1
|
Cawthon CR, Spector AC. The Nature of Available Choices Affects the Intake and Meal Patterns of Rats Offered a Palatable Cafeteria-Style Diet. Nutrients 2023; 15:5093. [PMID: 38140351 PMCID: PMC10745827 DOI: 10.3390/nu15245093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Humans choose which foods they will eat from multiple options. The use of cafeteria-style diets with rodent models has increased our understanding of how a multichoice food environment affects eating and health. However, the wide variances in energy density, texture, and the content of micronutrients, fiber, and protein can be interpretatively problematic when human foodstuffs are used to create rodent cafeteria diets. We minimized these differences with a custom rodent cafeteria diet (ROD) that varied similarly to a previously used human-foods cafeteria diet (HUM) in fat and sugar content. Here, we used our custom Five-Item Food Choice Monitor to compare the intake and meal patterns of rats offered ROD and HUM in a crossover design. Compared with chow, rats consumed more calories, sugar, and fat and less protein and carbohydrate while on either of the choice diets (p < 0.05). While energy intake was similar between HUM and ROD, there were differences in the responses. Rats consumed more of the low-fat, low-sugar choice on the ROD compared with the nutritionally similar choice on the HUM leading to differences in fat and carbohydrate intake between the diets (p < 0.05). The stability of macronutrient intake while on either choice diet suggests macronutrient intake is determined by the available foods and is strongly regulated. Therefore, interpretative consideration must be given to the nature of food choices in the context of available options when interpreting cafeteria-diet intake.
Collapse
Affiliation(s)
| | - Alan C. Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32304, USA;
| |
Collapse
|
2
|
Blonde GD, Fletcher FH, Tang T, Newsome R, Spector AC. A new apparatus to analyze meal-related ingestive behaviors in rats fed a complex multi-food diet. Physiol Behav 2022; 252:113824. [PMID: 35472328 PMCID: PMC10544710 DOI: 10.1016/j.physbeh.2022.113824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
The measurement of the size and timing of meals provides critical insight into the processes underlying food intake. While most work has been conducted with a single food or fluid, the availability of food choices can also influence eating and interact with these processes. The 5-Item Food Choice Monitor (FCM), a device that continuously measures eating and drinking behaviors of rats provided up to 5 foods and 2 fluids simultaneously, was designed to allow study of food choices simultaneously with meal patterns. To validate this device, adult male and female (n = 8 each) Sprague-Dawley rats were housed in the FCM. Food and fluid intake were measured continuously (22-h/day) while rats were presented water and powdered chow. Then a cafeteria diet of 5 foods varying in macronutrient content, texture, and flavors were offered along with water. Lastly, the 5 foods were offered along with 0.3 M sucrose and water. Analyses were conducted to find optimal criteria for parceling ingestive behavior into meals, and then meal patterns were quantified. Total intake, as assessed by FCM software, was in good concordance with that measured by an independent scale. A minimum meal size of 1 kcal and a meal termination criterion of 15-min accounted for >90% of total intake and produced meal dynamics that were in register with the literature. Use of the cafeteria diet allowed comparisons between meal patterns with a single food versus a multi-food diet, as well as analyses of macronutrient-related food choices across subsets of meals. The FCM proved to accurately measure food intake over a 22-h period and was able to detect differences and similarities in the meal patterns of rats as a function of sex and food choice availability. Combined with any number of experimental manipulations, the FCM holds great promise in the investigation of the physiological and neural controls of ingestive behavior in a dietary environment that allows food choices, more closely emulating human eating conditions.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Fred H Fletcher
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Ryan Newsome
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 W. Call St., Tallahassee, FL, 32306-4301 USA.
