1
|
Whitaker EE, Johnson AC, Tremble SM, McGinn C, DeLance N, Cipolla MJ. Cerebral Blood Flow Autoregulation in Offspring From Experimentally Preeclamptic Rats and the Effect of Age. Front Physiol 2022; 13:924908. [PMID: 35733984 PMCID: PMC9207211 DOI: 10.3389/fphys.2022.924908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that causes significant, long term cardiovascular effects for both the mother and offspring. A previous study demonstrated that middle cerebral arteries in offspring from an experimental rat model of preeclampsia were smaller, stiffer, and did not enlarge over the course of maturation, suggesting potential hemodynamic alterations in these offspring. Here we investigated the effect of experimental preeclampsia on cerebral blood flow autoregulation in juvenile and adult offspring that were born from normal pregnant or experimentally preeclamptic rats. Relative cerebral blood flow was measured using laser Doppler flowmetry, and cerebral blood flow autoregulation curves were constructed by raising blood pressure and controlled hemorrhage to lower blood pressure. Immunohistochemistry was used to assess middle cerebral artery size. Heart rate and blood pressure were measured in awake adult offspring using implanted radiotelemetry. Serum epinephrine was measured using enzyme-linked immunosorbent assay. Offspring from both groups showed maturation of cerebral blood flow autoregulation as offspring aged from juvenile to adulthood as demonstrated by the wider autoregulatory plateau. Experimental preeclampsia did not affect cerebral blood flow autoregulation in juvenile offspring, and it had no effect on cerebral blood flow autoregulation in adult offspring over the lower range of blood pressures. However, experimental preeclampsia caused a right shift in the upper range of blood pressures in adult offspring (compared to normal pregnant). Structurally, middle cerebral arteries from normal pregnant offspring demonstrated growth with aging, while middle cerebral arteries from experimentally preeclamptic offspring did not, and by adulthood normal pregnant offspring had significantly larger middle cerebral arteries. Middle cerebral artery lumen diameters did not significantly change as offspring aged. Serum epinephrine was elevated in juvenile experimentally preeclamptic offspring, and a greater degree of hemorrhage was required to induce hypotension, suggesting increased sympathetic activity. Finally, despite no evidence of increased sympathetic activity, adult experimentally preeclamptic offspring were found to have persistently higher heart rate. These results demonstrate a significant effect of experimental preeclampsia on the upper range of autoregulation and cerebrovascular structure in juvenile and adult offspring that could have an important influence on brain perfusion under conditions of hypo and/or hypertension.
Collapse
Affiliation(s)
- Emmett E. Whitaker
- Department of Anesthesiology, University of Vermont Larner College of Medicine, Burlington, VT, United States
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
- Department of Pediatrics, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Abbie C. Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Sarah M. Tremble
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Conor McGinn
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Nicole DeLance
- Department of Pathology and Laboratory Medicine, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Marilyn J. Cipolla
- Department of Anesthesiology, University of Vermont Larner College of Medicine, Burlington, VT, United States
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, United States
- University of Vermont Department of Electrical and Biomedical Engineering, Burlington, VT, United States
| |
Collapse
|
2
|
McQuail JA, Krause EG, Setlow B, Scheuer DA, Bizon JL. Stress-induced corticosterone secretion covaries with working memory in aging. Neurobiol Aging 2018; 71:156-160. [PMID: 30144648 DOI: 10.1016/j.neurobiolaging.2018.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
A substantial literature details the relationship between age-related changes to the hypothalamic-pituitary-adrenal axis and deterioration of mnemonic functions that depend on the hippocampus. The relationship between adrenocortical status and other forms of memory that depend on the prefrontal cortex is less well understood in the context of advanced age. Here, we characterized performance of young adult and aged F344 rats on a prefrontal cortex-dependent working memory task and subsequently measured corticosterone (CORT) levels over the diurnal cycle and during exposure to an acute stressor. Our analyses revealed that aged rats with better working memory mounted a greater CORT response during acute stress exposure than either young adults or age-matched rats with impaired working memory. We also observed that age-related elevation of basal CORT levels is not associated with working memory performance. Jointly, these data reveal that the hypothalamic-pituitary-adrenal axis-mediated response to acute stress is positively associated with working memory in aging.
Collapse
Affiliation(s)
- Joseph A McQuail
- Department of Neuroscience, University of Florida, Gainesville, FL, USA.
| | - Eric G Krause
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Jennifer L Bizon
- Department of Neuroscience, University of Florida, Gainesville, FL, USA; Department of Psychiatry, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
3
|
Herman JP. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 2017; 38:25-35. [PMID: 28895001 DOI: 10.1007/s10571-017-0543-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 08/24/2017] [Indexed: 01/04/2023]
Abstract
Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.
