1
|
Zare N, Dana N, Mosayebi A, Vaseghi G, Javanmard SH. Evaluation of Expression Level of miR-3135b-5p in Blood Samples of Breast Cancer Patients Experiencing Chemotherapy-Induced Cardiotoxicity. Indian J Clin Biochem 2023; 38:536-540. [PMID: 37746544 PMCID: PMC10516830 DOI: 10.1007/s12291-022-01075-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Abstract
The efficacy of chemotherapeutics in the treatment of breast cancer is limited by cardiotoxicity, which could lead to irreversible heart failure. The evaluation of miRNA levels as a vital biomarker could predict cardiotoxicity induced by chemotherapy. According to our previous meta-analysis study on patients with heart failure, we found that miR-3135b had a significant increase in patients with heart failure. Therefore, the present study aimed to evaluate the expression level of miR-3135b in the blood sample of patients experiencing chemotherapy-induced cardiotoxicity. Blood samples were collected from breast cancer patients or breast cancer patients who had received chemotherapy and had not experienced any chemotherapy-induced cardiotoxicity (N = 37, control group) and breast cancer patients experiencing chemotherapy-induced cardiotoxicity after chemotherapy (N = 33). The expression level of miR-3135b was evaluated using real-time polymerase chain reaction (RT-PCR). The 2-ΔCt values of miR-3135b were compared between two groups. We observed a significant increase in the expression level of miR-3135b between patients experiencing chemotherapy-induced cardiotoxicity and the control group (P = 0.0001). Besides, the ejection fraction parameter was correlated with the expression level of miR-3135b (r = 0.5 and P = 0.0001). To sum up, miR-3135b might be useful as a promising circulating biomarker in predicting cardiotoxicity induced by chemotherapy. However, more studies are needed to validate miR-3135b as a biomarker for the diagnosis of chemotherapy-induced cardiotoxicity. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01075-3.
Collapse
Affiliation(s)
- Nasrin Zare
- School of Medicine, Najafabad Branch, Islamic Azad University, Najafabad, Iran
- Clinical Research Development Centre, Najafabad branch, Islamic Azad university, Najafabad, Iran
| | - Nasim Dana
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azam Mosayebi
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Golnaz Vaseghi
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shaghayegh Haghjooy Javanmard
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute , Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Physiology, Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Hezar jerib Avenue, Isfahan, Iran
| |
Collapse
|
2
|
Tan X, Zhang R, Lan M, Wen C, Wang H, Guo J, Zhao X, Xu H, Deng P, Pi H, Yu Z, Yue R, Hu H. Integration of transcriptomics, metabolomics, and lipidomics reveals the mechanisms of doxorubicin-induced inflammatory responses and myocardial dysfunction in mice. Biomed Pharmacother 2023; 162:114733. [PMID: 37087977 DOI: 10.1016/j.biopha.2023.114733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
Doxorubicin (DOX) is an anthracycline antineoplastic agent that has limited clinical utility due to its dose-dependent cardiotoxicity. Although the exact mechanism remains unknown, inflammatory responses have been implicated in DOX-induced cardiotoxicity (DIC). In this study, we analyzed the transcriptomic, metabolomic as well as lipidomic changes in the DOX-treated mice to explore the underlying mechanisms of DIC. We found that continuous intraperitoneal DOX injections (3 mg/kg/d) for a period of five days significantly induced cardiac dysfunction and cardiac injury in male C57BL/6 J mice (8 weeks old). This corresponded to a significant increase in the myocardial levels of IL-4, IL-6, IL-10, IL-17 and IL-12p70. Furthermore, inflammation-related genes such as Ptgs2, Il1b, Cxcl5, Cxcl1, Cxcl2, Mmp3, Ccl2, Ccl12, Nfkbia, Fos, Mapk11 and Tnf were differentially expressed in the DOX-treated group, and enriched in the IL-17 and TNF signaling pathways. Besides, amino acids, peptides, imidazoles, toluenes, hybrid peptides, fatty acids and lipids such as Hex1Cer, Cer, SM, PG and ACCa were significantly associated with the expression pattern of inflammation-related genes. In conclusion, the integration of transcriptomic, metabolomic and lipidomic data identified potential new targets and biomarkers of DIC.
Collapse
Affiliation(s)
- Xin Tan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Rongyi Zhang
- Department of Cardiology, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Meide Lan
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Cong Wen
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hao Wang
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Junsong Guo
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xuemei Zhao
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Hui Xu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing 400038, China
| | - Rongchuan Yue
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China.
