1
|
Shen J, Wang Q, Mao Y, Gao W, Duan S. Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (Beijing) 2023; 4:e288. [PMID: 37256211 PMCID: PMC10225743 DOI: 10.1002/mco2.288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Tumor suppressor p53 can transcriptionally activate downstream genes in response to stress, and then regulate the cell cycle, DNA repair, metabolism, angiogenesis, apoptosis, and other biological responses. p53 has seven functional domains and 12 splice isoforms, and different domains and subtypes play different roles. The activation and inactivation of p53 are finely regulated and are associated with phosphorylation/acetylation modification and ubiquitination modification, respectively. Abnormal activation of p53 is closely related to the occurrence and development of cancer. While targeted therapy of the p53 signaling pathway is still in its early stages and only a few drugs or treatments have entered clinical trials, the development of new drugs and ongoing clinical trials are expected to lead to the widespread use of p53 signaling-targeted therapy in cancer treatment in the future. TRIAP1 is a novel p53 downstream inhibitor of apoptosis. TRIAP1 is the homolog of yeast mitochondrial intermembrane protein MDM35, which can play a tumor-promoting role by blocking the mitochondria-dependent apoptosis pathway. This work provides a systematic overview of recent basic research and clinical progress in the p53 signaling pathway and proposes that TRIAP1 is an important therapeutic target downstream of p53 signaling.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Qurui Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Yunan Mao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Wei Gao
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang ProvinceSchool of MedicineHangzhou City UniversityHangzhouZhejiangChina
| |
Collapse
|
2
|
Muñoz-Ayala A, Chimal-Vega B, García-González V. Translation initiation and its relationship with metabolic mechanisms in cancer development, progression and chemoresistance. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:111-141. [PMID: 36088073 DOI: 10.1016/bs.apcsb.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pathways that regulate protein homeostasis (proteostasis) in cells range from mRNA processing to protein degradation; perturbations in regulatory mechanisms of these pathways can lead to oncogenic cellular processes. Protein synthesis modulation failures are common phenomena in cancer cells, wherein specific conditions that promote the translation of protein factors promoting carcinogenesis are present. These specific conditions may be favored by metabolic lipid alterations like those found in metabolic syndrome and obesity. Protein translation modifications have been described in obesity, favoring the translation of protein targets that benefit lipid accumulation; a determining factor is the activity of the cap-binding eukaryotic translation initiation factor 4E (eIF4E), a crosstalk in protein translation and lipogenesis. Besides, alterations of protein translation initiation steps are critical participants for the development of both pathogenic conditions, cancer, and obesity. This chapter is focused on the regulation of recognition and processing of carcinogenic-mRNA and the connections among lipid metabolism and cell signaling pathways that promote oncogenesis, tumoral microenvironment generation and potentially the development of chemoresistance. We performed an in-depth analysis of events, such as those occurring in obesity and dyslipidemias, that may influence protein translation, driving the recognition of certain mRNAs and favoring cancer development and chemoresistance.
Collapse
Affiliation(s)
- Andrea Muñoz-Ayala
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, México; Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali, México.
| |
Collapse
|
3
|
Freitas EDS, Katsanos CS. (Dys)regulation of Protein Metabolism in Skeletal Muscle of Humans With Obesity. Front Physiol 2022; 13:843087. [PMID: 35350688 PMCID: PMC8957804 DOI: 10.3389/fphys.2022.843087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/07/2022] [Indexed: 01/22/2023] Open
Abstract
Studies investigating the proteome of skeletal muscle present clear evidence that protein metabolism is altered in muscle of humans with obesity. Moreover, muscle quality (i.e., strength per unit of muscle mass) appears lower in humans with obesity. However, relevant evidence to date describing the protein turnover, a process that determines content and quality of protein, in muscle of humans with obesity is quite inconsistent. This is due, at least in part, to heterogeneity in protein turnover in skeletal muscle of humans with obesity. Although not always evident at the mixed-muscle protein level, the rate of synthesis is generally lower in myofibrillar and mitochondrial proteins in muscle of humans with obesity. Moreover, alterations in the synthesis of protein in muscle of humans with obesity are manifested more readily under conditions that stimulate protein synthesis in muscle, including the fed state, increased plasma amino acid availability to muscle, and exercise. Current evidence supports various biological mechanisms explaining impairments in protein synthesis in muscle of humans with obesity, but this evidence is rather limited and needs to be reproduced under more defined experimental conditions. Expanding our current knowledge with direct measurements of protein breakdown in muscle, and more importantly of protein turnover on a protein by protein basis, will enhance our understanding of how obesity modifies the proteome (content and quality) in muscle of humans with obesity.
Collapse
Affiliation(s)
| | - Christos S Katsanos
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic in Arizona, Scottsdale, AZ, United States
| |
Collapse
|
4
|
SIRT3-AMPK signaling pathway as a protective target in endothelial dysfunction of early sepsis. Int Immunopharmacol 2022; 106:108600. [PMID: 35217431 DOI: 10.1016/j.intimp.2022.108600] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Extensive vascular endothelial dysfunction usually occurs in sepsis, resulting in high mortality. The purpose of this study was therefore to investigate the role of AMP-dependent protein kinase (AMPK) in the aortic endothelial dysfunction of early sepsis in mice, and the relationship between AMPK and Sirtuin3 (SIRT3). Cecal ligation and puncture (CLP) surgery was performed to establish a mouse sepsis model, and human umbilical vein endothelial cells (HUVECs) were treated with lipopolysaccharide (LPS) to mimic a sepsis model in vitro. We suppressed and increased the activities of AMPK with Dorsomorphin (CC) and Acadesine (AICAR), respectively. 3-TYP (SIRT3 inhibitor) and Honokiol (SIRT3 agonist) were used to alter SIRT3 activity. Then, the inflammatory and endothelial function parameters of the vascular tissue and survival rate were determined. In vivo, the expression of Ser1177 phosphorylation of endothelial nitric oxide synthase (p-eNOS), endothelium-dependent relaxation function, and survival decreased (P < 0.05), while NF-κB and NLRP3 pathways were activated in CLP-induced early sepsis (P < 0.05). Moreover, activation of AMPK significantly reversed the reduction of p-eNOS expression (P < 0.05), prevented endothelial dysfunction (P < 0.05), deactivated NF-κB and NLRP3 pathways (P < 0.05), and improved survival (P < 0.05) in septic mice. However, AMPK inhibition led to opposite effects (P < 0.05). In addition, changing the activity of AMPK had little effect on SIRT3 expression (P > 0.05), while the expression of p-AMPK varied with the inhibition or activation of SIRT3 (P < 0.05), which was further demonstrated using in vitro experiments. Together, the results showed that the SIRT3-AMPK signaling pathway played an important role in inhibiting vascular inflammation and endothelial dysfunction during early sepsis.