Collapse
Affiliation(s)
- James P Herman
- Stress Neurobiology Laboratory, Department of Psychiatry and Behavioral Neuroscience, UC Neurobiology Research Center, University of Cincinnati, 2170 East Galbraith Road, Cincinnati, OH, 45237-0506, USA.
| |
Collapse
|
4
|
Nio Y, Hotta N, Maruyama M, Hamagami K, Nagi T, Funata M, Sakamoto J, Nakakariya M, Amano N, Okawa T, Arikawa Y, Sasaki S, Okuda S, Kasai S, Habata Y, Nagisa Y. A Selective Bombesin Receptor Subtype 3 Agonist Promotes Weight Loss in Male Diet-Induced-Obese Rats With Circadian Rhythm Change. Endocrinology 2017; 158:1298-1313. [PMID: 28324017 DOI: 10.1210/en.2016-1825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/08/2017] [Indexed: 12/17/2022]
Abstract
Bombesin receptor subtype 3 (BRS-3) is an orphan G protein-coupled receptor. Based on the obese phenotype of male BRS-3-deficient mice, BRS-3 has been considered an attractive target for obesity treatment. Here, we developed a selective BRS-3 agonist (compound-A) and evaluated its antiobesity effects. Compound-A showed anorectic effects and enhanced energy expenditure in diet-induced-obese (DIO)-F344 rats. Moreover, repeated oral administration of compound-A for 7 days resulted in a significant body weight reduction in DIO-F344 rats. We also evaluated compound-A for cardiovascular side effects using telemeterized Sprague-Dawley (SD) rats. Oral administration of compound-A resulted in transient blood pressure increases in SD rats. To investigate the underlying mechanisms of BRS-3 agonist effects, we focused on the suprachiasmatic nucleus (SCN), the main control center of circadian rhythms in the hypothalamus, also regulating sympathetic nervous system. Compound-A significantly increased the messenger RNA expression of Brs-3, c-fos, and circadian rhythm genes in SCN of DIO-F344 rats. Because SCN also controls the hypothalamic-pituitary-adrenal (HPA) axis, we evaluated the relationship between BRS-3 and the HPA axis. Oral administration of compound-A caused a significant increase of plasma corticosterone levels in DIO-F344 rats. On this basis, energy expenditure enhancement by compound-A may be due to a circadian rhythm change in central and peripheral tissues, enhancement of peripheral lipid metabolism, and stimulation of the sympathetic nervous system. Furthermore, the blood pressure increase by compound-A could be associated with sympathetic nervous system stimulation via SCN and elevation of plasma corticosterone levels through activation of the HPA axis.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra Value Generation & General Medicine Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Natsu Hotta
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Minoru Maruyama
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Kenichi Hamagami
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Toshimi Nagi
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Junichi Sakamoto
- Biomolecular Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Masanori Nakakariya
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Nobuyuki Amano
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomohiro Okawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyoshi Arikawa
- Central Nervous System Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shinobu Sasaki
- Medicinal Chemistry Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shoki Okuda
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Shizuo Kasai
- Cardiovascular and Metabolic Drug Discovery Unit, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
| | - Yugo Habata
- Foods & Nutrients, Yamanashi Gakuin Junior College, Kofu, Yamanashi 400-8575, Japan
| | - Yasutaka Nagisa
- CVM Marketing Japan Pharma Business Unit, Takeda Pharmaceutical Company Ltd, Chuo-ku, Tokyo 103-8686, Japan
| |
Collapse
|
5
|
Li P, Huang PP, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong XQ. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol (1985) 2017; 122:121-129. [PMID: 27742806 DOI: 10.1152/japplphysiol.01019.2015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 09/26/2016] [Accepted: 10/09/2016] [Indexed: 02/07/2023] Open
Abstract
Li P, Huang P, Yang Y, Liu C, Lu Y, Wang F, Sun W, Kong X. Renal sympathetic denervation attenuates hypertension and vascular remodeling in renovascular hypertensive rats. J Appl Physiol 122: 121–129, 2017. First published October 14, 2016; doi: 10.1152/japplphysiol.01019.2015 .—Sympathetic activity is enhanced in patients with essential or secondary hypertension, as well as in various hypertensive animal models. Therapeutic targeting of sympathetic activation is considered an effective antihypertensive strategy. We hypothesized that renal sympathetic denervation (RSD) attenuates hypertension and improves vascular remodeling and renal disease in the 2-kidney, 1-clip (2K1C) rat model. Rats underwent 2K1C modeling or sham surgery; then rats underwent RSD or sham surgery 4 wk later, thus resulting in four groups (normotensive-sham, normotensive-RSD, 2K1C-sham, and 2K1C-RSD). Norepinephrine was measured by ELISA. Echocardiography was used to assess heart function. Fibrosis and apoptosis were assessed by Masson and TUNEL staining. Changes in mean arterial blood pressure in response to hexamethonium and plasma norepinephrine