| | - Houxiang Hu
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China; Jinan University, No. 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
3
|
Wang X, Singh P, Zhou L, Sharafeldin N, Landier W, Hageman L, Burridge P, Yasui Y, Sapkota Y, Blanco JG, Oeffinger KC, Hudson MM, Chow EJ, Armenian SH, Neglia JP, Ritchey AK, Hawkins DS, Ginsberg JP, Robison LL, Armstrong GT, Bhatia S. Genome-Wide Association Study Identifies ROBO2 as a Novel Susceptibility Gene for Anthracycline-Related Cardiomyopathy in Childhood Cancer Survivors. J Clin Oncol 2023; 41:1758-1769. [PMID: 36508697 PMCID: PMC10043563 DOI: 10.1200/jco.22.01527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Interindividual variability in the dose-dependent association between anthracyclines and cardiomyopathy suggests a modifying role of genetic susceptibility. Few previous studies have examined gene-anthracycline interactions. We addressed this gap using the Childhood Cancer Survivor Study (discovery) and the Children's Oncology Group (COG) study COG-ALTE03N1 (replication). METHODS A genome-wide association study (Illumina HumanOmni5Exome Array) in 1,866 anthracycline-exposed Childhood Cancer Survivor Study participants (126 with heart failure) was used to identify single-nucleotide polymorphisms (SNPs) with either main or gene-environment interaction effect on anthracycline-related cardiomyopathy that surpassed a prespecified genome-wide threshold for statistical significance. We attempted replication in a matched case-control set of anthracycline-exposed childhood cancer survivors with (n = 105) and without (n = 160) cardiomyopathy from COG-ALTE03N1. RESULTS Two SNPs (rs17736312 [ROBO2]) and rs113230990 (near a CCCTC-binding factor insulator [< 750 base pair]) passed the significance cutoff for gene-anthracycline dose interaction in discovery. SNP rs17736312 was successfully replicated. Compared with the GG/AG genotypes on rs17736312 and anthracyclines ≤ 250 mg/m2, the AA genotype and anthracyclines > 250 mg/m2 conferred a 2.2-fold (95% CI, 1.2 to 4.0) higher risk of heart failure in discovery and an 8.2-fold (95% CI, 2.0 to 34.4) higher risk in replication. ROBO2 encodes transmembrane Robo receptors that bind Slit ligands (SLIT). Slit-Robo signaling pathway promotes cardiac fibrosis by interfering with the transforming growth factor-β1/small mothers against decapentaplegic (Smad) pathway, resulting in disordered remodeling of the extracellular matrix and potentiating heart failure. We found significant gene-level associations with heart failure: main effect (TGF-β1, P = .007); gene*anthracycline interaction (ROBO2*anthracycline, P = .0003); and gene*gene*anthracycline interaction (SLIT2*TGF-β1*anthracycline, P = .009). CONCLUSION These findings suggest that high-dose anthracyclines combined with genetic variants involved in the profibrotic Slit-Robo signaling pathway promote cardiac fibrosis via the transforming growth factor-β1/Smad pathway, providing credence to the biologic plausibility of the association between SNP rs17736312 (ROBO2) and anthracycline-related cardiomyopathy.
Collapse
Affiliation(s)
| | | | - Liting Zhou
- University of Alabama at Birmingham, Birmingham, AL
| | | | | | | | | | - Yutaka Yasui
- St Jude Children's Research Hospital, Memphis, TN
| | | | | | | | | | - Eric J. Chow
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | - A. Kim Ritchey
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA
| | - Douglas S. Hawkins
- Seattle Children's Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, WA
| | | | | | | | - Smita Bhatia
- University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
4
|
Supplementing Soy-Based Diet with Creatine in Rats: Implications for Cardiac Cell Signaling and Response to Doxorubicin. Nutrients 2022; 14:nu14030583. [PMID: 35276943 PMCID: PMC8840593 DOI: 10.3390/nu14030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Nutritional habits can have a significant impact on cardiovascular health and disease. This may also apply to cardiotoxicity caused as a frequent side effect of chemotherapeutic drugs, such as doxorubicin (DXR). The aim of this work was to analyze if diet, in particular creatine (Cr) supplementation, can modulate cardiac biochemical (energy status, oxidative damage and antioxidant capacity, DNA integrity, cell signaling) and functional parameters at baseline and upon DXR treatment. Here, male Wistar rats were fed for 4 weeks with either standard rodent diet (NORMAL), soy-based diet (SOY), or Cr-supplemented soy-based diet (SOY + Cr). Hearts were either freeze-clamped in situ or following ex vivo Langendorff perfusion without or with 25 μM DXR and after recording cardiac function. The diets had distinct cardiac effects. Soy-based diet (SOY vs. NORMAL) did not alter cardiac performance but increased phosphorylation of acetyl-CoA carboxylase (ACC), indicating activation of rather pro-catabolic AMP-activated protein kinase (AMPK) signaling, consistent with increased ADP/ATP ratios and lower lipid peroxidation. Creatine addition to the soy-based diet (SOY + Cr vs. SOY) slightly increased left ventricular developed pressure (LVDP) and contractility dp/dt, as measured at baseline in perfused heart, and resulted in activation of the rather pro-anabolic protein kinases Akt and ERK. Challenging perfused heart with DXR, as analyzed across all nutritional regimens, deteriorated most cardiac functional parameters and also altered activation of the AMPK, ERK, and Akt signaling pathways. Despite partial reprogramming of cell signaling and metabolism in the rat heart, diet did not modify the functional response to supraclinical DXR concentrations in the used acute cardiotoxicity model. However, the long-term effect of these diets on cardiac sensitivity to chronic and clinically relevant DXR doses remains to be established.
