechanism(s) of action.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, West Virginia University. Morgantown, WV, USA
| | | |
Collapse
|
25
|
Bell TD, Luo Z, Welch WJ. Glomerular tubular balance is suppressed in adenosine type 1 receptor-deficient mice. Am J Physiol Renal Physiol 2010; 299:F1158-63. [PMID: 20810615 DOI: 10.1152/ajprenal.00202.2010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular tubular balance maintains a stable fractional solute and fluid reabsorption in the proximal tubule over a range of glomerular filtration rates. The mediators of this process are unknown. We tested the hypothesis that adenosine, produced in proximal tubule cells acting on adenosine type 1 receptors (A(1)-AR) promotes Na(+) and fluid uptake and mediates glomerular tubular balance. Absolute proximal fluid reabsorption (J(v)) was measured by in vivo microperfusion in A(1)-AR knockout and wild-type mice during perfusion of the closed proximal tubule at 2-10 nl/min. J(v) increased with perfusate flow from 2-4 nl/min in both strains, but the fractional increase was lower in A(1)-AR(-/-) mice (A(1)-AR(+/+): 114% vs. A(1)-AR(-/-): 38%; P < 0.001), suggesting reduced glomerular tubular balance (GTB). At higher perfusion rates, J(v) increased modestly in both strains, indicating less GTB at higher flow. The physiological effects of reduced GTB in A(1)-AR(-/-) mice were assessed from the response to an acute volume load (1 ml/2 min). Na(+) excretion and urine flow increased 76 and 73% more in A(1)-AR(-/-) mice than A(1)-AR(+/+) over the following 30 min, accompanied by a higher proximal tubule flow (A(1)-AR(-/-): 6.9 ± 0.9 vs. A(1)-AR(+/+): 5.2 ± 0.6 nl/min; P < 0.05). The expression of the sodium-hydrogen exchanger 3 and sodium phosphate cotransporter-2 were similar between strains. In conclusion, GTB is dependent on adenosine acting on type 1 receptors in the proximal tubule. This may contribute to acute changes in Na(+) and fluid reabsorption.
Collapse
Affiliation(s)
- Tracy D Bell
- Dept. of Medicine, Georgetown University, 4000 Reservoir Rd., Washington, DC 20057, USA
| | | | | |
Collapse
|
26
|
Ponnoth DS, Nadeem A, Tilley S, Mustafa SJ. Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma. Am J Physiol Heart Circ Physiol 2010; 299:H81-7. [PMID: 20400685 DOI: 10.1152/ajpheart.01090.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poor lung function and respiratory disorders like asthma have a positive correlation with the development of adverse cardiovascular events. Increased adenosine levels are associated with lung inflammation that could lead to altered vascular responses and systemic inflammation. We hypothesized that asthmatic lung inflammation has systemic effects through A(1) adenosine receptors (A(1)AR) and investigated the effects of aerosolized adenosine on vascular reactivity and inflammation, using A(1)AR knockout (A(1)KO) and corresponding wild-type (A(1)WT) mice that were divided into three experimental groups each: control (CON), allergen sensitized and challenged (SEN), and SEN + aerosolized adenosine (SEN + AD). Animals were sensitized with ragweed (200 microg ip; days 1 and 6), followed by 1% ragweed aerosol challenges (days 11 to 13). On day 14, the SEN + AD groups received one adenosine aerosol challenge (6 mg/ml) for 2 min, and aortae were collected on day 15. 5'-N-ethylcarboxamidoadenosine (NECA; nonselective adenosine analog) induced concentration-dependent aortic relaxation in the A(1)WT CON group, which was impaired in the A(1)WT SEN and SEN + AD groups. All groups of A(1)KO mice showed similar (no significant difference) concentration-dependent relaxation to NECA. The A(1)WT SEN and SEN + AD groups had a significantly higher contraction to selective A(1) agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) compared with the CON group. Western blot data showed that aortic A(1)AR expression was significantly increased in WT SEN and SEN + AD mice compared with CON mice. Gene expression of ICAM-1 and IL-5 was significantly increased in allergic A(1)WT aorta and were undetected in the A(1)KO groups. A(1)WT allergic mice had significantly higher airway hyperresponsiveness (enhanced pause) to NECA, with adenosine aerosol further enhancing it. In conclusion, allergic A(1)WT mice showed altered vascular reactivity, increased airway hyperresponsiveness, and systemic inflammation. These data suggest that A(1)AR is proinflammatory systemically in this model of allergic asthma.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
27
|
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of Kidney Renin. Physiol Rev 2010; 90:607-73. [PMID: 20393195 DOI: 10.1152/physrev.00011.2009] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protease renin is the key enzyme of the renin-angiotensin-aldosterone cascade, which is relevant under both physiological and pathophysiological settings. The kidney is the only organ capable of releasing enzymatically active renin. Although the characteristic juxtaglomerular position is the best known site of renin generation, renin-producing cells in the kidney can vary in number and localization. (Pro)renin gene transcription in these cells is controlled by a number of transcription factors, among which CREB is the best characterized. Pro-renin is stored in vesicles, activated to renin, and then released upon demand. The release of renin is under the control of the cAMP (stimulatory) and Ca2+(inhibitory) signaling pathways. Meanwhile, a great number of intrarenally generated or systemically acting factors have been identified that control the renin secretion directly at the level of renin-producing cells, by activating either of the signaling pathways mentioned above. The broad spectrum of biological actions of (pro)renin is mediated by receptors for (pro)renin, angiotensin II and angiotensin-( 1 – 7 ).