| |
Collapse
|
3
|
Walker EG, Lo KR, Pahl MC, Shin HS, Lang C, Wohlers MW, Poppitt SD, Sutton KH, Ingram JR. An extract of hops (Humulus lupulus L.) modulates gut peptide hormone secretion and reduces energy intake in healthy-weight men: a randomized, crossover clinical trial. Am J Clin Nutr 2022; 115:925-940. [PMID: 35102364 DOI: 10.1093/ajcn/nqab418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gastrointestinal enteroendocrine cells express chemosensory bitter taste receptors that may play an important role in regulating energy intake (EI) and gut function. OBJECTIVES To determine the effect of a bitter hop extract (Humulus lupulus L.) on acute EI, appetite, and hormonal responses. METHODS Nineteen healthy-weight men completed a randomized 3-treatment, double-blind, crossover study with a 1-wk washout between treatments. Treatments comprised either placebo or 500 mg of hop extract administered in delayed-release capsules (duodenal) at 11:00 h or quick-release capsules (gastric) at 11:30 h. Ad libitum EI was recorded at the lunch (12:00 h) and afternoon snack (14:00 h), with blood samples taken and subjective ratings of appetite, gastrointestinal (GI) discomfort, vitality, meal palatability, and mood assessed throughout the day. RESULTS Total ad libitum EI was reduced following both the gastric (4473 kJ; 95% CI: 3811, 5134; P = 0.006) and duodenal (4439 kJ; 95% CI: 3777, 5102; P = 0.004) hop treatments compared with the placebo (5383 kJ; 95% CI: 4722, 6045). Gastric and duodenal treatments stimulated prelunch ghrelin secretion and postprandial cholecystokinin, glucagon-like peptide 1, and peptide YY responses compared with placebo. In contrast, postprandial insulin, glucose-dependent insulinotropic peptide, and pancreatic polypeptide responses were reduced in gastric and duodenal treatments without affecting glycemia. In addition, gastric and duodenal treatments produced small but significant increases in subjective measures of GI discomfort (e.g., nausea, bloating, abdominal discomfort) with mild to severe adverse GI symptoms reported in the gastric treatment only. However, no significant treatment effects were observed for any subjective measures of appetite or meal palatability. CONCLUSIONS Both gastric and duodenal delivery of a hop extract modulates the release of hormones involved in appetite and glycemic regulation, providing a potential "bitter brake" on EI in healthy-weight men.
Collapse
Affiliation(s)
- Edward G Walker
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Kim R Lo
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Malcolm C Pahl
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Hyun S Shin
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Claudia Lang
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Mark W Wohlers
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sally D Poppitt
- Human Nutrition Unit; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Kevin H Sutton
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - John R Ingram
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
4
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Krishnan GP, Keim NL, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Peripheral Hormones. Adv Nutr 2022; 13:792-820. [PMID: 35191467 PMCID: PMC9156388 DOI: 10.1093/advances/nmac014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/11/2022] [Indexed: 12/14/2022] Open
Abstract
Calorie restriction (CR) is a common approach to inducing negative energy balance. Recently, time-restricted feeding (TRF), which involves consuming food within specific time windows during a 24-h day, has become popular owing to its relative ease of practice and potential to aid in achieving and maintaining a negative energy balance. TRF can be implemented intentionally with CR, or TRF might induce CR simply because of the time restriction. This review focuses on summarizing our current knowledge on how TRF and continuous CR affect gut peptides that influence satiety. Based on peer-reviewed studies, in response to CR there is an increase in the orexigenic hormone ghrelin and a reduction in fasting leptin and insulin. There is likely a reduction in glucagon-like peptide-1 (GLP-1), peptide YY (PYY), and cholecystokinin (CCK), albeit the evidence for this is weak. After TRF, unlike CR, fasting ghrelin decreased in some TRF studies, whereas it showed no change in several others. Further, a reduction in fasting leptin, insulin, and GLP-1 has been observed. In conclusion, when other determinants of food intake are held equal, the peripheral satiety systems appear to be somewhat similarly affected by CR and TRF with regard to leptin, insulin, and GLP-1. But unlike CR, TRF did not appear to robustly increase ghrelin, suggesting different influences on appetite with a potential decrease of hunger after TRF when compared with CR. However, there are several established and novel gut peptides that have not been measured within the context of CR and TRF, and studies that have evaluated effects of TRF are often short-term, with nonuniform study designs and highly varying temporal eating patterns. More evidence and studies addressing these aspects are needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
5
|
Schalla MA, Taché Y, Stengel A. Neuroendocrine Peptides of the Gut and Their Role in the Regulation of Food Intake. Compr Physiol 2021; 11:1679-1730. [PMID: 33792904 DOI: 10.1002/cphy.c200007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation of food intake encompasses complex interplays between the gut and the brain. Among them, the gastrointestinal tract releases different peptides that communicate the metabolic state to specific nuclei in the hindbrain and the hypothalamus. The present overview gives emphasis on seven peptides that are produced by and secreted from specialized enteroendocrine cells along the gastrointestinal tract in relation with the nutritional status. These established modulators of feeding are ghrelin and nesfatin-1 secreted from gastric X/A-like cells, cholecystokinin (CCK) secreted from duodenal I-cells, glucagon-like peptide 1 (GLP-1), oxyntomodulin, and peptide YY (PYY) secreted from intestinal L-cells and uroguanylin (UGN) released from enterochromaffin (EC) cells. © 2021 American Physiological Society. Compr Physiol 11:1679-1730, 2021.