Collapse
|
5
|
Tokarska-Schlattner M, Kay L, Perret P, Isola R, Attia S, Lamarche F, Tellier C, Cottet-Rousselle C, Uneisi A, Hininger-Favier I, Foretz M, Dubouchaud H, Ghezzi C, Zuppinger C, Viollet B, Schlattner U. Role of Cardiac AMP-Activated Protein Kinase in a Non-pathological Setting: Evidence From Cardiomyocyte-Specific, Inducible AMP-Activated Protein Kinase α1α2-Knockout Mice. Front Cell Dev Biol 2021; 9:731015. [PMID: 34733845 PMCID: PMC8558539 DOI: 10.3389/fcell.2021.731015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis under conditions of energy stress. Though heart is one of the most energy requiring organs and depends on a perfect match of energy supply with high and fluctuating energy demand to maintain its contractile performance, the role of AMPK in this organ is still not entirely clear, in particular in a non-pathological setting. In this work, we characterized cardiomyocyte-specific, inducible AMPKα1 and α2 knockout mice (KO), where KO was induced at the age of 8 weeks, and assessed their phenotype under physiological conditions. In the heart of KO mice, both AMPKα isoforms were strongly reduced and thus deleted in a large part of cardiomyocytes already 2 weeks after tamoxifen administration, persisting during the entire study period. AMPK KO had no effect on heart function at baseline, but alterations were observed under increased workload induced by dobutamine stress, consistent with lower endurance exercise capacity observed in AMPK KO mice. AMPKα deletion also induced a decrease in basal metabolic rate (oxygen uptake, energy expenditure) together with a trend to lower locomotor activity of AMPK KO mice 12 months after tamoxifen administration. Loss of AMPK resulted in multiple alterations of cardiac mitochondria: reduced respiration with complex I substrates as measured in isolated mitochondria, reduced activity of complexes I and IV, and a shift in mitochondrial cristae morphology from lamellar to mixed lamellar-tubular. A strong tendency to diminished ATP and glycogen level was observed in older animals, 1 year after tamoxifen administration. Our study suggests important roles of cardiac AMPK at increased cardiac workload, potentially limiting exercise performance. This is at least partially due to impaired mitochondrial function and bioenergetics which degrades with age.
Collapse
Affiliation(s)
- Malgorzata Tokarska-Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Laurence Kay
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Pascale Perret
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Raffaella Isola
- Department of Biomedical Sciences, Division of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Stéphane Attia
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Frédéric Lamarche
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cindy Tellier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Cécile Cottet-Rousselle
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Amjad Uneisi
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Isabelle Hininger-Favier
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Marc Foretz
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Hervé Dubouchaud
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France
| | - Catherine Ghezzi
- Inserm U1039, Radiopharmaceutiques Biocliniques, Faculté de Médecine, University of Grenoble Alpes, Grenoble, France
| | - Christian Zuppinger
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Benoit Viollet
- Institut Cochin, CNRS, INSERM, Université de Paris, Paris, France
| | - Uwe Schlattner
- Inserm U1055, Laboratory of Fundamental and Applied Bioenergetics (LBFA), University of Grenoble Alpes, Grenoble, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
6
|
Leerink JM, van de Ruit M, Feijen EAM, Kremer LCM, Mavinkurve-Groothuis AMC, Pinto YM, Creemers EE, Kok WEM. Extracellular matrix remodeling in animal models of anthracycline-induced cardiomyopathy: a meta-analysis. J Mol Med (Berl) 2021; 99:1195-1207. [PMID: 34052857 PMCID: PMC8367936 DOI: 10.1007/s00109-021-02098-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/28/2022]
Abstract
As in other cardiomyopathies, extracellular matrix (ECM) remodeling plays an important role in anthracycline-induced cardiomyopathy. To understand the pattern and timing of ECM remodeling pathways, we conducted a systematic review in which we describe protein and mRNA markers for ECM remodeling that are differentially expressed in the hearts of animals with anthracycline-induced cardiomyopathy. We included 68 studies in mice, rats, rabbits, and pigs with follow-up of 0.1-8.2 human equivalent years after anthracycline administration. Using meta-analysis, we found 29 proteins and 11 mRNAs that were differentially expressed in anthracycline-induced cardiomyopathy compared to controls. Collagens, matrix metalloproteinases (MMPs), inflammation markers, transforming growth factor ß signaling markers, and markers for cardiac hypertrophy were upregulated, whereas the protein kinase B (AKT) pro-survival pathway was downregulated. Their expression patterns over time from single time point studies were studied with meta-regression using human equivalent years as the time scale. Connective tissue growth factor showed an early peak in expression but remained upregulated at all studied time points. Brain natriuretic peptide (BNP) and MMP9 protein levels increased in studies with longer follow-up. Significant associations were found for higher atrial natriuretic peptide with interstitial fibrosis and for higher BNP and MMP2 protein levels with left ventricular systolic function.
Collapse
Affiliation(s)
- Jan M Leerink
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands.
| | - Mabel van de Ruit
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | | | | | | | - Yigal M Pinto
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Esther E Creemers
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| | - Wouter E M Kok
- Department of Clinical and Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105, AZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Doxorubicin Inhibits Phosphatidylserine Decarboxylase and Modifies Mitochondrial Membrane Composition in HeLa Cells. Int J Mol Sci 2020; 21:ijms21041317. [PMID: 32075281 PMCID: PMC7072979 DOI: 10.3390/ijms21041317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DXR) is a drug widely used in chemotherapy. Its mode of action is based on its intercalation properties, involving the inhibition of topoisomerase II. However, few studies have reported the mitochondrial effects of DXR while investigating cardiac toxicity induced by the treatment, mostly in pediatric cases. Here, we demonstrate that DXR alters the mitochondrial membrane composition associated with bioenergetic impairment and cell death in human cancer cells. The remodeling of the mitochondrial membrane was explained by phosphatidylserine decarboxylase (PSD) inhibition by DXR. PSD catalyzes phosphatidylethanolamine (PE) synthesis from phosphatidylserine (PS), and DXR altered the PS/PE ratio in the mitochondrial membrane. Moreover, we observed that DXR localized to the mitochondrial compartment and drug uptake was rapid. Evaluation of other topoisomerase II inhibitors did not show any impact on the mitochondrial membrane composition, indicating that the DXR effect was specific. Therefore, our findings revealed a side molecular target for DXR and PSD, potentially involved in DXR anti-cancer properties and the associated toxicity.