Collapse
|
5
|
McNair BD, Schlatter JA, Cook RF, Yusifova M, Bruns DR. Inhibition of mTOR by rapamycin does not improve hypoxic pulmonary hypertension-induced right heart failure in old mice. Exp Gerontol 2021; 151:111395. [PMID: 33971279 DOI: 10.1016/j.exger.2021.111395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023]
Abstract
Inhibition of the mammalian target of rapamycin (mTOR) by rapamycin attenuates heart failure (HF) and age-associated changes in left ventricular (LV) function. Rapamycin has also been suggested as a therapy for pulmonary hypertension (PH) and concomitant right heart failure (PH-RHF) based on reports of elevated mTOR signaling in young models with PH. However, rapamycin has yet to be tested in the setting of aging, PH, and right heart disease despite the fact that RV function predicts survival in both age-related HF as well as several pulmonary disease states including PH. Thus we tested the hypothesis that rapamycin treatment would attenuate hypoxic PH-RHF in old mice using a mouse model of hypobaric hypoxia (HH)-induced PH and right ventricular (RV) remodeling. Exposure to HH resulted in significant loss of body weight which was exacerbated by rapamycin. HH elevated lung and RV weight, RV wall thickness as well as RV systolic dysfunction as evidenced by RV stroke volume and cardiac output. While rapamycin rescued pulmonary artery acceleration time in males, it generally did not improve other indexes cardiopulmonary remodeling or function. As expected, HH induced expression of hypoxia-regulated genes in the RV and the lungs; however, this transcriptional activation was attenuated by rapamycin, representing a potential mechanism by which rapamycin is detrimental in the aged RV in the setting of chronic hypoxia. Together, we demonstrate that rapamycin is not a viable therapeutic in hypoxic PH in old mice, likely due to exacerbated loss of body weight in this setting. We suggest that future efforts should take into consideration the differences between the RV and LV and the interaction between mTOR and hypoxia in the setting of age-related disease.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Jacob A Schlatter
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Musharraf Yusifova
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America
| | - Danielle R Bruns
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY, United States of America.
| |
Collapse
|
6
|
Brown LA, Perry RA, Haynie WS, Lee DE, Rosa-Caldwell ME, Brown JL, Greene NP, Wolchok JC, Washington TA. Moderators of skeletal muscle maintenance are compromised in sarcopenic obese mice. Mech Ageing Dev 2021; 194:111404. [PMID: 33249192 DOI: 10.1016/j.mad.2020.111404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022]
Abstract
The purpose of this study was to determine whether sarcopenic obesity accelerates impairments in muscle maintenance through the investigation of cell cycle progression and myogenic, inflammatory, catabolic and protein synthetic signaling in mouse gastrocnemius muscles. At 4 weeks old, 24 male C57BL/6 mice were fed either a high fat diet (HFD, 60 % fat) or normal chow (NC, 17 % fat) for either 8-12 weeks or 21-23 months. At 3-4 months or 22-24 months the gastrocnemius muscles were excised. In addition, plasma was taken for C2C12 differentiation experiments. Mean cross-sectional area (CSA) was reduced by 29 % in aged HFD fed mice compared to the aged NC mice. MyoD was roughly 50 % greater in the aged mice compared to young mice, whereas TNF-α and IGF-1 gene expression in aged HFD fed mice were reduced by 52 % and 65 % in comparison to aged NC fed mice, respectively. Myotubes pretreated with plasma from aged NC fed mice had 14 % smaller myotube diameter than their aged HFD counterparts. Aged obese mice had greater impairments to mediators of muscle maintenance as evident by reductions in muscle mass, CSA, along with alterations in cell cycle regulation and inflammatory and insulin signaling.
Collapse
Affiliation(s)
- Lemuel A Brown
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Richard A Perry
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523 United States
| | - Wesley S Haynie
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States
| | - David E Lee
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, United States; Department of Chemistry, Duke University, Durham, NC 27708 United States
| | - Megan E Rosa-Caldwell
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jacob L Brown
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States; Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
| | - Nicholas P Greene
- Integrative Muscle Metabolism Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR, 72701 United States
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701 United States
| | - Tyrone A Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR 72701 United States.
| |
Collapse
|
7
|
Greene E, Cauble R, Dhamad AE, Kidd MT, Kong B, Howard SM, Castro HF, Campagna SR, Bedford M, Dridi S. Muscle Metabolome Profiles in Woody Breast-(un)Affected Broilers: Effects of Quantum Blue Phytase-Enriched Diet. Front Vet Sci 2020; 7:458. [PMID: 32851035 PMCID: PMC7417653 DOI: 10.3389/fvets.2020.00458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022] Open
Abstract
Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC-HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change -1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.
Collapse
Affiliation(s)
- Elizabeth Greene
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Reagan Cauble
- Department of Animal Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Ahmed E Dhamad
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Michael T Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara M Howard
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Hector F Castro
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Shawn R Campagna
- Biological and Small Molecule Mass Spectrometry Core, Department of Chemistry, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
8
|
Waise TMZ, Rasti M, Duca FA, Zhang SY, Bauer PV, Rhodes CJ, Lam TKT. Inhibition of upper small intestinal mTOR lowers plasma glucose levels by inhibiting glucose production. Nat Commun 2019; 10:714. [PMID: 30755615 PMCID: PMC6372624 DOI: 10.1038/s41467-019-08582-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/16/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose homeostasis is partly controlled by the energy sensor mechanistic target of rapamycin (mTOR) in the muscle and liver. However, whether mTOR in the small intestine affects glucose homeostasis in vivo remains unknown. Here, we first report that delivery of rapamycin or an adenovirus encoding the dominant negative acting mTOR-mutated protein into the upper small intestine is sufficient to inhibit small intestinal mTOR signaling and lower glucose production in rodents with high fat diet-induced insulin resistance. Second, we found that molecular activation of small intestinal mTOR blunts the glucose-lowering effect of the oral anti-diabetic agent metformin, while inhibiting small intestinal mTOR alone lowers plasma glucose levels by inhibiting glucose production in rodents with diabetes as well. Thus, these findings illustrate that inhibiting upper small intestinal mTOR is sufficient and necessary to lower glucose production and enhance glucose homeostasis, and thereby unveil a previously unappreciated glucose-lowering effect of small intestinal mTOR. The mechanistic target of rapamycin (TOR) functions as an energy sensor and contributes to the control of glucose homeostasis. Here, the authors show that mTOR in the upper small intestine regulates hepatic glucose production and is required for the glucose lowering effect of metformin.
Collapse
Affiliation(s)
- T M Zaved Waise
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Mozhgan Rasti
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Frank A Duca
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Song-Yang Zhang
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada
| | - Paige V Bauer
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, 60637, USA.,MedImmune LLC, Gaithersburg, MD, 20878, USA
| | - Tony K T Lam
- Toronto General Hospital Research Institute, UHN, Toronto, ON, M5G 1L7, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, M5G 2C4, Canada.
| |
Collapse
|
9
|
Le Bacquer O, Combe K, Montaurier C, Salles J, Giraudet C, Patrac V, Domingues-Faria C, Guillet C, Louche K, Boirie Y, Sonenberg N, Moro C, Walrand S. Muscle metabolic alterations induced by genetic ablation of 4E-BP1 and 4E-BP2 in response to diet-induced obesity. Mol Nutr Food Res 2017; 61. [DOI: 10.1002/mnfr.201700128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/07/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Affiliation(s)
| | - Kristell Combe
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | - Jérôme Salles
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
| | | | | | | | | | - Katie Louche
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | - Yves Boirie
- Université Clermont Auvergne; INRA; Clermont-Ferrand France
- CHU Clermont-Ferrand; Service Nutrition Clinique; Clermont Ferrand France
| | - Nahum Sonenberg
- Department of Biochemistry; McGill University; Montreal QC Canada
| | - Cédric Moro
- INSERM UMR1048; Institut des Maladies Cardiovasculaires et Métaboliques; Université Paul Sabatier; Toulouse France
| | | |
Collapse
|
10
|
Insights for Oxidative Stress and mTOR Signaling in Myocardial Ischemia/Reperfusion Injury under Diabetes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6437467. [PMID: 28298952 PMCID: PMC5337354 DOI: 10.1155/2017/6437467] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/01/2016] [Accepted: 01/04/2017] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus (DM) displays a high morbidity. The diabetic heart is susceptible to myocardial ischemia/reperfusion (MI/R) injury. Impaired activation of prosurvival pathways, endoplasmic reticulum (ER) stress, increased basal oxidative state, and decreased antioxidant defense and autophagy may render diabetic hearts more vulnerable to MI/R injury. Oxidative stress and mTOR signaling crucially regulate cardiometabolism, affecting MI/R injury under diabetes. Producing reactive oxygen species (ROS) and reactive nitrogen species (RNS), uncoupling nitric oxide synthase (NOS), and disturbing the mitochondrial quality control may be three major mechanisms of oxidative stress. mTOR signaling presents both cardioprotective and cardiotoxic effects on the diabetic heart, which interplays with oxidative stress directly or indirectly. Antihyperglycemic agent metformin and newly found free radicals scavengers, Sirt1 and CTRP9, may serve as promising pharmacological therapeutic targets. In this review, we will focus on the role of oxidative stress and mTOR signaling in the pathophysiology of MI/R injury in diabetes and discuss potential mechanisms and their interactions in an effort to provide some evidence for cardiometabolic targeted therapies for ischemic heart disease (IHD).