Collapse
Affiliation(s)
- Hayo Castrop
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Klaus Höcherl
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Armin Kurtz
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Frank Schweda
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Vladimir Todorov
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Charlotte Wagner
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
28
|
Ponnoth DS, Sanjani MS, Ledent C, Roush K, Krahn T, Mustafa SJ. Absence of adenosine-mediated aortic relaxation in A(2A) adenosine receptor knockout mice. Am J Physiol Heart Circ Physiol 2009; 297:H1655-60. [PMID: 19749167 DOI: 10.1152/ajpheart.00192.2009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adenosine mediates vascular responses through four receptor subtypes: A(1), A(2A), A(2B), and A(3). The role of A(2A) receptors in aortic vascular tone was investigated using A(2A) adenosine receptor (AR) knockout (A(2A)KO) and corresponding wild-type (A(2A)WT) mice. Isolated aortic rings from A(2A)WT and A(2A)KO mice were precontracted with phenylephrine (10(-7) M), and concentration responses for adenosine analogs and selective agonists/antagonists were obtained. Nonselective adenosine analog (NECA; EC(50) = 6.78 microM) and CGS-21680 (A(2A)AR selective agonist; EC(50) = 0.013 microM) produced concentration-dependent relaxation (maximum of 25% and 28% relaxation at 10(-5) M NECA and CGS-21680, respectively) in A(2A)WT aorta. In A(2A)KO aorta, NECA (EC(50) = 0.075 microM) induced concentration-dependent contraction (maximum contraction of 47% at 10(-6) M; P < 0.05 compared with A(2A)WT), whereas CGS-21680 produced no response. SCH-58261 (10(-6) M; A(2A)AR selective antagonist) abolished both NECA- and CGS-21680-mediated vasorelaxation in A(2A)WT (P < 0.05), whereas no change was observed in A(2A)KO. When DPCPX (10(-5) M; A(1) selective antagonist) was used in NECA concentration response, greater vasorelaxation was observed in A(2A)WT (50% vs. 25% in controls at 10(-5) M; P < 0.05), whereas lower contraction was seen in A(2A)KO tissues (5% vs. 47% in controls at 10(-6) M; P < 0.05). Aortic endothelial function, determined by response to acetylcholine, was significantly higher in WT compared with KO (66% vs. 51%; P < 0.05). BAY 60-6583 (A(2B) selective agonist) produced similar relaxation in both KO and WT tissues. In conclusion, A(2A)AR KO mice had significantly lower aortic relaxation and endothelial function, suggesting that the A(2A)AR plays an important role in vasorelaxation, probably through an endothelium-dependent mechanism.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, Center for Interdisciplinary Research in Cardiovascular Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, USA
| | | | | | | | | | | |
Collapse
|
29
|
Schuler B, Rettich A, Vogel J, Gassmann M, Arras M. Optimized surgical techniques and postoperative care improve survival rates and permit accurate telemetric recording in exercising mice. BMC Vet Res 2009; 5:28. [PMID: 19646283 PMCID: PMC2727500 DOI: 10.1186/1746-6148-5-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 08/02/2009] [Indexed: 11/17/2022] Open
Abstract
Background The laboratory mouse is commonly used as a sophisticated model in biomedical research. However, experiments requiring major surgery frequently lead to serious postoperative complications and death, particularly if genetically modified mice with anatomical and physiological abnormalities undergo extensive interventions such as transmitter implantation. Telemetric transmitters are used to study cardiovascular physiology and diseases. Telemetry yields reliable and accurate measurement of blood pressure in the free-roaming, unanaesthetized and unstressed mouse, but data recording is hampered substantially if measurements are made in an exercising mouse. Thus, we aimed to optimize transmitter implantation to improve telemetric signal recording in exercising mice as well as to establish a postoperative care regimen that promotes convalescence and survival of mice after major surgery in general. Results We report an optimized telemetric transmitter implantation technique (fixation of the transmitter body on the back of the mouse with stainless steel wires) for subsequent measurement of arterial blood pressure during maximal exercise on a treadmill. This technique was used on normal (wildtype) mice and on transgenic mice with anatomical and physiological abnormalities due to constitutive overexpression of recombinant human