levels were used to evaluate basal sympathetic nerve activity. The 2K1C modeling success rate was 86.8%. RSD reversed the elevated systolic blood pressure induced by 2K1C, but had no effect on body weight. Compared with rats in the 2K1C-sham group, rats in the 2K1C-RSD group showed lower left ventricular mass/body weight ratio, interventricular septal thickness in diastole, left ventricular end-systolic diameter, and left ventricular posterior wall thickness in systole, whereas fractional shortening and ejection fraction were higher. Right kidney apoptosis and left kidney hypertrophy were not changed by RSD. Arterial fibrosis was lower in animals in the 2K1C-RSD group compared with those in the 2K1C-sham group. RSD reduced plasma norepinephrine and basal sympathetic activity in rats in the 2K1C-RSD group compared with rats in the 2K1C-sham group. These results suggest a possible clinical efficacy of RSD for renovascular hypertension. NEW & NOTEWORTHY The effects of renal sympathetic denervation (RSD) on hypertension, cardiac function, vascular fibrosis, and renal apoptosis were studied in the 2K1C rat model. Results showed that RSD attenuated hypertension, improved vascular remodeling, and reduced vascular fibrosis through decreased sympathetic activity in the 2K1C rat model, but it did not change the kidney size, renal apoptosis, or renal caspase-3 expression. These results could suggest possible clinical efficacy of RSD for renovascular hypertension.
Collapse
Affiliation(s)
- Peng Li
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Pei-Pei Huang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Yun Yang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Chi Liu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Yan Lu
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Fang Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Wei Sun
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| | - Xiang-Qing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Peoples Republic of China
| |
Collapse
|
6
|
Comorbidity Factors and Brain Mechanisms Linking Chronic Stress and Systemic Illness. Neural Plast 2016; 2016:5460732. [PMID: 26977323 PMCID: PMC4761674 DOI: 10.1155/2016/5460732] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/11/2015] [Accepted: 10/25/2015] [Indexed: 12/16/2022] Open
Abstract
Neuropsychiatric symptoms and mental illness are commonly present in patients with chronic systemic diseases. Mood disorders, such as depression, are present in up to 50% of these patients, resulting in impaired physical recovery and more intricate treatment regimen. Stress associated with both physical and emotional aspects of systemic illness is thought to elicit detrimental effects to initiate comorbid mental disorders. However, clinical reports also indicate that the relationship between systemic and psychiatric illnesses is bidirectional, further increasing the complexity of the underlying pathophysiological processes. In this review, we discuss the recent evidence linking chronic stress and systemic illness, such as activation of the immune response system and release of common proinflammatory mediators. Altogether, discovery of new targets is needed for development of better treatments for stress-related psychiatric illnesses as well as improvement of mental health aspects of different systemic diseases.
Collapse
|
7
|
Divergent regulation of distinct glucocorticoid systems in alcohol dependence. Alcohol 2015; 49:811-6. [PMID: 26003866 DOI: 10.1016/j.alcohol.2015.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 04/11/2015] [Accepted: 04/12/2015] [Indexed: 11/23/2022]
Abstract
Chronic alcohol consumption disrupts glucocorticoid signaling at multiple physiological levels to interact with several disease-related processes associated with neuroendocrine and psychiatric disorders. Excessive alcohol use produces stress-related neuroadaptations at the level of the hypothalamic-pituitary-adrenal (HPA) axis as well as within central (extra-hypothalamic) neural circuitry, including the central amygdala (CeA) and prefrontal cortex (PFC). Altered glucocorticoid receptor (GR) signaling in these areas following excessive alcohol exposure is postulated to mediate the transition from recreational drinking to dependence, as well as the manifestation of a host of cognitive and neurological deficits. Specifically, a bidirectional regulation of stress systems by glucocorticoids leads to the development of an HPA axis tolerance and a concomitant sensitization of cortical and subcortical circuitries. A greater understanding of how hypothalamic and extra-hypothalamic glucocorticoid systems interact to mediate excessive drinking and related pathologies will lead to more effective therapeutic strategies for alcohol use disorder (AUD) and closely related comorbidities.
Collapse
|
8
|
Erdos B, Clifton RR, Liu M, Li H, McCowan ML, Sumners C, Scheuer DA. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am J Physiol Heart Circ Physiol 2015; 309:H634-45. [PMID: 26071542 DOI: 10.1152/ajpheart.00207.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 μg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Rebekah R Clifton
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Meng Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|