Collapse
|
8
|
Ajzashokouhi AH, Bostan HB, Jomezadeh V, Hayes AW, Karimi G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum Exp Toxicol 2019; 39:237-248. [DOI: 10.1177/0960327119888277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an antineoplastic agent obtained from Streptomyces peucetius. It is utilized in treating different kinds of cancers, such as leukemia, lymphoma, and lung, and breast cancers. The main side effect of DOX is cardiotoxicity. Metformin (MET) is an antihyperglycemic drug used for type 2 diabetes treatment. It is proposed that MET has a protective effect against DOX cardiotoxicity. Our review demonstrated that MET has several possible mechanisms of action, which can prevent or at least reduce DOX cardiotoxicity including a decrease of free radical generation and oxidative stress, 5′ adenosine monophosphate-activated protein kinase activation, and ferritin heavy chain expression in cardiomyocytes cells. The combination of MET and DOX has been shown to enhance the anticancer activity of DOX by a number of authors. The literature reviewed in the present report supports the hypothesis that MET can reduce the cardiotoxicity that often occurs with DOX treatment.
Collapse
Affiliation(s)
- AH Ajzashokouhi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - HB Bostan
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - V Jomezadeh
- Department of Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AW Hayes
- University of South Florida, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - G Karimi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Kim SJ, Mehta HH, Wan J, Kuehnemann C, Chen J, Hu JF, Hoffman AR, Cohen P. Mitochondrial peptides modulate mitochondrial function during cellular senescence. Aging (Albany NY) 2018; 10:1239-1256. [PMID: 29886458 PMCID: PMC6046248 DOI: 10.18632/aging.101463] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/30/2018] [Indexed: 12/31/2022]
Abstract
Cellular senescence is a complex cell fate response that is thought to underlie several age-related pathologies. Despite a loss of proliferative potential, senescent cells are metabolically active and produce energy-consuming effectors, including senescence-associated secretory phenotypes (SASPs). Mitochondria play crucial roles in energy production and cellular signaling, but the key features of mitochondrial physiology and particularly of mitochondria-derived peptides (MDPs), remain underexplored in senescence responses. Here, we used primary human fibroblasts made senescent by replicative exhaustion, doxorubicin or hydrogen peroxide treatment, and examined the number of mitochondria and the levels of mitochondrial respiration, mitochondrial DNA methylation and the mitochondria-encoded peptides humanin, MOTS-c, SHLP2 and SHLP6. Senescent cells showed increased numbers of mitochondria and higher levels of mitochondrial respiration, variable changes in mitochondrial DNA methylation, and elevated levels of humanin and MOTS-c. Humanin and MOTS-c administration modestly increased mitochondrial respiration and selected components of the SASP in doxorubicin-induced senescent cells partially via JAK pathway. Targeting metabolism in senescence cells is an important strategy to reduce SASP production for eliminating the deleterious effects of senescence. These results provide insight into the role of MDPs in mitochondrial energetics and the production of SASP components by senescent cells.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hemal H. Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Jingcheng Chen
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Ji-Fan Hu
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Andrew R. Hoffman
- Stanford University Medical School, Palo Alto Veterans Institute for Research, Palo Alto, CA 94304, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The goal of this review is to summarize current understanding of pharmacogenetics and pharmacogenomics in chemotherapy-induced cardiotoxicity. RECENT FINDINGS Most of the studies rely on in vitro cytotoxic assays. There have been several smaller scale candidate gene approaches and a handful of genome-wide studies linking genetic variation to susceptibility to chemotherapy-induced cardiotoxicity. Currently, pharmacogenomic testing of all childhood cancer patients with an indication for doxorubicin or daunorubicin therapy for RARG rs2229774, SLC28A3 rs7853758, and UGT1A6*4 rs17863783 variants is recommended. There is no recommendation regarding testing in adults. There is clear evidence pointing to the role of pharmacogenetics and pharmacogenomics in cardiotoxicity susceptibility to chemotherapeutic agents. Larger scale studies are needed to further identify susceptibility markers and to develop pharmacogenomics-based risk profiling to improve quality of life and life expectancy in cancer survivors.
Collapse
Affiliation(s)
- Vivian Y Chang
- Department of Pediatrics, Division of Hematology/Oncology, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Jessica J Wang
- Department of Medicine, Division of Cardiology, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Koleini N, Kardami E. Autophagy and mitophagy in the context of doxorubicin-induced cardiotoxicity. Oncotarget 2018; 8:46663-46680. [PMID: 28445146 PMCID: PMC5542301 DOI: 10.18632/oncotarget.16944] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
Doxorubicin (Dox) is a cytotoxic drug widely incorporated in various chemotherapy protocols. Severe side effects such as cardiotoxicity, however, limit Dox application. Mechanisms by which Dox promotes cardiac damage and cardiomyocyte cell death have been investigated extensively, but a definitive picture has yet to emerge. Autophagy, regarded generally as a protective mechanism that maintains cell viability by recycling unwanted and damaged cellular constituents, is nevertheless subject to dysregulation having detrimental effects for the cell. Autophagic cell death has been described, and has been proposed to contribute to Dox-cardiotoxicity. Additionally, mitophagy, autophagic removal of damaged mitochondria, is affected by Dox in a manner contributing to toxicity. Here we will review Dox-induced cardiotoxicity and cell death in the broad context of the autophagy and mitophagy processes.