Collapse
|
11
|
Lipina C, Hundal HS. Is REDD1 a Metabolic Éminence Grise? Trends Endocrinol Metab 2016; 27:868-880. [PMID: 27613400 PMCID: PMC5119498 DOI: 10.1016/j.tem.2016.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/31/2023]
Abstract
Regulated in development and DNA damage response 1 (REDD1) has been functionally linked to the control of diverse cellular processes due, at least in part, to its ability to repress mammalian or mechanistic Target of Rapamycin (mTOR) Complex-1 (mTORC1), a key protein complex controlled by hormonal and nutrient cues. Notably, emerging evidence suggests that REDD1 also regulates several pathways involved in modulating energy balance and metabolism. Herein, we discuss evidence implicating REDD1 as a key modulator of insulin action and metabolic function, including its potential contribution to mitochondrial biology and pancreatic islet function. Collectively, the available evidence suggests that REDD1 has a more prominent role in energy homeostasis than was previously thought, and implicates REDD1 as a potential therapeutic target for treatment of metabolic disorders.
Collapse
Affiliation(s)
- Christopher Lipina
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Harinder S Hundal
- Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
12
|
Regulation of skeletal muscle insulin-stimulated signaling through the MEK-REDD1-mTOR axis. Biochem Biophys Res Commun 2016; 482:1067-1072. [PMID: 27913296 DOI: 10.1016/j.bbrc.2016.11.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/22/2023]
Abstract
Recent findings in adipocytes suggest that mitogen-activated protein kinase (MAPK)/extracellular-regulated signaling kinase (ERK) kinase 1/2 (MEK1/2) signaling regulates regulated in development and DNA damage 1 (REDD1) protein expression. Similarly, our previous work show that a lack of REDD1 protein expression, and associated hyperactive basal mechanistic target of rapamycin (mTOR) signaling, limits skeletal muscle's response to insulin. Therefore, we sought to determine: 1) if MEK1/2 inhibition is sufficient to reduce REDD1 protein expression and subsequently insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation via negative feedback of hyperactive mTOR in REDD1 wild-type (WT) mice and 2) if rapamycin-mediated mTOR inhibition is sufficient to improve IRS-1 tyrosine phosphorylation in REDD1 knockout (KO) mice. REDD1 WT mice were injected with 10 mg/kg BW of the MEK1/2 non-competitive inhibitor, PD184352, 3 h prior to acute insulin treatment. In separate studies, REDD1 KO mice were injected with 5 mg/kg BW of the mTOR inhibitor, rapamycin, 3 h prior to acute insulin treatment. Following the inhibitor treatment period, markers of insulin signaling activation (IRS-1 Y1222, MEK1/2 S217/221, ERK1/2 T202/Y204), REDD1, and mTOR signaling activation (S6K1 T389, rpS6 S240/244) were examined in skeletal muscle collected before and after a 10 min insulin treatment. PD184352 treatment reduced MEK/ERK phosphorylation and REDD1 protein expression, independent of insulin. This reduction in REDD1 protein expression was associated with elevated basal S6K1 and rpS6 phosphorylation and reduced insulin stimulated IRS-1 phosphorylation. Conversely, rapamycin inhibited S6K1 and rpS6 activation, and significantly improved insulin -stimulated activation of IRS-1 and MEK1/2 in KO mice. These data support that REDD1 is required for normal insulin-stimulated signaling, and that a subtle balance exists between MEK1/2, REDD1, and mTOR for the proper regulation of insulin signaling.
Collapse
|
13
|
Beals JW, Sukiennik RA, Nallabelli J, Emmons RS, van Vliet S, Young JR, Ulanov AV, Li Z, Paluska SA, De Lisio M, Burd NA. Anabolic sensitivity of postprandial muscle protein synthesis to the ingestion of a protein-dense food is reduced in overweight and obese young adults. Am J Clin Nutr 2016; 104:1014-1022. [PMID: 27604771 DOI: 10.3945/ajcn.116.130385] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Excess body fat diminishes muscle protein synthesis rates in response to hyperinsulinemic-hyperaminoacidemic clamps. However, muscle protein synthetic responses after the ingestion of a protein-dense food source across a range of body mass indexes (BMIs) have not been compared. OBJECTIVE We compared the myofibrillar protein synthetic response and underlying nutrient-sensing mechanisms after the ingestion of lean pork between obese, overweight, and healthy-weight adults. DESIGN Ten healthy-weight [HW; BMI (in kg/m2): 22.7 ± 0.4], 10 overweight (OW; BMI: 27.1 ± 0.5), and 10 obese (OB; BMI: 35.9 ± 1.3) adults received primed continuous l-[ring-13C6]phenylalanine infusions. Blood and muscle biopsy samples were collected before and after the ingestion of 170 g pork (36 g protein and 3 g fat) to assess skeletal muscle anabolic signaling, amino acid transporters [large neutral and small neutral amino acid transporters (LAT1, SNAT2) and CD98], and myofibrillar protein synthesis. RESULTS At baseline, OW and OB groups showed greater relative amounts of mammalian target of rapamycin complex 1 (mTORC1) protein than the HW group. Pork ingestion increased mTORC1 phosphorylation only in the HW group (P = 0.001). LAT1 and SNAT2 protein content increased during the postprandial period in all groups (time effect, P < 0.05). Basal myofibrillar protein synthetic responses were similar between groups (P = 0.43). However, myofibrillar protein synthetic responses (0-300 min) were greater in the HW group (1.6-fold; P = 0.005) after pork ingestion than in the OW and OB groups. CONCLUSIONS There is a diminished myofibrillar protein synthetic response to the ingestion of protein-dense food in overweight and obese adults compared with healthy-weight controls. These data indicate that impaired postprandial myofibrillar protein synthetic response may be an early defect with increasing fat mass, potentially dependent on altered anabolic signals, that reduces muscle sensitivity to food ingestion. This trial was registered at clinicaltrials.gov as NCT02613767.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhong Li
- Roy J Carver Biotechnology Center, and
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Michael De Lisio
- Division of Nutritional Sciences, Department of Kinesiology and Community Health
| | - Nicholas A Burd
- Division of Nutritional Sciences, Department of Kinesiology and Community Health,
| |
Collapse
|
14
|
Hatakeyama S, Summermatter S, Jourdain M, Melly S, Minetti GC, Lach-Trifilieff E. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments. Skelet Muscle 2016; 6:26. [PMID: 27462398 PMCID: PMC4960708 DOI: 10.1186/s13395-016-0098-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. Methods In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Results Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time-to-progression. Conclusions Anti-ActRII blockade is an effective intervention against cancer cachexia providing benefit even in the presence of anti-cancer therapies. Co-treatment comprising chemotherapies and ActRII inhibitors might constitute a promising new approach to alleviate chemotherapy- and cancer-related wasting conditions and extend survival rates in cachectic cancer patients. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0098-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shinji Hatakeyama
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Serge Summermatter
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Marie Jourdain
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Stefan Melly
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Giulia C Minetti
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Estelle Lach-Trifilieff
- MusculoSkeletal Diseases, Novartis Institutes for Biomedical Research, Novartis Pharma AG, CH-4002 Basel, Switzerland
| |
Collapse
|
15
|
Gordon BS, Steiner JL, Williamson DL, Lang CH, Kimball SR. Emerging role for regulated in development and DNA damage 1 (REDD1) in the regulation of skeletal muscle metabolism. Am J Physiol Endocrinol Metab 2016; 311:E157-74. [PMID: 27189933 PMCID: PMC4967146 DOI: 10.1152/ajpendo.00059.2016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/11/2016] [Indexed: 12/25/2022]
Abstract
Since its discovery, the protein regulated in development and DNA damage 1 (REDD1) has been implicated in the cellular response to various stressors. Most notably, its role as a repressor of signaling through the central metabolic regulator, the mechanistic target of rapamycin in complex 1 (mTORC1) has gained considerable attention. Not surprisingly, changes in REDD1 mRNA and protein have been observed in skeletal muscle under various physiological conditions (e.g., nutrient consumption and resistance exercise) and pathological conditions (e.g., sepsis, alcoholism, diabetes, obesity) suggesting a role for REDD1 in regulating mTORC1-dependent skeletal muscle protein metabolism. Our understanding of the causative role of REDD1 in skeletal muscle metabolism is increasing mostly due to the availability of genetically modified mice in which the REDD1 gene is disrupted. Results from such studies provide support for an important role for REDD1 in the regulation of mTORC1 as well as reveal unexplored functions of this protein in relation to other aspects of skeletal muscle metabolism. The goal of this work is to provide a comprehensive review of the role of REDD1 (and its paralog REDD2) in skeletal muscle during both physiological and pathological conditions.
