1
|
Zhang X, Majumdar A, Kim C, Kleiboeker B, Magee KL, Learman BS, Thomas SA, Lodhi IJ, MacDougald OA, Scheller EL. Central activation of catecholamine-independent lipolysis drives the end-stage catabolism of all adipose tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605812. [PMID: 39131323 PMCID: PMC11312544 DOI: 10.1101/2024.07.30.605812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Several adipose depots, including constitutive bone marrow adipose tissue (cBMAT), resist conventional lipolytic cues, making them metabolically non-responsive. However, under starvation, wasting, or cachexia, the body can eventually catabolize these stable adipocytes through unknown mechanisms. To study this, we developed a mouse model of brain-evoked depletion of all fat, including cBMAT, independent of food intake. Genetic, surgical, and chemical approaches demonstrated that depletion of stable fat required adipose triglyceride lipase-dependent lipolysis but was independent of local nerves, the sympathetic nervous system, and catecholamines. Instead, concurrent hypoglycemia and hypoinsulinemia activated a potent catabolic state by suppressing lipid storage and increasing catecholamine-independent lipolysis via downregulation of cell-autonomous lipolytic inhibitors Acvr1c, G0s2, and Npr3. This was also sufficient to delipidate classical adipose depots. Overall, this work defines unique adaptations of stable adipocytes to resist lipolysis in healthy states while isolating a potent in vivo neurosystemic pathway by which the body can rapidly catabolize all adipose tissues.
Collapse
Affiliation(s)
- Xiao Zhang
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Anurag Majumdar
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Clara Kim
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian Kleiboeker
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristann L Magee
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian S Learman
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Steven A Thomas
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA
| | - Irfan J Lodhi
- Division of Endocrinology, Metabolism & Lipid Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Erica L Scheller
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Harris RBS. Low-dose peripheral leptin infusion produces selective activation of ventromedial hypothalamic and hindbrain STAT3. Am J Physiol Endocrinol Metab 2023; 325:E72-E82. [PMID: 37285599 PMCID: PMC10292972 DOI: 10.1152/ajpendo.00083.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023]
Abstract
Previous studies have shown that very low dose, acute, single peripheral leptin injections fully activate arcuate nucleus signal transducer and activator of transcription 3 (STAT3), but ventromedial hypothalamus (VMH) pSTAT3 continues to increase with higher doses of leptin that inhibit food intake. The lowest dose that inhibited intake increased circulating leptin 300-fold whereas food intake is inhibited by chronic peripheral leptin infusions that only double circulating leptin. This study examined whether the pattern of hypothalamic pSTAT3 was the same in leptin-infused rats as in leptin-injected rats. Male Sprague-Dawley rats received intraperitoneal infusions of 0, 5, 10, 20, or 40 µg leptin/day for 9 days. The highest dose of leptin increased serum leptin by 50-100%, inhibited food intake for 5 days, but inhibited weight gain and retroperitoneal fat mass for 9 days. Energy expenditure, respiratory exchange ratio, and brown fat temperature did not change. pSTAT3 was quantified in hypothalamic nuclei and the nucleus of the solitary tract (NTS) when food intake was inhibited and when it had returned to control levels. There was no effect of leptin on pSTAT3 in the medial or lateral arcuate nucleus or in the dorsomedial nucleus of the hypothalamus. VMH pSTAT3 was increased only at day 4 when food intake was inhibited, but NTS pSTAT3 was increased at both 4 and 9 days of infusion. These results suggest that activation of leptin VMH receptors contributes to the suppression of food intake, but that hindbrain receptors contribute to a sustained change in metabolism that maintains a reduced weight and fat mass.NEW & NOTEWORTHY Low-dose, chronic peripheral infusions of leptin produced an initial, transient inhibition of food intake that correlated with signal transducer and activator of transcription 3 (STAT3) activation in the ventromedial hypothalamus (VMH) and nucleus of the solitary tract (NTS). When intake normalized, but weight remained suppressed, the NTS was the only area that remained activated. These data suggest that leptin's primary function is to reduce body fat, that hypophagia is a means of achieving this and that different areas of the brain are responsible for the progressive response.
Collapse
Affiliation(s)
- Ruth B S Harris
- Center for Neuroinflammation and Cardiometabolic Disease, Georgia State University, Atlanta, Georgia, United States
| |
Collapse
|
3
|
Speakman JR, Elmquist JK. Obesity: an evolutionary context. LIFE METABOLISM 2022; 1:10-24. [PMID: 36394061 PMCID: PMC9642988 DOI: 10.1093/lifemeta/loac002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/21/2022] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
People completely lacking body fat (lipodystrophy/lipoatrophy) and those with severe obesity both show profound metabolic and other health issues. Regulating levels of body fat somewhere between these limits would, therefore, appear to be adaptive. Two different models might be contemplated. More traditional is a set point (SP) where the levels are regulated around a fixed level. Alternatively, dual-intervention point (DIP) is a system that tolerates fairly wide variation but is activated when critically high or low levels are breached. The DIP system seems to fit our experience much better than an SP, and models suggest that it is more likely to have evolved. A DIP system may have evolved because of two contrasting selection pressures. At the lower end, we may have been selected to avoid low levels of fat as a buffer against starvation, to avoid disease-induced anorexia, and to support reproduction. At the upper end, we may have been selected to avoid excess storage because of the elevated risks of predation. This upper limit of control seems to have malfunctioned because some of us deposit large fat stores, with important negative health effects. Why has evolution not protected us against this problem? One possibility is that the protective system slowly fell apart due to random mutations after we dramatically reduced the risk of being predated during our evolutionary history. By chance, it fell apart more in some people than others, and these people are now unable to effectively manage their weight in the face of the modern food glut. To understand the evolutionary context of obesity, it is important to separate the adaptive reason for storing some fat (i.e. the lower intervention point), from the nonadaptive reason for storing lots of fat (a broken upper intervention point). The DIP model has several consequences, showing how we understand the obesity problem and what happens when we attempt to treat it.