Collapse
Affiliation(s)
- Martha A Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine, UCLA, Los Angeles, California, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
Schalla MA, Kühne SG, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Mori M, Rose M, Stengel A. Central blockage of nesfatin-1 has anxiolytic effects but does not prevent corticotropin-releasing factor-induced anxiety in male rats. Biochem Biophys Res Commun 2020; 529:773-777. [DOI: 10.1016/j.bbrc.2020.05.163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/21/2020] [Indexed: 11/24/2022]
|
7
|
Kühne SG, Schalla MA, Friedrich T, Kobelt P, Goebel-Stengel M, Long M, Rivalan M, Winter Y, Rose M, Stengel A. Nesfatin-1 30-59 Injected Intracerebroventricularly Increases Anxiety, Depression-Like Behavior, and Anhedonia in Normal Weight Rats. Nutrients 2018; 10:nu10121889. [PMID: 30513901 PMCID: PMC6315806 DOI: 10.3390/nu10121889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59—the active core of nesfatin-1—on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (–33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (−62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (−45%, p < 0.01) and the visits of open arms in the elevated zero maze test (−39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.
Collapse
Affiliation(s)
- Stephanie Gladys Kühne
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Martha Anna Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Internal Medicine, Helios Clinic, 78628 Rottweil, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Melissa Long
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Marion Rivalan
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - York Winter
- Cognitive Neurobiology, Berlin Mouse Clinic for Neurology and Psychiatry, Humboldt University, 10117 Berlin, Germany.
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 12203 Berlin, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
8
|
Stengel A, Taché Y. Gut-Brain Neuroendocrine Signaling Under Conditions of Stress-Focus on Food Intake-Regulatory Mediators. Front Endocrinol (Lausanne) 2018; 9:498. [PMID: 30210455 PMCID: PMC6122076 DOI: 10.3389/fendo.2018.00498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
The gut-brain axis represents a bidirectional communication route between the gut and the central nervous system comprised of neuronal as well as humoral signaling. This system plays an important role in the regulation of gastrointestinal as well as homeostatic functions such as hunger and satiety. Recent years also witnessed an increased knowledge on the modulation of this axis under conditions of exogenous or endogenous stressors. The present review will discuss the alterations of neuroendocrine gut-brain signaling under conditions of stress and the respective implications for the regulation of food intake.