Collapse
Affiliation(s)
- Navid Koleini
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada
| | - Elissavet Kardami
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, Manitoba, Canada.,Department of Physiology and Pathophysiology, Winnipeg, Manitoba, Canada.,Department of Human Anatomy and Cell Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Hu Y, Zhu X, Zhao R, Wang J, Song Y, Nie G, Tang H, Wang Y. Doxorubicin and paclitaxel carried by methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) is superior than traditional drug-delivery methods. Nanomedicine (Lond) 2018. [PMID: 29527969 DOI: 10.2217/nnm-2017-0363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM To evaluate the advantages of nanomaterial methoxy poly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA) encapsulated doxorubicin (D/DOX) and paclitaxel (T/TAX; mPEG-PLGA-DT) over free form of DOX and TAX (DOX/TAX). MATERIALS & METHODS Metabonomics was conducted to characterize the systemic metabolic response of allograft breast cancer model mice to mPEG-PLGA-DT and DOX/TAX treatments. RESULTS Breast tumor growth induced metabolic reprogram in serum and multiple organs. DOX/TAX treatment could ameliorate the elevated energy and nucleotides demands in some organs while mPEG-PLGA-DT treatment showed outstanding therapeutic outcomes in restoring the metabolic phenotypes of serum and kidney from tumor-bearing mice to the healthy state. CONCLUSION This investigation proved the biological advantages of mPEG-PLGA-DT over DOX/TAX in molecular level through the comparison between their metabolic responses in vivo.
Collapse
Affiliation(s)
- Yili Hu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Xiaoyang Zhu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology, Beijing 100190, PR China
| | - Jin Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yipeng Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, National Center for Nanoscience & Technology, Beijing 100190, PR China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics & Development, Metabolomics & Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, PR China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance & Atomic & Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics & Mathematics, University of Chinese Academy of Sciences, Wuhan 430071, PR China.,Collaborative Innovation Center for Diagnosis & Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
13
|
McLaughlin D, Zhao Y, O'Neill KM, Edgar KS, Dunne PD, Kearney AM, Grieve DJ, McDermott BJ. Signalling mechanisms underlying doxorubicin and Nox2 NADPH oxidase-induced cardiomyopathy: involvement of mitofusin-2. Br J Pharmacol 2017; 174:3677-3695. [PMID: 28261787 PMCID: PMC5647180 DOI: 10.1111/bph.13773] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The anthracycline doxorubicin (DOX), although successful as a first-line cancer treatment, induces cardiotoxicity linked with increased production of myocardial ROS, with Nox2 NADPH oxidase-derived superoxide reported to play a key role. The aim of this study was to identify novel mechanisms underlying development of cardiac remodelling/dysfunction further to DOX-stimulated Nox2 activation. EXPERIMENTAL APPROACH Nox2-/- and wild-type (WT) littermate mice were administered DOX (12 mg·kg-1 over 3 weeks) prior to study at 4 weeks. Detailed mechanisms were investigated in murine HL-1 cardiomyocytes, employing a robust model of oxidative stress, gene silencing and pharmacological tools. KEY RESULTS DOX-induced cardiac dysfunction, cardiomyocyte remodelling, superoxide production and apoptosis in WT mice were attenuated in Nox2-/- mice. Transcriptional analysis of left ventricular tissue identified 152 differentially regulated genes (using adjusted P < 0.1) in DOX-treated Nox2-/- versus WT mice, and network analysis highlighted 'Cell death and survival' as the biological function most significant to the dataset. The mitochondrial membrane protein, mitofusin-2 (Mfn2), appeared as a strong candidate, with increased expression (1.5-fold), confirmed by qPCR (1.3-fold), matching clear published evidence of promotion of cardiomyocyte cell death. In HL-1 cardiomyocytes, targeted siRNA knockdown of Nox2 decreased Mfn2 protein expression, but not vice versa. While inhibition of Nox2 activity along with DOX treatment attenuated its apoptotic and cytotoxic effects, reduced apoptosis after Mfn2 silencing reflected a sustained cytotoxic response and reduced cell viability. CONCLUSIONS AND IMPLICATIONS DOX-induced and Nox2-mediated up-regulation of Mfn2, rather than contributing to cardiomyocyte dysfunction through apoptotic pathways, appears to promote a protective mechanism. LINKED ARTICLES This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.
Collapse
Affiliation(s)
- Declan McLaughlin
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Youyou Zhao
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Karla M O'Neill
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Kevin S Edgar
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Philip D Dunne
- Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Anna M Kearney
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - David J Grieve
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| | - Barbara J McDermott
- Centre for Experimental Medicine, Wellcome‐Wolfson BuildingQueen's University BelfastBelfastUK
| |
Collapse
|
14
|
Molecular mechanism of doxorubicin-induced cardiomyopathy - An update. Eur J Pharmacol 2017; 818:241-253. [PMID: 29074412 DOI: 10.1016/j.ejphar.2017.10.043] [Citation(s) in RCA: 368] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/11/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022]
Abstract
Doxorubicin is utilized for anti-neoplastic treatment for several decades. The utility of this drug is limited due to its side effects. Generally, doxorubicin toxicity is originated from the myocardium and then other organs are also ruined. The mechanism of doxorubicin is intercalated with the DNA and inhibits topoisomerase 2. There are various signalling mechanisms involved in doxorubicin cardiotoxicity. First and foremost, the doxorubicin-induced cardiotoxicity is due to oxidative stress. Cardiac mitochondrial damage is supposed after few hours following the revelation of doxorubicin. This has led important new uses for the mechanism of doxorubicin-induced cardiotoxicity and novel avenues of investigation to determine better pharmacotherapies and interventions for the impediment of cardiotoxicity. The idea of this review is to bring up to date the recent findings of the mechanism of doxorubicin cardiomyopathies such as calcium dysregulation, endoplasmic reticulum stress, impairment of progenitor cells, activation of immune, ubiquitous system and some other parameters.