erythropoietin. To promote convalescence of the animals after surgery, we established a regimen for postoperative intensive care: pain treatment (flunixine 5 mg/kg bodyweight, subcutaneously, twice per day) and fluid therapy (600 μl, subcutaneously, twice per day) were administrated for 7 days. In addition, warmth and free access to high energy liquid in a drinking bottle were provided for 14 days following transmitter implantation. This regimen led to a substantial decrease in overall morbidity and mortality. The refined postoperative care and surgical technique were particularly successful in genetically modified mice with severely compromised physiological capacities. Conclusion Recovery and survival rates of mice after major surgery were significantly improved by careful management of postoperative intensive care regimens including key supportive measures such as pain relief, administration of fluids, and warmth. Furthermore, fixation of the blood pressure transmitter provided constant reliable telemetric recordings in exercising mice.
Collapse
Affiliation(s)
- Beat Schuler
- University of Zurich, Vetsuisse Faculty, Institute of Veterinary Physiology, and Zurich Center for Integrative Human Physiology, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
30
|
Vallon V, Schroth J, Satriano J, Blantz RC, Thomson SC, Rieg T. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus. Nephron Clin Pract 2009; 111:p30-8. [PMID: 19276628 DOI: 10.1159/000208211] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/01/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In early type 1 diabetes mellitus, changes in proximal reabsorption influence glomerular filtration rate (GFR) through tubuloglomerular feedback (TGF). Due to TGF, a primary increase in proximal reabsorption causes early diabetic hyperfiltration, while a heightened sensitivity of the proximal tubule to dietary salt leads to the so-called salt paradox, where a change in dietary salt causes a reciprocal change in GFR ('tubulocentric principle'). Here, experiments were performed in adenosine A(1) receptor knockout mice (A(1)R-/-), which lack an immediate TGF response, to determine whether A(1)Rs are essential for early diabetic hyperfiltration and the salt paradox. METHODS GFR was measured by inulin disappearance in conscious A(1)R-/- and wild-type (WT) mice after 4 weeks of streptozotocin diabetes on a control NaCl diet (1%), and measurements were repeated after 6 days of equilibration on a low-NaCl (0.1%) or a high-NaCl (4%) diet. RESULTS A(1)R-/- and WT were similar with respect to blood glucose, dietary intakes and body weight changes on a given diet. Diabetic hyperfiltration occurred in WT, but was blunted in A(1)R-/-. A reciprocal relationship between GFR and dietary salt was found in WT diabetics, but not A(1)R-/- diabetics or nondiabetics of either strain. CONCLUSION A(1)Rs determine glomerular hyperfiltration and the salt paradox in early diabetes, which is consistent with the tubulocentric principle.
Collapse
Affiliation(s)
- Volker Vallon
- Department of Medicine, University of California San Diego, San Diego, Calif., USA.
| | | | | | | | | | | |
Collapse
|
31
|
Yang JN, Chen JF, Fredholm BB. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 2009; 296:H1141-9. [PMID: 19218506 DOI: 10.1152/ajpheart.00754.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O(2)C) were studied in awake mice lacking one or both of the adenosine A(1) or A(2A) receptors (A(1)R or A(2A)R, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A(1)R knockout (A(1)RKO) mice but lower in A(2A)RKO mice and intermediate in A(1)-A(2A)R double KO mice. A single dose of an unselective beta-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A(1)Rs had little effect on Temp, whereas deletion of A(2A)Rs increased it in females and decreased it in males. A(1)-A(2A)RKO mice had lower Temp than WT mice. LA was unaltered in A(1)RKO mice and lower in A(2A)RKO and A(1)-A(2A)RKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A(2A)R. Caffeine ingestion also increased LA in an A(2A)R-dependent manner in male mice. Caffeine ingestion significantly increased O(2)C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A(1)R or A(2A)R blockade. Selective A(2B) antagonism had little or no effect. Thus A(1)R and A(2A)R influence HR, Temp, LA, and O(2)C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A(2A)R plays an important role in the modulation of O(2)C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A(1)R and A(2A)R.