Collapse
Affiliation(s)
- Andreas Stengel
- Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Yvette Taché
- CURE/Digestive Diseases Research Center, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- VA Greater Los Angeles Health Care System, Los Angeles, CA, United States
| |
Collapse
|
9
|
Minaya DM, Larson RW, Podlasz P, Czaja K. Glutamate-dependent regulation of food intake is altered with age through changes in NMDA receptor phenotypes on vagal afferent neurons. Physiol Behav 2018; 189:26-31. [PMID: 29476874 DOI: 10.1016/j.physbeh.2018.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 11/25/2022]
Abstract
Compared to younger individuals, older human subjects have significantly lower food intakes and an increased satiety response. N-methyl-d-aspartate (NMDA) receptors expressed by vagal afferent neurons originating from nodose ganglia (NG) are involved in modulating the satiety response. The present study investigated how NMDA receptor subunit phenotypes in NG neurons change with age and how these age-related alterations in food intake are modulated by presynaptic NMDA receptors in the NG of male Sprague Dawley rats (six week-old and sixty week-old). Food intake was measured at 30-, 60-, and 120-min following intraperitoneal administration of cholecystokinin (CCK) or the non-competitive NMDA receptor antagonist MK-801. Immunofluorescence was used to determine NMDA receptor subunit expression (NR1, NR2B, NR2C, and NR2D) in the NG. The results showed that, CCK reduced food intake at 30-, 60-, and 120-min post injection in both young and the middle-age animals, with no statistical difference between the groups at 30- and 60-min. In contrast, MK-801 produced an increase in food intake that was significantly higher in middle-age rats compared to young animals at all time points studied. NR1 subunit was expressed by almost all NG neurons in both age groups. In young rats, NR2B, NR2C, and NR2D subunits were expressed in 56.1%, 49.3%, and 13.9% of NG neurons, respectively. In contrast, only 30.3% of the neuronal population in middle-aged rats expressed NR2B subunit immunoreactivity, NR2C was present in 34.1%, and only 10.6% of total neurons expressed the NR2D subunit. In conclusion, glutamate-dependent regulation of food intake is altered with age and one of the potential mechanisms through which this age-related changes in intake occur is changes in NMDA receptor phenotypes on vagal afferent neurons located in NG.
Collapse
Affiliation(s)
- Dulce M Minaya
- Department of Veterinary Biosciences and Diagnostic Imaging, The University of Georgia, Athens 30602, GA, United States
| | - Rachel Wanty Larson
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman 99164-6520, WA, United States
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland
| | - Krzysztof Czaja
- Department of Veterinary Biosciences and Diagnostic Imaging, The University of Georgia, Athens 30602, GA, United States.
| |
Collapse
|
10
|
Schalla M, Prinz P, Friedrich T, Scharner S, Kobelt P, Goebel-Stengel M, Rose M, Stengel A. Phoenixin-14 injected intracerebroventricularly but not intraperitoneally stimulates food intake in rats. Peptides 2017; 96:53-60. [PMID: 28844870 DOI: 10.1016/j.peptides.2017.08.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Phoenixin, a recently discovered 20-amino acid peptide was implicated in reproduction. However, the expression in food intake-regulatory nuclei such as the paraventricular nucleus, the arcuate nucleus and the nucleus of the solitary tract suggests an implication of phoenixin in food intake regulation. Therefore, we investigated the effects of phoenixin-14, the shorter form of phoenixin, on food intake following intracerebroventricular (icv) and intraperitoneal (ip) injection in ad libitum fed male Sprague-Dawley rats. Phoenixin-14 injected icv (0.2, 1.7 or 15nmol/rat) during the light phase induced a dose-dependent increase of light phase food intake reaching significance at a minimum dose of 1.7 nmol/rat (+72%, p<0.05 vs. vehicle) used for all further analyses. Assessment of the food intake microstructure showed an icv phoenixin-14-induced increase in meal size (+51%), meal duration (+157%), time spent in meals (+182%) and eating rate (+123%), while inter-meal intervals (-42%) and the satiety ratio (-64%) were decreased compared to vehicle (p<0.05). When injected icv during the dark phase, no modulation of food intake was observed (p>0.05). The light phase icv phoenixin-14-induced increase of water intake did not reach statistical significance compared to vehicle (+136%, p>0.05). The increase of food intake following icv phoenixin-14 was not associated with a significant alteration of grooming behavior (0.4-fold, p=0.377) or locomotion (6-fold, p=0.066) compared to vehicle. When injected ip at higher doses (0.6, 5nmol/kg or 45nmol/kg body weight) during the light phase, phoenixin-14 did not affect food intake (p>0.05). In summary, phoenixin-14 exerts a centrally-mediated orexigenic effect.