Collapse
|
15
|
Dornfeld K, Madden M, Skildum A, Wallace KB. Aspartate facilitates mitochondrial function, growth arrest and survival during doxorubicin exposure. Cell Cycle 2016; 14:3282-91. [PMID: 26317891 PMCID: PMC4825578 DOI: 10.1080/15384101.2015.1087619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Genomic screens of doxorubicin toxicity in S. cerevisiae have identified numerous mutants in amino acid and carbon metabolism which express increased doxorubicin sensitivity. This work examines the effect of amino acid metabolism on doxorubicin toxicity. S. cerevisiae were treated with doxorubicin in combination with a variety of amino acid supplements. Strains of S. cerevisiae with mutations in pathways utilizing aspartate and other metabolites were examined for sensitivity to doxorubicin. S. cerevisiae cultures exposed to doxorubicin in minimal media showed significantly more toxicity than cultures exposed in rich media. Supplementing minimal media with aspartate, glutamate or alanine reduced doxorubicin toxicity. Cell cycle response was assessed by examining the budding pattern of treated cells. Cultures exposed to doxorubicin in minimal media arrested growth with no apparent cell cycle progression. Aspartate supplementation allowed cultures exposed to doxorubicin in minimal media to arrest after one division with a budding pattern and survival comparable to cultures exposed in rich media. Aspartate provides less protection from doxorubicin in cells mutant in either mitochondrial citrate synthase (CIT1) or NADH oxidase (NDI1), suggesting aspartate reduces doxorubicin toxicity by facilitating mitochondrial function. These data suggest glycolysis becomes less active and mitochondrial respiration more active following doxorubicin exposure.
Collapse
Affiliation(s)
- Ken Dornfeld
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA.,b Department of Radiation Oncology ; Essentia Health ; Duluth , MN USA
| | - Michael Madden
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Andrew Skildum
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| | - Kendall B Wallace
- a Department of Biomedical Sciences ; University of Minnesota Medical School, Duluth campus ; Duluth , MN USA
| |
Collapse
|
16
|
Early transcriptional changes in cardiac mitochondria during chronic doxorubicin exposure and mitigation by dexrazoxane in mice. Toxicol Appl Pharmacol 2016; 295:68-84. [PMID: 26873546 DOI: 10.1016/j.taap.2016.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/01/2016] [Accepted: 02/03/2016] [Indexed: 11/24/2022]
Abstract
Identification of early biomarkers of cardiotoxicity could help initiate means to ameliorate the cardiotoxic actions of clinically useful drugs such as doxorubicin (DOX). Since DOX has been shown to target mitochondria, transcriptional levels of mitochondria-related genes were evaluated to identify early candidate biomarkers in hearts of male B6C3F1 mice given a weekly intravenous dose of 3mg/kg DOX or saline (SAL) for 2, 3, 4, 6, or 8 weeks (6, 9, 12, 18, or 24 mg/kg cumulative DOX doses, respectively). Also, a group of mice was pretreated (intraperitoneally) with the cardio-protectant, dexrazoxane (DXZ; 60 mg/kg) 30 min before each weekly dose of DOX or SAL. At necropsy a week after the last dose, increased plasma concentrations of cardiac troponin T (cTnT) were detected at 18 and 24 mg/kg cumulative DOX doses, whereas myocardial alterations were observed only at the 24 mg/kg dose. Of 1019 genes interrogated, 185, 109, 140, 184, and 451 genes were differentially expressed at 6, 9, 12, 18, and 24 mg/kg cumulative DOX doses, respectively, compared to concurrent SAL-treated controls. Of these, expression of 61 genes associated with energy metabolism and apoptosis was significantly altered before and after occurrence of myocardial injury, suggesting these as early genomics markers of cardiotoxicity. Much of these DOX-induced transcriptional changes were attenuated by pretreatment of mice with DXZ. Also, DXZ treatment significantly reduced plasma cTnT concentration and completely ameliorated cardiac alterations induced by 24 mg/kg cumulative DOX. This information on early transcriptional changes during DOX treatment may be useful in designing cardioprotective strategies targeting mitochondria.
Collapse
|
17
|
Song Y, Zhao R, Hu Y, Hao F, Li N, Nie G, Tang H, Wang Y. Assessment of the Biological Effects of a Multifunctional Nano-Drug-Carrier and Its Encapsulated Drugs. J Proteome Res 2015; 14:5193-201. [PMID: 26531143 DOI: 10.1021/acs.jproteome.5b00513] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polymer-nanoparticle-encapsulated doxorubicin (DOX) and paclitaxel (TAX) have the potential for novel therapeutic use against cancer in the clinic. However, the systemic biological effect of the nanoparticle material, namely, methoxypoly(ethylene glycol)-poly(lactide-co-glycolide) (mPEG-PLGA), and its encapsulated drugs have not been fully studied. We have applied NMR-based metabonomics methodology to characterize and analyze the systemic metabolic changes in mice after being exposed to mPEG-PLGA, mPEG-PLGA-encapsulated DOX and TAX (NP-D/T), and their free forms. The study revealed that mPEG-PLGA exposure only induces temporary and slight metabolic alternations and that there are detoxification effects of nanoparticle packed with D/T drugs on the heart when comparing with free-form D/T drugs. Both NP-D/T and their free forms induce a shift in energy metabolism, stimulate antioxidation pathways, and disturb the gut microbial activity of the host. However, mPEG-PLGA packaging can relieve the energy metabolism inhibition and decrease the activation of antioxidation pathways caused by D/T exposure. These findings provide a holistic insight into the biological effect of polymer nanoparticle and nanoparticle-encapsulated drugs. This study also furthers our understanding of the molecular mechanisms involved in the amelioration effects of mPEG-PLGA packaging on the toxicity of the incorporated drugs.