Collapse
Affiliation(s)
- Jiang-Ning Yang
- Karolinska Institutet, Nanna Svartz väg 2, Stockholm S-171 77 Sweden.
| | | | | |
Collapse
|
32
|
Abstract
The renin-angiotensin system (RAS) is critically involved in the regulation of the salt and volume status of the body and blood pressure. The activity of the RAS is controlled by the protease renin, which is released from the renal juxtaglomerular epithelioid cells into the circulation. Renin release is regulated in negative feedback-loops by blood pressure, salt intake, and angiotensin II. Moreover, sympathetic nerves and renal autacoids such as prostaglandins and nitric oxide stimulate renin secretion. Despite numerous studies there remained substantial gaps in the understanding of the control of renin release at the organ or cellular level. Some of these gaps have been closed in the last years by means of gene-targeted mice and advanced imaging and electrophysiological methods. In our review, we discuss these recent advances together with the relevant previous literature on the regulation of renin release.
Collapse
|
33
|
Feng M, Whitesall S, Zhang Y, Beibel M, Alecy LD, DiPetrillo K. Validation of volume-pressure recording tail-cuff blood pressure measurements. Am J Hypertens 2008; 21:1288-91. [PMID: 18846043 DOI: 10.1038/ajh.2008.301] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The American Heart Association has recommended tail-cuff blood pressure measurement for high-throughput experimental designs, including mutagenesis screens and genetic crosses. However, some tail-cuff methods show good agreement with radiotelemetry and others do not, indicating that each tail-cuff method requires independent validation. METHODS We validated the volume-pressure recording (VPR) tail-cuff method by comparison to simultaneous radiotelemetry measurements. RESULTS Bland-Altman analysis of 560 cycles from 26 independent measurement sessions showed good agreement between VPR and radiotelemetry measurements, with tail-cuff measurements being 0.25 mm Hg lower than telemetry measurements on average. However, the VPR method was less accurate, compared to radiotelemetry, at extreme high and low (i.e., <110 or >180 mm Hg) systolic blood pressures (SBPs). CONCLUSIONS We conclude that the VPR tail-cuff method provides accurate blood pressure measurements over the physiological range of blood pressure in mice.
Collapse
|
34
|
Rieg T, Vallon V. ATP and adenosine in the local regulation of water transport and homeostasis by the kidney. Am J Physiol Regul Integr Comp Physiol 2008; 296:R419-27. [PMID: 19020292 DOI: 10.1152/ajpregu.90784.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of body water homeostasis is critically dependent on the kidney and under the control of AVP, which is released from the neurohypophysis. In the collecting duct (CD) of the kidney, AVP activates adenylyl cyclase via vasopressin V2 receptors. cAMP-dependent activation of protein kinase A phosphorylates the water channel aquaporin-2 and increases water permeability by insertion of aquaporin-2 into the apical cell membrane. However, local factors modulate the effects of AVP to fine tune its effects, accelerate responses, and potentially protect the integrity of CD cells. Nucleotides like ATP belong to these local factors and act in an autocrine and paracrine way to activate P2Y2 receptors on CD cells. Extracellular breakdown of ATP and cAMP forms adenosine, the latter also induces specific effects on the CD by activation of adenosine A1 receptors. Activation of both receptor types can inhibit the cAMP-triggered activation of protein kinase A and reduce water permeability and transport. This review focuses on the role and potential interactions of the ATP and adenosine system with regard to the regulation of water transport in the CD. We address the potential stimuli and mechanisms involved in nucleotide release and adenosine formation, and discuss the corresponding signaling cascades that are activated. Potential interactions between the ATP and adenosine system, as well as other factors involved in the regulation of CD function, are outlined. Data from pharmacological studies and gene-targeted mouse models are presented to demonstrate the in vivo relevance to water transport and homeostasis.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, Division of Nephrology and Hypertension, University of California San Diego, 3350 La Jolla Village Dr., La Jolla, CA 92161, USA.