Collapse
Affiliation(s)
- Martha Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Tiemo Friedrich
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sophie Scharner
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Kobelt
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Miriam Goebel-Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Internal Medicine, Helios Clinic, Zerbst, Germany
| | - Matthias Rose
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Quantitative Health Sciences, Medical School University of Massachusetts, Worcester, MA, USA
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
11
|
Wang L, Jacobs JP, Lagishetty V, Yuan PQ, Wu SV, Million M, Reeve JR, Pisegna JR, Taché Y. High-protein diet improves sensitivity to cholecystokinin and shifts the cecal microbiome without altering brain inflammation in diet-induced obesity in rats. Am J Physiol Regul Integr Comp Physiol 2017; 313:R473-R486. [PMID: 28724546 DOI: 10.1152/ajpregu.00105.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
High-protein diet (HPD) curtails obesity and/or fat mass, but it is unknown whether it reverses neuroinflammation or alters glucose levels, CCK sensitivity, and gut microbiome in rats fed a Western diet (WD)-induced obesity (DIO). Male rats fed a WD (high fat and sugar) for 12 wk were switched to a HPD for 6 wk. Body composition, food intake, meal pattern, sensitivity to intraperitoneal CCK-8S, blood glucose, brain signaling, and cecal microbiota were assessed. When compared with a normal diet, WD increased body weight (9.3%) and fat mass (73.4%). CCK-8S (1.8 or 5.2 nmol/kg) did not alter food intake and meal pattern in DIO rats. Switching to a HPD for 6 wk reduced fat mass (15.7%) with a nonsignificantly reduced body weight gain, normalized blood glucose, and decreased feeding after CCK-8S. DIO rats on the WD or switched to a HPD showed comparable microbial diversity. However, in HPD versus WD rats, there was enrichment of 114 operational taxonomic units (OTUs) and depletion of 188 OTUs. Of those, Akkermansia muciniphila (enriched on a HPD), an unclassified Clostridiales, a member of the RF39 order, and a Phascolarctobacterium were significantly associated with fat mass. The WD increased cytokine expression in the hypothalamus and dorsal medulla that was unchanged by switching to HPD. These data indicate that HPD reduces body fat and restores glucose homeostasis and CCK sensitivity, while not modifying brain inflammation. In addition, expansion of cecal Akkermansia muciniphila correlated to fat mass loss may represent a potential peripheral mechanism of HPD beneficial effects.
Collapse
Affiliation(s)
- Lixin Wang
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Jonathan P Jacobs
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Venu Lagishetty
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Pu-Qing Yuan
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Shuping V Wu
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Mulugeta Million
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Joseph R Reeve
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Joseph R Pisegna
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and.,Division of Gastroenterology, Hepatology and Parenteral Nutrition, and Research and Development, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California
| | - Yvette Taché
- CURE/Digestive Diseases Research Center and Center for Neurobiology of Stress and Resilience, Department of Medicine, Vatche and Tamar Manoukian Digestive Diseases Division, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| |
Collapse
|
12
|
Prinz P, Stengel A. Control of Food Intake by Gastrointestinal Peptides: Mechanisms of Action and Possible Modulation in the Treatment of Obesity. J Neurogastroenterol Motil 2017; 23:180-196. [PMID: 28096522 PMCID: PMC5383113 DOI: 10.5056/jnm16194] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023] Open
Abstract
This review focuses on the control of appetite by food intake-regulatory peptides secreted from the gastrointestinal tract, namely cholecystokinin, glucagon-like peptide 1, peptide YY, ghrelin, and the recently discovered nesfatin-1 via the gut-brain axis. Additionally, we describe the impact of external factors such as intake of different nutrients or stress on the secretion of gastrointestinal peptides. Finally, we highlight possible conservative—physical activity and pharmacotherapy—treatment strategies for obesity as well as surgical techniques such as deep brain stimulation and bariatric surgery also altering these peptidergic pathways.