Collapse
Affiliation(s)
- Yipeng Song
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ruifang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Yili Hu
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Fuhua Hao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Ning Li
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | - Guangjun Nie
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences , Beijing, 100190, P. R. China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Biospectroscopy and Metabolomics, School of Life Sciences, Fudan University , Shanghai, 200433, P. R. China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Zhao WJ, Wei SN, Zeng XJ, Xia YL, Du J, Li HH. Gene expression profiling identifies the novel role of immunoproteasome in doxorubicin-induced cardiotoxicity. Toxicology 2015; 333:76-88. [DOI: 10.1016/j.tox.2015.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 02/02/2023]
|
19
|
Carvalho FS, Burgeiro A, Garcia R, Moreno AJ, Carvalho RA, Oliveira PJ. Doxorubicin-Induced Cardiotoxicity: From Bioenergetic Failure and Cell Death to Cardiomyopathy. Med Res Rev 2013; 34:106-35. [DOI: 10.1002/med.21280] [Citation(s) in RCA: 349] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Filipa S. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Ana Burgeiro
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rita Garcia
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - António J. Moreno
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
- IMAR-Institute of Marine Research; University of Coimbra; Portugal
| | - Rui A. Carvalho
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
- Department of Life Sciences; University of Coimbra; 3004-517 Coimbra Portugal
| | - Paulo J. Oliveira
- CNC-Center for Neuroscience and Cell Biology; University of Coimbra; 3004-517 Coimbra Portugal
| |
Collapse
|
20
|
Sontag DP, Wang J, Kardami E, Cattini PA. FGF-2 and FGF-16 Protect Isolated Perfused Mouse Hearts from Acute Doxorubicin-Induced Contractile Dysfunction. Cardiovasc Toxicol 2013; 13:244-53. [DOI: 10.1007/s12012-013-9203-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Darrabie MD, Arciniegas AJL, Mantilla JG, Mishra R, Vera MP, Santacruz L, Jacobs DO. Exposing cardiomyocytes to subclinical concentrations of doxorubicin rapidly reduces their creatine transport. Am J Physiol Heart Circ Physiol 2012; 303:H539-48. [PMID: 22752631 DOI: 10.1152/ajpheart.00108.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin is commonly used to treat leukemia, lymphomas, and solid tumors, such as soft tissue sarcomas or breast cancer. A major side effect of doxorubicin therapy is dose-dependent cardiotoxicity. Doxorubicin's effects on cardiac energy metabolism are emerging as key elements mediating its toxicity. We evaluated the effect of doxorubicin on [(14)C]creatine uptake in rat neonatal cardiac myocytes and HL-1 murine cardiac cells expressing the human creatine transporter protein. A significant and irreversible decrease in creatine transport was detected after an incubation with 50-100 nmol/l doxorubicin. These concentrations are well below peak plasma levels (5 μmol/l) and within the ranges (25-250 nmol/l) for steady-state plasma concentrations reported after the administration of 15-90 mg/m(2) doxorubicin for chemotherapy. The decrease in creatine transport was not solely because of increased cell death due to doxorubicin's cytotoxic effects. Kinetic analysis showed that doxorubicin decreased V(max), K(m), and creatine transporter protein content. Cell surface biotinylation experiments confirmed that the amount of creatine transporter protein present at the cell surface was reduced. Cardiomyocytes rely on uptake by a dedicated creatine transporter to meet their intracellular creatine needs. Our findings show that the cardiomyocellular transport capacity for creatine is substantially decreased by doxorubicin administration and suggest that this effect may be an important early event in the pathogenesis of doxorubicin-mediated cardiotoxicity.
Collapse
Affiliation(s)
- Marcus D Darrabie
- Surgery Department, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: From molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52:1213-25. [DOI: 10.1016/j.yjmcc.2012.03.006] [Citation(s) in RCA: 779] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
|
23
|
Gratia S, Kay L, Potenza L, Seffouh A, Novel-Chaté V, Schnebelen C, Sestili P, Schlattner U, Tokarska-Schlattner M. Inhibition of AMPK signalling by doxorubicin: at the crossroads of the cardiac responses to energetic, oxidative, and genotoxic stress. Cardiovasc Res 2012; 95:290-9. [DOI: 10.1093/cvr/cvs134] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Gratia S, Kay L, Michelland S, Sève M, Schlattner U, Tokarska-Schlattner M. Cardiac phosphoproteome reveals cell signaling events involved in doxorubicin cardiotoxicity. J Proteomics 2012; 75:4705-16. [PMID: 22348821 DOI: 10.1016/j.jprot.2012.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/02/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
The successful use of anthracyclines like doxorubicin in chemotherapy is limited by their severe cardiotoxicity. Despite decades of clinical application, a satisfying description of the molecular mechanisms involved and a preventive treatment have not yet been achieved. Here we address doxorubicin-induced changes in cell signaling as a novel potential mediator of doxorubicin toxicity by applying a non-biased screen of the cardiac phosphoproteome. Two-dimensional gel electrophoresis, phosphospecific staining, quantitative image analysis, and MALDI-TOF/TOF mass spectrometry were combined to identify (de)phosphorylation events occurring in the isolated rat heart upon Langendorff-perfusion with clinically relevant (5 μM) and supraclinical concentrations (25 μM) of doxorubicin. This approach identified 22 proteins with a significantly changed phosphorylation status and these results were validated by immunoblotting for selected phosphosites. Overrepresentation of mitochondrial proteins (>40%) identified this compartment as a prime target of doxorubicin. Identified proteins were mainly involved in energy metabolism (e.g. pyruvate dehydrogenase and acyl-CoA dehydrogenase), sarcomere structure and function (e.g. desmin) or chaperone-like activities (e.g. α-crystallin B chain and prohibitin). Changes in phosphorylation of pyruvate dehydrogenase, regulating pyruvate entry into the Krebs cycle, and desmin, maintaining myofibrillar array, are relevant for main symptoms of cardiac dysfunction related to doxorubicin treatment, namely energy imbalance and myofibrillar disorganization. This article is part of a Special Issue entitled: Translational Proteomics.