Collapse
Affiliation(s)
- John R Speakman
- Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental biology, Chinese Academy of Sciences, Beijing, China
- CAS Center of Excellence in Animal Evolution and Genetics, Kunming, China
| | - Joel K Elmquist
- Departments of Internal Medicine and Pharmacology, Center for Hypothalamic Research, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
4
|
Abstract
Human biology has evolved to keep body fat within a range that supports survival. During the last 25 years, obesity biologists have uncovered key aspects of physiology that prevent fat mass from becoming too low. In contrast, the mechanisms that counteract excessive adipose expansion are largely unknown. Evidence dating back to the 1950s suggests the existence of a blood-borne molecule that defends against weight gain. In this article, we discuss the research supporting an "unidentified factor of overfeeding" and models that explain its role in body weight control. If it exists, revealing the identity of this factor could end a long-lasting enigma of energy balance regulation and facilitate a much-needed breakthrough in the pharmacological treatment of obesity.
Collapse
Affiliation(s)
- Jens Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Lund
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Morville
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Murillo AL, Kaiser KA, Smith DL, Peterson CM, Affuso O, Tiwari HK, Allison DB. A Systematic Scoping Review of Surgically Manipulated Adipose Tissue and the Regulation of Energetics and Body Fat in Animals. Obesity (Silver Spring) 2019; 27:1404-1417. [PMID: 31361090 PMCID: PMC6707830 DOI: 10.1002/oby.22511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Surgical manipulations of adipose tissue by removal, or partial lipectomy, have demonstrated body fat compensation and recovered body weight, suggesting that the body is able to resist changes to body composition. However, the mechanisms underlying these observations are not well understood. The purpose of this scoping review is to provide an update on what is currently known about the regulation of energetics and body fat after surgical manipulations of adipose tissue in small mammals. METHODS PubMed and Scopus were searched to identify 64 eligible studies. Outcome measures included body fat, body weight, food intake, and circulating biomarkers. RESULTS Surgeries performed included lipectomy (72%) or transplantation (12%) in mice (35%), rats (35%), and other small mammals. Findings suggested that lipectomy did not have consistent long-term effects on reducing body weight and fat because regain occurred within 12 to 14 weeks post surgery. Hence, biological feedback mechanisms act to resist long-term changes of body weight or fat. Furthermore, whether this weight and fat regain occurred because of "passive" and "active" regulation under the "set point" or "settling point" theories cannot fully be discerned because of limitations in study designs and data collected. CONCLUSIONS The regulation of energetics and body fat are complex and dynamic processes that require further studies of the interplay of genetic, physiological, and behavioral factors.
Collapse
Affiliation(s)
| | - Kathryn A. Kaiser
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Health Behavior Birmingham, Alabama, United States
| | - Daniel L. Smith
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Nutrition Sciences Birmingham, Alabama, United States
| | - Courtney M. Peterson
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Nutrition Sciences Birmingham, Alabama, United States
| | - Olivia Affuso
- Nutrition Obesity Research Center Birmingham, Alabama, United States
- Department of Epidemiology at the University of Alabama at Birmingham, Birmingham, Alabama, United States
| | | | - David B. Allison
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University-Bloomington, Bloomington, Indiana, United States
| |
Collapse
|
6
|
Harris RBS, Desai BN. Fourth-ventricle leptin infusions dose-dependently activate hypothalamic signal transducer and activator of transcription 3. Am J Physiol Endocrinol Metab 2016; 311:E939-E948. [PMID: 27802966 PMCID: PMC5183885 DOI: 10.1152/ajpendo.00343.2016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/18/2016] [Accepted: 10/25/2016] [Indexed: 12/16/2022]
Abstract
Previous studies have shown that very low-dose infusions of leptin into the third or the fourth ventricle alone have little effect on energy balance, but simultaneous low-dose infusions cause rapid weight loss and increased phosphorylation of STAT3 (p-STAT3) in hypothalamic sites that express leptin receptors. Other studies show that injecting high doses of leptin into the fourth ventricle inhibits food intake and weight gain. Therefore, we tested whether fourth-ventricle leptin infusions that cause weight loss are associated with increased leptin signaling in the hypothalamus. In a dose response study 14-day infusions of increasing doses of leptin showed significant hypophagia, weight loss, and increased hypothalamic p-STAT3 in rats receiving at least 0.9 μg leptin/day. In a second study 0.6 μg leptin/day transiently inhibited food intake and reduced carcass fat, but had no significant effect on energy expenditure. In a final study, we identified the localization of STAT3 activation in the hypothalamus of rats receiving 0, 0.3, or 1.2 μg leptin/day. The high dose of leptin, which caused weight loss in the first experiment, increased p-STAT3 in the ventromedial, dorsomedial, and arcuate nuclei of the hypothalamus. The low dose that increased brown fat UCP1 but did not affect body composition in the first experiment had little effect on hypothalamic p-STAT3. We propose that hindbrain leptin increases the precision of control of energy balance by lowering the threshold for leptin signaling in the forebrain. Further studies are needed to directly test this hypothesis.
Collapse
Affiliation(s)
- Ruth B S Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Bhavna N Desai
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia
| |
Collapse
|