| | | |
Collapse
|
35
|
Rieg T, Pothula K, Schroth J, Satriano J, Osswald H, Schnermann J, Insel PA, Bundey RA, Vallon V. Vasopressin regulation of inner medullary collecting ducts and compensatory changes in mice lacking adenosine A1 receptors. Am J Physiol Renal Physiol 2008; 294:F638-44. [PMID: 18199602 DOI: 10.1152/ajprenal.00344.2007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activation of adenosine A(1) receptors (A(1)R) can inhibit arginine vasopressin (AVP)-induced cAMP formation in isolated cortical and medullary collecting ducts. To assess the in vivo consequences of the absence of A(1)R, we performed experiments in mice lacking A(1)R (A(1)R(-/-)). We assessed the effects of the vasopressin V(2) receptor (V(2)R) agonist 1-desamino-8-d-arginine vasopressin (dDAVP) on cAMP formation in isolated inner medullary collecting ducts (IMCD) and on water excretion in conscious water-loaded mice. dDAVP-induced cAMP formation in isolated IMCD was significantly greater ( approximately 2-fold) in A(1)R(-/-) compared with wild-type mice (WT) and, in contrast to WT, was not inhibited by the A(1)R agonist N6-cyclohexyladenosine. A(1)R(-/-) and WT had similar basal urinary excretion of vasopressin, expression of aquaporin-2 protein in renal cortex and medulla, and acute increases in urinary flow rate and electrolyte-free water clearance in response to the V(2)R antagonist SR121463 or acute water loading; the latter increased inner medullary A(1)R expression in WT. Dose dependence of dDAVP-induced antidiuresis after acute water loading was not different between the genotypes. However, A(1)R(-/-) had greater inner medullary expression of cyclooxygenase-1 under basal conditions and of the P2Y(2) and EP(3) receptor in response to water loading compared with WT mice. Thus vasopressin-induced cAMP formation is enhanced in isolated IMCD of mice lacking A(1)R, but the adenosine-A(1)R/V(2)R interaction demonstrated in vitro is likely compensated in vivo by multiple mechanisms, a number of which can be "uncovered" by water loading.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine , Division of Nephrology and Hypertension, University of California San Diego, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sällström J, Carlsson PO, Fredholm BB, Larsson E, Persson AEG, Palm F. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol (Oxf) 2007; 190:253-9. [PMID: 17581137 DOI: 10.1111/j.1748-1716.2007.01705.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS Glomerular hyperfiltration is commonly found in diabetic patients early after the onset of disease. This is one of the first indications of the development of progressive diabetic nephropathy. It has been proposed that glomerular hyperfiltration is caused by decreased delivery of electrolytes to the macula densa due to the increased sodium and glucose reabsorption in the proximal tubule, which would increase the glomerular filtration rate (GFR) via the tubuloglomerular feedback (TGF) mechanism. In this study, we investigated the role of TGF in diabetes-induced glomerular hyperfiltration by inducing diabetes in adenosine A(1)-receptor knockout (A1AR(-/-)) mice known to lack a functional TGF mechanism. METHODS Diabetes was induced by alloxan (75 mg kg(-1) bw) injected into the tail vein. The 24-hour urinary electrolyte excretion was measured in metabolic cages, the GFR determined by inulin clearance under isoflurane-anaesthesia, and histological changes evaluated. RESULTS All alloxan-treated animals developed hyperglycaemia (> or =20 mm). Normoglycaemic animals had a similar GFR independent of genotype (A1AR(+/+) 9.3 +/- 0.5 vs. A1AR(-/-) 10.1 +/- 0.8 microL min(-1)g(-1) bw) and diabetes resulted in similar glomerular hyperfiltration in both groups (A1AR(+/+) 14.0 +/- 1.7, n = 9 vs. A1AR(-/-) 15.3 +/- 1.9 microL min(-1)g(-1) bw). Diabetic animals had a similar tendency to develop interstitial fibrosis, whereas the glomerular volume was similar in both genotypes, and unaltered by diabetes. CONCLUSIONS This study shows that the A1AR(-/-) mice develop diabetes-induced glomerular hyperfiltration, demonstrating that the TGF mechanism is not the major cause of the development of hyperfiltration. Furthermore, the hyperfiltration in the present study was not related to alterations in the glomerular filtration area.