Collapse
Affiliation(s)
- Bradley S Gordon
- Institute of Exercise Physiology and Wellness, The University of Central Florida, Orlando, Florida;
| | - Jennifer L Steiner
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and
| |
Collapse
|
16
|
Caloric Restriction Normalizes Obesity-Induced Alterations on Regulators of Skeletal Muscle Growth Signaling. Lipids 2016; 51:905-12. [PMID: 27289530 DOI: 10.1007/s11745-016-4168-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
The objective of this study was to establish the impact of caloric restriction on high fat diet-induced alterations on regulators of skeletal muscle growth. We hypothesized that caloric restriction would reverse the negative effects of high fat diet-induced obesity on REDD1 and mTOR-related signaling. Following an initial 8 week period of HF diet-induced obesity, caloric restriction (CR ~30 %) was employed while mice continued to consume either a low (LF) or high fat (HF) diet for 8 weeks. Western analysis of skeletal muscle showed that CR reduced (p < 0.05) the obesity-related effects on the lipogenic protein, SREBP1. Likewise, CR reduced (p < 0.05) the obesity-related effects on the hyperactivation of mTORC1 and ERK1/2 signaling to levels comparable to the LF mice. CR also reduced (p < 0.05) obesity-induced expression of negative regulators of growth, REDD1 and cleaved caspase 3. These findings have implications for on the reversibility of dysregulated growth signaling in obese skeletal muscle, using short-term caloric restriction.
Collapse
|
17
|
Ray AD, Personius KE, Williamson DL, Dungan CM, Dhillon SS, Hershberger PA. Vitamin D3 intake modulates diaphragm but not peripheral muscle force in young mice. J Appl Physiol (1985) 2016; 120:1124-31. [PMID: 26968027 DOI: 10.1152/japplphysiol.00643.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
Recent data support an important role for vitamin D in respiratory health. We tested the hypothesis that dietary vitamin D3 (VD3) intake modulates diaphragm (DIA) strength. Four-week-old female A/J mice (n = 10/group) were randomized to receive diets containing 100 IU VD3/kg (low), 1,000 IU VD3/kg (reference), or 10,000 IU VD3/kg (pharmacologic). After 6 wk of dietary intervention, plasma 25-hydroxyvitamin D3 (25D3) levels, DIA and extensor digitorum longus (EDL) in vitro contractile properties, and fiber cross-sectional area (CSA) were measured. Myosin heavy chain (MHC) composition and Akt/Foxo3A growth signaling were studied in the DIA and tibialis anterior. Mice fed the low, reference, and pharmacologic diets had average 25D3 levels of 7, 21, and 59 ng/ml, respectively. Maximal DIA force, twitch force, and fiber CSA were reduced 26%, 28%, and 10% (P < 0.01), respectively, in mice receiving the low-VD3 diet compared with the reference and pharmacologic diets. EDL force parameters were unaltered by diet. Effects of VD3 intake on DIA force were not observed in mice that began dietary intervention at 12 wk of age. VD3 intake did not alter the MHC composition of the DIA, indicating that decreases in force and CSA in young mice were not due to a switch in fiber type. Paradoxically, low VD3 intake was associated with activation of anabolic signaling in muscle (hyperphosphorylation of Akt and Foxo3A and decreased expression of autophagy marker LC3). These studies identify a potential role of dietary VD3 in regulating DIA development and insulin sensitivity.
Collapse
Affiliation(s)
- Andrew D Ray
- Department of Rehabilitation Science, University at Buffalo, Buffalo, New York;
| | | | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, New York
| | - Samjot S Dhillon
- Department of Medicine, Thoracic Oncology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
18
|
Dungan CM, Li Z, Wright DC, Williamson DL. Hyperactive mTORC1 signaling is unaffected by metformin treatment in aged skeletal muscle. Muscle Nerve 2015; 53:107-17. [PMID: 25926238 DOI: 10.1002/mus.24698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 04/22/2015] [Accepted: 04/28/2015] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Appropriate activation of growth signaling pathways, specifically mammalian target of rapamycin complex 1 (mTORC1), is central to muscle mass and metabolism. The goal of these studies was to examine the effects of metformin on mTORC1 signaling in aged skeletal muscle in an attempt to normalize growth signaling. METHODS Aged (23m) and young (3m) male mice were fed a low fat diet without or with 0.5% metformin for up to 8 weeks, then mTORC1-related signaling was examined in the plantar flexor complex. RESULTS Metformin had no significant effect on lowering body weight or muscle mass in aged animals, nor altered p70 S6 Kinase 1 (S6K1) and 4E-binding protein 1 (4E-BP1) phosphorylation. However, it significantly (P < 0.05) reduced body weight and lowered S6K1 and rpS6 phosphorylation in the young. CONCLUSIONS Collectively, these data suggest metformin is ineffective at normalizing growth signaling in aged skeletal muscle.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| | - David C Wright
- Department of Human Health and Nutritional Sciences, University of Guelph, Ontario, Canada
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
19
|
Péladeau C, Ahmed A, Amirouche A, Crawford Parks TE, Bronicki LM, Ljubicic V, Renaud JM, Jasmin BJ. Combinatorial therapeutic activation with heparin and AICAR stimulates additive effects on utrophin A expression in dystrophic muscles. Hum Mol Genet 2015; 25:24-43. [PMID: 26494902 DOI: 10.1093/hmg/ddv444] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/19/2015] [Indexed: 01/13/2023] Open
Abstract
Upregulation of utrophin A is an attractive therapeutic strategy for treating Duchenne muscular dystrophy (DMD). Over the years, several studies revealed that utrophin A is regulated by multiple transcriptional and post-transcriptional mechanisms, and that pharmacological modulation of these pathways stimulates utrophin A expression in dystrophic muscle. In particular, we recently showed that activation of p38 signaling causes an increase in the levels of utrophin A mRNAs and protein by decreasing the functional availability of the destabilizing RNA-binding protein called K-homology splicing regulatory protein, thereby resulting in increases in the stability of existing mRNAs. Here, we treated 6-week-old mdx mice for 4 weeks with the clinically used anticoagulant drug heparin known to activate p38 mitogen-activated protein kinase, and determined the impact of this pharmacological intervention on the dystrophic phenotype. Our results show that heparin treatment of mdx mice caused a significant ∼1.5- to 3-fold increase in utrophin A expression in diaphragm, extensor digitorum longus and tibialis anterior (TA) muscles. In agreement with these findings, heparin-treated diaphragm and TA muscle fibers showed an accumulation of utrophin A and β-dystroglycan along their sarcolemma and displayed improved morphology and structural integrity. Moreover, combinatorial drug treatment using both heparin and 5-amino-4-imidazolecarboxamide riboside (AICAR), the latter targeting 5' adenosine monophosphate-activated protein kinase and the transcriptional activation of utrophin A, caused an additive effect on utrophin A expression in dystrophic muscle. These findings establish that heparin is a relevant therapeutic agent for treating DMD, and illustrate that combinatorial treatment of heparin with AICAR may serve as an effective strategy to further increase utrophin A expression in dystrophic muscle via activation of distinct signaling pathways.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Aatika Ahmed