Collapse
Affiliation(s)
- Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
13
|
Steinert RE, Feinle-Bisset C, Asarian L, Horowitz M, Beglinger C, Geary N. Ghrelin, CCK, GLP-1, and PYY(3-36): Secretory Controls and Physiological Roles in Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 2017; 97:411-463. [PMID: 28003328 PMCID: PMC6151490 DOI: 10.1152/physrev.00031.2014] [Citation(s) in RCA: 385] [Impact Index Per Article: 48.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the management of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI) endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), and peptide tyrosine tyrosine [PYY(3-36)], and their contributions to the controls of GI motor function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons, as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting signals are discussed. Gastric emptying, the detection of specific digestive products by small intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute to the secretion of ghrelin, CCK, GLP-1, and PYY(3-36). While CCK has been fully established as an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contributes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in these hormones' actions, but methods to determine the physiological status of local signaling effects are lacking. Further research and fresh approaches are required to better understand ghrelin, CCK, GLP-1, and PYY(3-36) physiology; their roles in obesity and bariatric surgery; and their therapeutic potentials.
Collapse
Affiliation(s)
- Robert E Steinert
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christine Feinle-Bisset
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Lori Asarian
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Michael Horowitz
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Christoph Beglinger
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| | - Nori Geary
- University of Adelaide Discipline of Medicine and National Health and Medical Research Council of Australia Centre of Research Excellence in Translating Nutritional Science to Good Health, Adelaide, Australia; DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland; Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland; Department of Biomedicine and Division of Gastroenterology, University Hospital Basel, Basel, Switzerland; and Department of Psychiatry, Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
14
|
Sayegh AI, Washington MC, Johnson RE, Johnson-Rouse T, Freeman C, Harrison A, Lucas J, Shelby M, Fisher B, Willis W, Reeve JJ. Celiac and the cranial mesenteric arteries supply gastrointestinal sites that regulate meal size and intermeal interval length via cholecystokinin-58 in male rats. Horm Behav 2015; 67:48-53. [PMID: 25479193 DOI: 10.1016/j.yhbeh.2014.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/28/2022]
Abstract
The site(s) of action that control meal size and intermeal interval (IMI) length by cholecystokinin-58 (CCK-58), the only detectable endocrine form of CCK in the rat, are not known. To test the hypothesis that the gastrointestinal tract may contain such sites, we infused low doses of CCK-58 (0.01, 0.05, 0.15 and 0.25nmol/kg) into the celiac artery (CA, supplying stomach and upper duodenum), the cranial mesenteric artery (CMA, supplying small and most of the large intestines), the femoral artery (FA, control) and the portal vein (PV, draining the gastrointestinal tract) prior to the onset of the dark cycle in freely fed male rats. We measured the first meal size (chow), second meal size, IMI and satiety ratio (SR, IMI/meal size). We found that (1) all doses of CCK-58 given in the CA and the highest dose given in the CMA reduced the first meal size, (2) all doses of CCK-58 given in the CA reduced the second meal size, (3) a CCK-58 dose of 0.15nmol/kg given in the CA and 0.15 and 0.25nmol/kg given in the CMA prolonged the IMI, (4) CCK-58 (0.05, 0.15, 0.25nmol/kg) given in the CA and 0.25nmol/kg given in the CMA increased the SR, and (5) CCK-58 given in the FA and PV had no effect on the meal size or intermeal interval. These results support our hypothesis that the gastrointestinal tract contains sites of action that regulate meal size and IMI length via CCK-58. The stomach and upper duodenum may contain sites regulating meal size, whereas the small intestine and part of the large intestine may contain sites regulating the IMI.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA.