Collapse
Affiliation(s)
- J Sällström
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2007; 14:255-9. [PMID: 17940448 DOI: 10.1097/med.0b013e3281de7489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Sällström J, Carlsson PO, Fredholm BB, Larsson E, Persson AEG, Palm F. Diabetes-induced hyperfiltration in adenosine A 1-receptor deficient mice lacking the tubuloglomerular feedback mechanism. Acta Physiol (Oxf) 2007. [DOI: 10.1111/j.1365-201x.2007.01705.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Duan SZ, Ivashchenko CY, Whitesall SE, D’Alecy LG, Duquaine DC, Brosius FC, Gonzalez FJ, Vinson C, Pierre MA, Milstone DS, Mortensen RM. Hypotension, lipodystrophy, and insulin resistance in generalized PPARgamma-deficient mice rescued from embryonic lethality. J Clin Invest 2007; 117:812-22. [PMID: 17304352 PMCID: PMC1794117 DOI: 10.1172/jci28859] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 12/19/2006] [Indexed: 01/27/2023] Open
Abstract
We rescued the embryonic lethality of global PPARgamma knockout by breeding Mox2-Cre (MORE) mice with floxed PPARgamma mice to inactivate PPARgamma in the embryo but not in trophoblasts and created a generalized PPARgamma knockout mouse model, MORE-PPARgamma knockout (MORE-PGKO) mice. PPARgamma inactivation caused severe lipodystrophy and insulin resistance; surprisingly, it also caused hypotension. Paradoxically, PPARgamma agonists had the same effect. We showed that another mouse model of lipodystrophy was hypertensive, ruling out the lipodystrophy as a cause. Further, high salt loading did not correct the hypotension in MORE-PGKO mice. In vitro studies showed that the vasculature from MORE-PGKO mice was more sensitive to endothelial-dependent relaxation caused by muscarinic stimulation, but was not associated with changes in eNOS expression or phosphorylation. In addition, vascular smooth muscle had impaired contraction in response to alpha-adrenergic agents. The renin-angiotensin-aldosterone system was mildly activated, consistent with increased vascular capacitance or decreased volume. These effects are likely mechanisms contributing to the hypotension. Our results demonstrated that PPARgamma is required to maintain normal adiposity and insulin sensitivity in adult mice. Surprisingly, genetic loss of PPARgamma function, like activation by agonists, lowered blood pressure, likely through a mechanism involving increased vascular relaxation.
Collapse
Affiliation(s)
- Sheng Zhong Duan
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christine Y. Ivashchenko
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven E. Whitesall
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Louis G. D’Alecy
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Damon C. Duquaine
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank C. Brosius
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank J. Gonzalez
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Charles Vinson
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Melissa A. Pierre
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - David S. Milstone
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Richard M. Mortensen
- Department of Molecular and Integrative Physiology and
Department of Surgery, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Department of Surgery, William Beaumont Hospital, Royal Oak, Michigan, USA.
Department of Internal Medicine, Nephrology Division, University of Michigan Medical School, Ann Arbor, Michigan, USA.
Laboratory of Metabolism, National Cancer Institute, NIH, Bethesda, Maryland, USA.
Vascular Research Division, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Department of Pharmacology and
Department of Internal Medicine, Metabolism, Endocrinology, and Diabetes Division, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Rieg T, Schnermann J, Vallon V. Adenosine A1 receptors determine effects of caffeine on total fluid intake but not caffeine appetite. Eur J Pharmacol 2006; 555:174-7. [PMID: 17126319 DOI: 10.1016/j.ejphar.2006.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/06/2006] [Accepted: 10/11/2006] [Indexed: 11/25/2022]
Abstract
Adenosine A1 receptor wild-type (+/+) and knockout (-/-) mice were used to elucidate the role of adenosine A1 receptors in caffeine self-administration in a two-bottle choice test and in the effect of caffeine on total fluid intake and plasma renin concentration. With access to water only, adenosine A1 receptor -/- mice showed greater basal fluid intake and greater plasma renin concentration than +/+ mice. Free access to both water and a caffeinated solution (30 mg/100 ml) for 14 days increased total fluid intake only in adenosine A1 receptor +/+ mice (by 23+/-3%), and both total fluid intake and plasma renin concentration were no longer different between genotypes. Mean intake of water and caffeinated solution was not different between adenosine A1 receptor +/+ and -/- mice. These data reveal that adenosine A1 receptors do not contribute to caffeine consumption, but determine the effects of caffeine on fluid intake and plasma renin concentration.
Collapse
Affiliation(s)
- Timo Rieg
- Department of Medicine, University of California San Diego & VA San Diego Healthcare System, 3350 La Jolla Village Drive (9151), San Diego, CA 92161, USA
| | | | | |
Collapse
|