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Adel Amirouche
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Tara E Crawford Parks
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Lucas M Bronicki
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vladimir Ljubicic
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine and Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
20
|
Williamson DL, Dungan CM, Mahmoud AM, Mey JT, Blackburn BK, Haus JM. Aberrant REDD1-mTORC1 responses to insulin in skeletal muscle from Type 2 diabetics. Am J Physiol Regul Integr Comp Physiol 2015; 309:R855-63. [PMID: 26269521 PMCID: PMC4666944 DOI: 10.1152/ajpregu.00285.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022]
Abstract
The objective of this study was to establish whether alterations in the REDD1-mTOR axis underlie skeletal muscle insensitivity to insulin in Type 2 diabetic (T2D), obese individuals. Vastus lateralis muscle biopsies were obtained from lean, control and obese, T2D subjects under basal and after a 2-h hyperinsulinemic (40 mU·m(-2)·min(-1))-euglycemic (5 mM) clamp. Muscle lysates were examined for total REDD1, and phosphorylated Akt, S6 kinase 1 (S6K1), 4E-BP1, ERK1/2, and MEK1/2 via Western blot analysis. Under basal conditions [(-) insulin], T2D muscle exhibited higher S6K1 and ERK1/2 and lower 4E-BP1 phosphorylation (P < 0.05), as well as elevations in blood cortisol, glucose, insulin, glycosylated hemoglobin (P < 0.05) vs. lean controls. Following insulin infusion, whole body glucose disposal rates (GDR; mg/kg/min) were lower (P < 0.05) in the T2D vs. the control group. The basal-to-insulin percent change in REDD1 expression was higher (P < 0.05) in muscle from the T2D vs. the control group. Whereas, the basal-to-insulin percent change in muscle Akt, S6K1, ERK1/2, and MEK1/2 phosphorylation was significantly lower (P < 0.05) in the T2D vs. the control group. Findings from this study propose a REDD1-regulated mechanism in T2D skeletal muscle that may contribute to whole body insulin resistance and may be a target to improve insulin action in insulin-resistant individuals.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York; and
| | - Abeer M Mahmoud
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob T Mey
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Brian K Blackburn
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| | - Jacob M Haus
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
21
|
Brown LA, Lee DE, Patton JF, Perry RA, Brown JL, Baum JI, Smith-Blair N, Greene NP, Washington TA. Diet-induced obesity alters anabolic signalling in mice at the onset of skeletal muscle regeneration. Acta Physiol (Oxf) 2015; 215:46-57. [PMID: 26052759 DOI: 10.1111/apha.12537] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/03/2015] [Accepted: 05/31/2015] [Indexed: 12/15/2022]
Abstract
AIM Obesity is classified as a metabolic disorder that is associated with delayed muscle regeneration following damage. For optimal skeletal muscle regeneration, inflammation along with extracellular matrix remodelling and muscle growth must be tightly regulated. Moreover, the regenerative process is dependent on the activation of myogenic regulatory factors (MRFs) for myoblast proliferation and differentiation. The purpose of this study was to determine how obesity alters inflammatory and protein synthetic signalling and MRF expression at the onset of muscle regeneration in mice. METHODS Forty-eight male C57BL/6J mice (3 weeks old) were randomly assigned to either a high-fat diet (HFD, 60% fat) or a lean diet (10% fat) for 12 weeks. At 15 weeks, bupivacaine was injected into the tibialis anterior (TA) of the injured group (n = 5-8/group) and PBS was injected into the control (n = 5-6). The TA was excised 3 or 28 days after injection. RESULTS We demonstrated impaired muscle regeneration in obese mice. The obese mice had reduced IL-6, MyoD and IGF-1 mRNA abundance compared to the lean mice (P < 0.05). Three days following muscle damage, TNF-α mRNA and protein levels of P-STAT3 and P-Akt were 14-fold, fourfold and fivefold greater in the lean mice respectively. However, there were no differences observed in the obese injured group compared to the uninjured group. Moreover, p70S6K1 was threefold greater in lean injured mice compared to uninjured but was reduced by 28% in the obese injured mice. CONCLUSION Obese mice have impaired inflammatory and protein synthetic signalling that may negatively influence muscle regeneration.
Collapse
Affiliation(s)
- L. A. Brown
- Exercise Muscle Biology Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - D. E. Lee
- Integrative Muscle Metabolism Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - J. F. Patton
- Exercise Muscle Biology Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - R. A. Perry
- Exercise Muscle Biology Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - J. L. Brown
- Integrative Muscle Metabolism Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - J. I. Baum
- Department of Food Science; University of Arkansas; Fayetteville AR USA
| | - N. Smith-Blair
- Eleanor Mann School of Nursing; University of Arkansas; Fayetteville AR USA
| | - N. P. Greene
- Integrative Muscle Metabolism Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| | - T. A. Washington
- Exercise Muscle Biology Laboratory; Department of Health, Human Performance and Recreation; University of Arkansas; Fayetteville AR USA
| |
Collapse
|
22
|
Das A, Salloum FN, Filippone SM, Durrant DE, Rokosh G, Bolli R, Kukreja RC. Inhibition of mammalian target of rapamycin protects against reperfusion injury in diabetic heart through STAT3 signaling. Basic Res Cardiol 2015; 110:31. [PMID: 25911189 DOI: 10.1007/s00395-015-0486-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Diabetic patients suffer augmented severity of myocardial infarction. Excessive activation of the mammalian target of rapamycin (mTOR) and decreased activation of STAT3 are implicated in diabetic complications. Considering the potent cardioprotective effect of mTOR inhibitor, rapamycin, we hypothesized that reperfusion therapy with rapamycin would reduce infarct size in the diabetic hearts through STAT3 signaling. Hearts from adult male db/db or wild type (WT) C57 mice were isolated and subjected to 30 min of normothermic global ischemia and 60 min of reperfusion in Langendorff mode. Rapamycin (100 nM) was infused at the onset of reperfusion. Myocardial infarct size (IS) was significantly reduced in rapamycin-treated mice (13.3 ± 2.4 %) compared to DMSO vehicle control (35.9 ± 0.9 %) or WT mice (27.7 ± 1.1 %). Rapamycin treatment restored phosphorylation of STAT3 and enhanced AKT phosphorylation (target of mTORC2), but significantly reduced ribosomal protein S6 phosphorylation (target of mTORC1) in the diabetic heart. To determine the cause and effect relationship of STAT3 in cardioprotection, inducible cardiac-specific STAT3-deficient (MCM TG:STAT3(flox/flox)) and WT mice (MCM TG:STAT3(flox/flox)) were made diabetic by feeding high fat diet (HFD). Rapamycin given at reperfusion reduced IS in WT mice but not in STAT3-deficient mice following I/R. Moreover, cardiomyocytes isolated from HFD-fed WT mice showed resistance against necrosis (trypan blue staining) and apoptosis (TUNEL assay) when treated with rapamycin during reoxygenation following simulated ischemia. Such protection was absent in cardiomyocytes from HFD-fed STAT3-deficient mice. STAT3 signaling plays critical role in reducing IS and attenuates cardiomyocyte death following reperfusion therapy with rapamycin in diabetic heart.