Collapse
Affiliation(s)
- Séverine Gratia
- University Joseph Fourier, Laboratory of Fundamental and Applied Bioenergetics, Environmental and Systems Biology, Grenoble, France
| | | | | | | | | | | |
Collapse
|
25
|
Chiusa M, Hool SL, Truetsch P, Djafarzadeh S, Jakob SM, Seifriz F, Scherer SJ, Suter TM, Zuppinger C, Zbinden S. Cancer therapy modulates VEGF signaling and viability in adult rat cardiac microvascular endothelial cells and cardiomyocytes. J Mol Cell Cardiol 2012; 52:1164-75. [PMID: 22326847 DOI: 10.1016/j.yjmcc.2012.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/10/2012] [Accepted: 01/26/2012] [Indexed: 12/11/2022]
Abstract
This work was motivated by the incomplete characterization of the role of vascular endothelial growth factor-A (VEGF-A) in the stressed heart in consideration of upcoming cancer treatment options challenging the natural VEGF balance in the myocardium. We tested, if the cytotoxic cancer therapy doxorubicin (Doxo) or the anti-angiogenic therapy sunitinib alters viability and VEGF signaling in primary cardiac microvascular endothelial cells (CMEC) and adult rat ventricular myocytes (ARVM). ARVM were isolated and cultured in serum-free medium. CMEC were isolated from the left ventricle and used in the second passage. Viability was measured by LDH-release and by MTT-assay, cellular respiration by high-resolution oxymetry. VEGF-A release was measured using a rat specific VEGF-A ELISA-kit. CMEC were characterized by marker proteins including CD31, von Willebrand factor, smooth muscle actin and desmin. Both Doxo and sunitinib led to a dose-dependent reduction of cell viability. Sunitinib treatment caused a significant reduction of complex I and II-dependent respiration in cardiomyocytes and the loss of mitochondrial membrane potential in CMEC. Endothelial cells up-regulated VEGF-A release after peroxide or Doxo treatment. Doxo induced HIF-1α stabilization and upregulation at clinically relevant concentrations of the cancer therapy. VEGF-A release was abrogated by the inhibition of the Erk1/2 or the MAPKp38 pathway. ARVM did not answer to Doxo-induced stress conditions by the release of VEGF-A as observed in CMEC. VEGF receptor 2 amounts were reduced by Doxo and by sunitinib in a dose-dependent manner in both CMEC and ARVM. In conclusion, these data suggest that cancer therapy with anthracyclines modulates VEGF-A release and its cellular receptors in CMEC and ARVM, and therefore alters paracrine signaling in the myocardium.
Collapse
Affiliation(s)
- Manuel Chiusa
- Bern University Hospital, Cardiology, CH-3010 Bern, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Strigun A, Wahrheit J, Niklas J, Heinzle E, Noor F. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis. Toxicol Sci 2011; 125:595-606. [PMID: 22048646 DOI: 10.1093/toxsci/kfr298] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Doxorubicin (DXR), an anticancer drug, is limited in its use due to severe cardiotoxic effects. These effects are partly caused by disturbed myocardial energy metabolism. We analyzed the effects of therapeutically relevant but nontoxic DXR concentrations for their effects on metabolic fluxes, cell respiration, and intracellular ATP. (13)C isotope labeling studies using [U-(13)C(6)]glucose, [1,2-(13)C(2)]glucose, and [U-(13)C(5)]glutamine were carried out on HL-1 cardiomyocytes exposed to 0.01 and 0.02 μM DXR and compared with the untreated control. Metabolic fluxes were calculated by integrating production and uptake rates of extracellular metabolites (glucose, lactate, pyruvate, and amino acids) as well as (13)C-labeling in secreted lactate derived from the respective (13)C-labeled substrates into a metabolic network model. The investigated DXR concentrations (0.01 and 0.02 μM) had no effect on cell viability and beating of the HL-1 cardiomyocytes. Glycolytic fluxes were significantly reduced in treated cells at tested DXR concentrations. Oxidative metabolism was significantly increased (higher glucose oxidation, oxidative decarboxylation, TCA cycle rates, and respiration) suggesting a more efficient use of glucose carbon. These changes were accompanied by decrease of intracellular ATP. We conclude that DXR in nanomolar range significantly changes central carbon metabolism in HL-1 cardiomyocytes, which results in a higher coupling of glycolysis and TCA cycle. The myocytes probably try to compensate for decreased intracellular ATP, which in turn may be the result of a loss of NADH electrons via either formation of reactive oxygen species or electron shunting.
Collapse
Affiliation(s)
- Alexander Strigun
- Biochemical Engineering Institute, Saarland University, Saarbruecken, Germany
| | | | | | | | | |
Collapse
|
28
|
Daiber A, Gori T, Münzel T. Inorganic nitrate therapy improves Doxorubicin-induced cardiomyopathy a new window for an affordable cardiovascular therapy for everyone? J Am Coll Cardiol 2011; 57:2190-3. [PMID: 21596235 DOI: 10.1016/j.jacc.2011.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/01/2011] [Indexed: 11/17/2022]
|