Collapse
Affiliation(s)
- Anindita Das
- Division of Cardiology, Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Fat-specific protein 27 (FSP27) plays a pivotal role in controlling the formation of large lipid droplet and energy metabolism. The cellular levels of FSP27 are tightly regulated through the proteasomal ubiquitin-mediated degradation. However, the upstream signals that trigger FSP27 degradation and the underlying mechanism(s) have yet to be identified. Here we show that AMP-activated protein kinase (AMPK) activation by AICAR (5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide) or phenformin induced the ubiquitination of FSP27 and promoted its degradation in 3T3-L1 adipocytes. The levels of FSP27 protein could be maintained by either knocking down AMPKα1 or blocking proteasomal pathway. Moreover, AICAR treatment induced multilocularization of LDs in 3T3-L1 adipocytes, reminiscent of the morphological changes in cells depleted of FSP27. Furthermore, mass spectrometry-based proteomic analysis identified heat shock cognate 70 (HSC70) as a novel binding protein of FSP27. The specific interaction was confirmed by co-immunoprecipitation of both ectopically expressed and endogenous proteins. Importantly, knockdown of HSC70 by small interference RNA resulted in increased half-life of FSP27 in cells treated with a protein synthesis inhibitor cycloheximide (CHX) or AICAR. However, silencing of the E3 ubiquitin ligase CHIP (COOH terminus of HSC70-interacting protein) failed to alter the stability of FSP27 protein under both conditions. Taken together, our data indicate that AMPK is a negative regulator of FSP27 stability through the proteasomal ubiquitin-dependent protein catabolic process. Promotion of FSP27 degradation may be an important factor responsible for the beneficial effect of AMPK activators on energy metabolism.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry and Molecular Biology, HEAL Program, and
| | - Bradlee L Heckmann
- Department of Biochemistry and Molecular Biology, HEAL Program, and Mayo Graduate School, Rochester, Minnesota
| | - Xitao Xie
- Department of Biochemistry and Molecular Biology, HEAL Program, and
| | | | - Jun Liu
- Department of Biochemistry and Molecular Biology, HEAL Program, and Division of Endocrinology, Mayo Clinic in Arizona, Scottsdale, Arizona; and
| |
Collapse
|
24
|
Li Z, Dungan CM, Carrier B, Rideout TC, Williamson DL. Alpha-lipoic acid supplementation reduces mTORC1 signaling in skeletal muscle from high fat fed, obese Zucker rats. Lipids 2014; 49:1193-201. [PMID: 25366515 DOI: 10.1007/s11745-014-3964-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/13/2014] [Indexed: 12/27/2022]
Abstract
The mammalian target of rapamycin (mTOR) signaling pathway is hyperactive in liver, adipose and skeletal muscle tissues of obese rodents. Alpha-lipoic acid (αLA) has been well accepted as a weight-loss treatment, though there are limited studies on its effect on mTOR signaling in high-fat fed, obese rodents. Therefore, the goal of this study was to determine mTOR signaling and oxidative protein alterations in skeletal muscle of high-fat fed, obese rats after αLA supplementation. Phosphorylation of the mTOR substrate, eukaryotic initiation factor (eIF) 4E-binding protein 1 (4E-BP1) and eIF4B were significantly reduced (p < 0.05) in muscle from αLA supplemented rats. Activation of AMP-activated protein kinase (AMPK), an mTOR inhibitory kinase, was higher (p < 0.05) in the αLA group. Protein expression of markers of oxidative metabolism, acetyl CoA carboxylase (ACC), cytochrome c oxidase IV (COX IV), peroxisome proliferator-activated receptor (PPAR), and PPAR gamma coactivator 1-alpha (PGC-1α) were significantly higher (p < 0.05) after αLA supplementation compared to non-supplemented group. Our findings show that αLA supplementation limits the negative ramifications of consuming a high fat diet on skeletal muscle markers of oxidative metabolism and mTORC1 signaling.
Collapse
Affiliation(s)
- Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, SUNY, 2 Sherman Hall (Office)/5 Sherman Hall (Lab), Buffalo, NY, 14214, USA
| | | | | | | | | |
Collapse
|
25
|
Dungan CM, Wright DC, Williamson DL. Lack of REDD1 reduces whole body glucose and insulin tolerance, and impairs skeletal muscle insulin signaling. Biochem Biophys Res Commun 2014; 453:778-83. [PMID: 25445588 DOI: 10.1016/j.bbrc.2014.10.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/07/2014] [Indexed: 12/21/2022]
Abstract
A lack of the REDD1 promotes dysregulated growth signaling, though little has been established with respect to the metabolic role of REDD1. Therefore, the goal of this study was to determine the role of REDD1 on glucose and insulin tolerance, as well as insulin stimulated growth signaling pathway activation in skeletal muscle. First, intraperitoneal (IP) injection of glucose or insulin were administered to REDD1 wildtype (WT) versus knockout (KO) mice to examine changes in blood glucose over time. Next, alterations in skeletal muscle insulin (IRS-1, Akt, ERK 1/2) and growth (4E-BP1, S6K1, REDD1) signaling intermediates were determined before and after IP insulin treatment (10min). REDD1 KO mice were both glucose and insulin intolerant when compared to WT mice, evident by higher circulating blood glucose concentrations and a greater area under the curve following IP injections of glucose or insulin. While the REDD1 KO exhibited significant though blunted insulin-stimulated increases (p<0.05) in Akt S473 and T308 phosphorylation versus the WT mice, acute insulin treatment has no effect (p<0.05) on REDD1 KO skeletal muscle 4E-BP1 T37/46, S6K1 T389, IRS-1 Y1222, and ERK 1/2 T202/Y204 phosphorylation versus the WT mice. Collectively, these novel data suggest that REDD1 has a more distinct role in whole body and skeletal muscle metabolism and insulin action than previously thought.
Collapse
Affiliation(s)
- Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States
| | - David C Wright
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON, Canada
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, United States.
| |
Collapse
|
26
|
Gran P, Larsen AE, Bonham M, Dordevic AL, Rupasinghe T, Silva C, Nahid A, Tull D, Sinclair AJ, Mitchell CJ, Cameron-Smith D. Muscle p70S6K phosphorylation in response to soy and dairy rich meals in middle aged men with metabolic syndrome: a randomised crossover trial. Nutr Metab (Lond) 2014; 11:46. [PMID: 25302072 PMCID: PMC4190399 DOI: 10.1186/1743-7075-11-46] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/22/2014] [Indexed: 12/25/2022] Open
Abstract
Background The mammalian target of rapamycin (mTOR) pathway is the primary regulator of muscle protein synthesis. Metabolic syndrome (MetS) is characterized by central obesity and insulin resistance; little is known about how MetS affects the sensitivity of the mTOR pathway to feeding. Methods The responsiveness of mTOR pathway targets such as p706Sk to a high protein meal containing either dairy or soy foods was investigated in healthy insulin sensitive middle-aged men and those presenting with metabolic syndrome (MetS). Twenty male subjects (10 healthy controls, 10 MetS) participated in a single-blinded randomized cross-over study. In a random sequence, subjects ingested energy-matched breakfasts composed predominately of either dairy-protein or soy-protein foods. Skeletal muscle biopsies were collected in the fasted state and at 2 and 4 h post-meal ingestion for the analysis of mTOR- and insulin-signalling kinase activation. Results Phosphorylated Akt and Insulin receptor substrate 1 (IRS1) increased during the postabsorptive period with no difference between groups. mTOR (Ser448) and ribosomal protein S6 phosphorylation increased 2 h following dairy meal consumption only. p70S6K (Thr389) phosphorylation was increased after feeding only in the control subjects and not in the MetS group. Conclusions These data demonstrate that the consumption of a dairy-protein rich but not a soy-protein rich breakfast activates the phosphorylation of mTOR and ribosomal protein S6, required for protein synthesis in human skeletal muscle. Unlike healthy controls, subjects with MetS did not increase muscle p70S6K(Thr389) phosphorylation in response to a mixed meal. Trial registration This trial was registered with the Australian New Zealand Clinical Trials Registry (ANZCTR) as ACTRN12610000562077.
Collapse
Affiliation(s)
- Petra Gran
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Amy E Larsen
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Maxine Bonham
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Aimee L Dordevic
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia
| | - Thusitha Rupasinghe
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Claudio Silva
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Amsha Nahid
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Dedreia Tull
- Metabolomics Australia, University of Melbourne, Parkville, Victoria Australia
| | - Andrew J Sinclair
- School of Medicine, Deakin University, Waurn Ponds, Victoria Australia
| | - Cameron J Mitchell
- The Liggins Institute, Faculty of Medical and Science Health, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023 New Zealand
| | - David Cameron-Smith
- Molecular Nutrition Unit, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria Australia ; The Liggins Institute, Faculty of Medical and Science Health, University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland, 1023 New Zealand
| |
Collapse
|
27
|
Williamson DL, Li Z, Tuder RM, Feinstein E, Kimball SR, Dungan CM. Altered nutrient response of mTORC1 as a result of changes in REDD1 expression: effect of obesity vs. REDD1 deficiency. J Appl Physiol (1985) 2014; 117:246-56. [PMID: 24876363 DOI: 10.1152/japplphysiol.01350.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Although aberrant mTORC1 signaling has been well established in models of obesity, little is known about its repressor, REDD1. Therefore, the initial goal of this study was to determine the role of REDD1 on mTORC1 in obese skeletal muscle. REDD1 expression (protein and message) and mTORC1 signaling (S6K1, 4E-BP1, raptor-mTOR association, Rheb GTP) were examined in lean vs. ob/ob and REDD1 wild-type (WT) vs. knockout (KO) mice, under conditions of altered nutrient intake [fasted and fed or diet-induced obesity (10% vs. 60% fat diet)]. Despite higher (P < 0.05) S6K1 and 4E-BP1 phosphorylation, two models of obesity (ob/ob and diet-induced) displayed elevated (P < 0.05) skeletal muscle REDD1 expression compared with lean or low-fat-fed mouse muscle under fasted conditions. The ob/ob mice displayed elevated REDD1 expression (P < 0.05) that coincided with aberrant mTORC1 signaling (hyperactive S6K1, low raptor-mTOR binding, elevated Rheb GTP; P < 0.05) under fasted conditions, compared with the lean, which persisted in a dysregulated fashion under fed conditions. REDD1 KO mice gained limited body mass on a high-fat diet, although S6K1 and 4E-BP1 phosphorylation remained elevated (P < 0.05) in both the low-fat and high-fat-fed KO vs. WT mice. Similarly, the REDD1 KO mouse muscle displayed blunted mTORC1 signaling responses (S6K1 and 4E-BP1, raptor-mTOR binding) and circulating insulin under fed conditions vs. the robust responses (P < 0.05) in the WT fed mouse muscle. These studies suggest that REDD1 in skeletal muscle may serve to limit hyperactive mTORC1, which promotes aberrant mTORC1 signaling responses during altered nutrient states.
Collapse
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York;
| | - Zhuyun Li
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| | - Rubin M Tuder
- Program in Translational Lung Research, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Denver, Colorado
| | - Elena Feinstein
- Research Division, Quark Pharmaceuticals, Ness Ziona, Israel; and
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, New York
| |
Collapse
|
28
|
Das A, Durrant D, Koka S, Salloum FN, Xi L, Kukreja RC. Mammalian target of rapamycin (mTOR) inhibition with rapamycin improves cardiac function in type 2 diabetic mice: potential role of attenuated oxidative stress and altered contractile protein expression. J Biol Chem 2013; 289:4145-60. [PMID: 24371138 DOI: 10.1074/jbc.m113.521062] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Elevated mammalian target of rapamycin (mTOR) signaling contributes to the pathogenesis of diabetes, with increased morbidity and mortality, mainly because of cardiovascular complications. Because mTOR inhibition with rapamycin protects against ischemia/reperfusion injury, we hypothesized that rapamycin would prevent cardiac dysfunction associated with type 2 diabetes (T2D). We also investigated the possible mechanisms and novel protein targets involved in rapamycin-induced preservation of cardiac function in T2D mice. Adult male leptin receptor null, homozygous db/db, or wild type mice were treated daily for 28 days with vehicle (5% DMSO) or rapamycin (0.25 mg/kg, intraperitoneally). Cardiac function was monitored by echocardiography, and protein targets were identified by proteomics analysis. Rapamycin treatment significantly reduced body weight, heart weight, plasma glucose, triglyceride, and insulin levels in db/db mice. Fractional shortening was improved by rapamycin treatment in db/db mice. Oxidative stress as measured by glutathione levels and lipid peroxidation was significantly reduced in rapamycin-treated db/db hearts. Rapamycin blocked the enhanced phosphorylation of mTOR and S6, but not AKT in db/db hearts. Proteomic (by two-dimensional gel and mass spectrometry) and Western blot analyses identified significant changes in several cytoskeletal/contractile proteins (myosin light chain MLY2, myosin heavy chain 6, myosin-binding protein C), glucose metabolism proteins (pyruvate dehydrogenase E1, PYGB, Pgm2), and antioxidant proteins (peroxiredoxin 5, ferritin heavy chain 1) following rapamycin treatment in db/db heart. These results show that chronic rapamycin treatment prevents cardiac dysfunction in T2D mice, possibly through attenuation of oxidative stress and alteration of antioxidants and contractile as well as glucose metabolic protein expression.
Collapse
Affiliation(s)
- Anindita Das
- From the Pauley Heart Center, Division of Cardiology, Virginia Commonwealth University, Richmond, Virginia 23298
| | | | | | | | | | | |
Collapse
|
29
|
Jadhav KS, Dungan CM, Williamson DL. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev 2013; 134:548-59. [PMID: 24269881 DOI: 10.1016/j.mad.2013.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/26/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED High lipid and ceramide concentrations are hallmarks of obese and/or insulin resistant skeletal muscle, yet little is known about its role on cell cycle and senescence. The purpose of this study was to examine the role of ceramide on muscle senescence, and whether metformin limited this response. METHODS Low passage, proliferating C2C12 myoblasts were treated with a control, 50μM C2-ceramide (8h), and/or 2mM metformin, then examined for insulin sensitivity, cell senescence, cell proliferation, cell cycle, protein expression of cell cycle regulators. RESULTS Ceramide treatment caused a dephosphorylation (p<0.05) of Akt and 4E-BP1, regardless of the presence of insulin. The ceramide treated myoblasts displayed higher β-galactosidase staining (p<0.05), reduced BrDu incorporation and total number of cells (p<0.05), and an increased proportion of cells in G2-phase (p<0.05) versus control cultures. Ceramide treatment also upregulated (p<0.05) p53 and p21 protein expression, that was reversed by either pifithrin-α or shRNA for p53. Metformin limited (p<0.05) ceramide's effects on insulin signaling, senescence, and cell cycle regulation. CONCLUSIONS High ceramide concentrations reduced myoblast proliferation that was associated with aberrant cell cycle regulation and a senescent phenotype, which could provide an understanding of skeletal muscle cell adaptation during conditions of high intramuscular lipid deposition and/or obesity.
Collapse
Affiliation(s)
- Kavita S Jadhav
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|
30
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
31
|
Yang Z, Ming XF. mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases. Obes Rev 2012; 13 Suppl 2:58-68. [PMID: 23107260 DOI: 10.1111/j.1467-789x.2012.01038.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The continuing increase in the prevalence of obesity and metabolic disorders such as type-II diabetes and an accelerating aging population globally will remain the major contributors to cardiovascular mortality and morbidity in the 21st century. It is well known that aging is highly associated with metabolic and cardiovascular diseases. Growing evidence also shows that obesity and metabolic diseases accelerate aging process. Studies in experimental animal models demonstrate similarity of metabolic and cardiovascular phenotypes in metabolic diseases and old age, e.g. insulin resistance, oxidative stress, chronic low grade inflammation, cardiac hypertrophy, cardiac fibrosis, and heart failure, as well as vascular dysfunctions. Despite intensive research, the molecular mechanisms linking metabolic stress, aging, and ultimately cardiovascular diseases are still elusive. Although the mammalian target of rapamycin (mTOR) signalling is a well known regulator of metabolism and lifespan in model organisms, its central role in linking metabolic stress, aging and cardiovascular diseases is recently emerging. In this article, we review the evidence supporting the role of mTOR signalling as a molecular interface connecting metabolic stress, aging and cardiovascular diseases. The therapeutic potentials of targeting mTOR signalling to protect against metabolic and age-associated cardiovascular diseases are discussed.
Collapse
Affiliation(s)
- Z Yang
- Laboratory of Vascular Biology, Division of Physiology, Department of Medicine, Faculty of Science, University of Fribourg, Rue du Musée 5, Fribourg, Switzerland.
| | | |
Collapse
|
32
|
Bollheimer LC, Buettner R, Pongratz G, Brunner-Ploss R, Hechtl C, Banas M, Singler K, Hamer OW, Stroszczynski C, Sieber CC, Fellner C. Sarcopenia in the aging high-fat fed rat: a pilot study for modeling sarcopenic obesity in rodents. Biogerontology 2012; 13:609-20. [DOI: 10.1007/s10522-012-9405-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/05/2012] [Indexed: 12/21/2022]
|
33
|
He J, Qi Z, Su Y, He Q, Liu J, Yu L, Al-Attas OS, Hussain T, De Rosas ET, Ji L, Ding S. Pifithrin-μ increases mitochondrial COX biogenesis and MnSOD activity in skeletal muscle of middle-aged mice. Mitochondrion 2012; 12:630-9. [PMID: 23006892 DOI: 10.1016/j.mito.2012.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 12/31/2022]
Abstract
We investigated the biogenesis and mitochondrial antioxidant capacity of cytochrome c oxidase (COX) within the skeletal muscle under the treatments of p53 inhibitors (pifithrin, PFTα and PFTμ). Significantly, PFTμ increased mtDNA content and COX biogenesis. These changes coincided with increases in the activity and expression of manganese superoxide dismutase (MnSOD), the key antioxidant enzyme in mitochondria. Conversely, PFTα caused muscle loss, increased oxidative damage and decreased MnSOD activity in intermyofibrillar (IMF) mitochondria. Mechanically, PFTμ inhibited p53 translocation to mitochondria and thus increased its transcriptional activity for expression of synthesis of cytochrome c oxidase 2 (SCO2), an important assembly protein for COX. This study provides in vivo evidence that PFTμ, superior to PFTα, preserves muscle mass and increases mitochondrial antioxidant activity.
Collapse
Affiliation(s)
- Jie He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, Shanghai 200241, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sciarretta S, Zhai P, Shao D, Maejima Y, Robbins J, Volpe M, Condorelli G, Sadoshima J. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012; 125:1134-46. [PMID: 22294621 DOI: 10.1161/circulationaha.111.078212] [Citation(s) in RCA: 235] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Rheb is a GTP-binding protein that promotes cell survival and mediates the cellular response to energy deprivation (ED). The role of Rheb in the regulation of cell survival during ED has not been investigated in the heart. METHODS AND RESULTS Rheb is inactivated during cardiomyocyte (CM) glucose deprivation (GD) in vitro, and during acute myocardial ischemia in vivo. Rheb inhibition causes mTORC1 inhibition, because forced activation of Rheb, through Rheb overexpression in vitro and through inducible cardiac-specific Rheb overexpression in vivo, restored mTORC1 activity. Restoration of mTORC1 activity reduced CM survival during GD and increased infarct size after ischemia, both of which were accompanied by inhibition of autophagy, whereas Rheb knockdown increased autophagy and CM survival. Rheb inhibits autophagy mostly through Atg7 depletion. Restoration of autophagy, through Atg7 reexpression and inhibition of mTORC1, increased cellular ATP content and reduced endoplasmic reticulum stress, thereby reducing CM death induced by Rheb activation. Mice with high-fat diet-induced obesity and metabolic syndrome (HFD mice) exhibited deregulated cardiac activation of Rheb and mTORC1, particularly during ischemia. HFD mice presented inhibition of cardiac autophagy and displayed increased ischemic injury. Pharmacological and genetic inhibition of mTORC1 restored autophagy and abrogated the increase in infarct size observed in HFD mice, but they failed to protect HFD mice in the presence of genetic disruption of autophagy. CONCLUSIONS Inactivation of Rheb protects CMs during ED through activation of autophagy. Rheb and mTORC1 may represent therapeutic targets to reduce myocardial damage during ischemia, particularly in obese patients.
Collapse
Affiliation(s)
- Sebastiano Sciarretta
- Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Medical Science Building, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Tardif N, Salles J, Guillet C, Gadéa E, Boirie Y, Walrand S. Obésité sarcopénique et altérations du métabolisme protéique musculaire. NUTR CLIN METAB 2011. [DOI: 10.1016/j.nupar.2011.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
36
|
Affiliation(s)
- David L Williamson
- Department of Exercise and Nutrition Sciences, School of Public Health, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
37
|
Ljubicic V, Miura P, Burt M, Boudreault L, Khogali S, Lunde JA, Renaud JM, Jasmin BJ. Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Hum Mol Genet 2011; 20:3478-93. [PMID: 21659335 DOI: 10.1093/hmg/ddr265] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A therapeutic approach for Duchenne muscular dystrophy (DMD) is to up-regulate utrophin in skeletal muscle in an effort to compensate for the lack of dystrophin. We previously hypothesized that promotion of the slow, oxidative myogenic program, which triggers utrophin up-regulation, can attenuate the dystrophic pathology in mdx animals. Since treatment of healthy mice with the AMP-activated protein kinase (AMPK) activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) enhances oxidative capacity and elicits a fast-to-slow fiber-type transition, we evaluated the effects of chronic AMPK stimulation on skeletal muscle phenotype and utrophin expression in mdx mice. Daily AICAR administration (500 mg/kg/day, 30 days) of 5-7-week-old mdx animals induced an elevation in mitochondrial cytochrome c oxidase enzyme activity, an increase in myosin heavy-chain type IIa-positive fibers and slower twitch contraction kinetics in the fast, glycolytic extensor digitorum longus muscle. Utrophin expression was significantly enhanced in response to AICAR, which occurred coincident with an elevated β-dystroglycan expression along the sarcolemma. These adaptations were associated with an increase in sarcolemmal structural integrity under basal conditions, as well as during damaging eccentric contractions ex vivo. Notably, peroxisome proliferator-activated receptor γ co-activator-1α (PGC-1α) and silent information regulator two ortholog 1 protein contents were significantly higher in muscle from mdx mice compared with wild-type littermates and AICAR further increased PGC-1α expression. Our data show that AICAR-evoked muscle plasticity results in beneficial phenotypic adaptations in mdx mice and suggest that the contextually novel application of this compound for muscular dystrophy warrants further study.
Collapse
Affiliation(s)
- Vladimir Ljubicic
- Department of Cellular and Molecular Medicine, Faculty of Medicine, Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | | | | | | | | | | | |
Collapse
|