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Ruth E Johnson
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Tanisha Johnson-Rouse
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Corren Freeman
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Anna Harrison
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Jennifer Lucas
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Mandy Shelby
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Brittley Fisher
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - William Willis
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Joseph J Reeve
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA; CURE: Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Digestive Diseases Division, School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
15
|
Engster KM, Frommelt L, Hofmann T, Nolte S, Fischer F, Rose M, Stengel A, Kobelt P. Peripheral injected cholecystokinin-8S modulates the concentration of serotonin in nerve fibers of the rat brainstem. Peptides 2014; 59:25-33. [PMID: 25017242 DOI: 10.1016/j.peptides.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/05/2023]
Abstract
Serotonin and cholecystokinin (CCK) play a role in the short-term inhibition of food intake. It is known that peripheral injection of CCK increases c-Fos-immunoreactivity (Fos-IR) in the nucleus of the solitary tract (NTS) in rats, and injection of the serotonin antagonist ondansetron decreases the number of c-Fos-IR cells in the NTS. This supports the idea of serotonin contributing to the effects of CCK. The aim of the present study was to elucidate whether peripherally injected CCK-8S modulates the concentration of serotonin in brain feeding-regulatory nuclei. Ad libitum fed male Sprague-Dawley rats received 5.2 and 8.7 nmol/kg CCK-8S (n=3/group) or 0.15M NaCl (n=3-5/group) injected intraperitoneally (ip). The number of c-Fos-IR neurons, and the fluorescence intensity of serotonin in nerve fibers were assessed in the paraventricular nucleus (PVN), arcuate nucleus (ARC), NTS and dorsal motor nucleus of the vagus (DMV). CCK-8S increased the number of c-Fos-ir neurons in the NTS (mean±SEM: 72±4, and 112±5 neurons/section, respectively) compared to vehicle-treated rats (7±2 neurons/section, P<0.05), but did not modulate c-Fos expression in the DMV or ARC. Additionally, CCK-8S dose-dependently increased the number of c-Fos-positive neurons in the PVN (218±15 and 128±14, respectively vs. 19±5, P<0.05). In the NTS and DMV we observed a decrease of serotonin-immunoreactivity 90 min after injection of CCK-8S (46±2 and 49±8 pixel/section, respectively) compared to vehicle (81±8 pixel/section, P<0.05). No changes of serotonin-immunoreactivity were observed in the PVN and ARC. Our results suggest that serotonin is involved in the mediation of CCK-8's effects in the brainstem.
Collapse
Affiliation(s)
- Kim-Marie Engster
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Lisa Frommelt
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Tobias Hofmann
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Sandra Nolte
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Felix Fischer
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Rose
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Andreas Stengel
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany
| | - Peter Kobelt
- Medical Clinic, Department of Psychosomatic Medicine, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
16
|
Sayegh AI, Washington MC, Raboin SJ, Aglan AH, Reeve JR. CCK-58 prolongs the intermeal interval, whereas CCK-8 reduces this interval: not all forms of cholecystokinin have equal bioactivity. Peptides 2014; 55:120-5. [PMID: 24607725 DOI: 10.1016/j.peptides.2014.02.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 02/20/2014] [Accepted: 02/20/2014] [Indexed: 01/09/2023]
Abstract
It has been accepted for decades that "all forms of cholecystokinin (CCK) have equal bioactivity," despite accumulating evidence to the contrary. To challenge this concept, we compared two feeding responses, meal size (MS, 10% sucrose) and intermeal interval (IMI), in response to CCK-58, which is the major endocrine form of CCK, and CCK-8, which is the most abundantly utilized form. Doses (0, 0.1, 0.5, 0.75, 1, 3 and 5 nmol/kg) were administered intraperitoneally over a 210-min test to Sprague Dawley rats that had been food-deprived overnight. We found that (1) all doses of CCK-58, except the lowest dose, and all doses of CCK-8, except the lowest two doses, reduced food intake more than vehicle did; (2) at two doses, 0.75 and 3 nmol/kg, CCK-58 increased the IMI, while CCK-8 failed to alter this feeding response; and (3) CCK-58, at all but the lowest two doses, increased the satiety ratio (IMI between first and second meals (min) divided by first MS (ml)) relative to vehicle, while CCK-8 did not affect this value. These findings demonstrate that the only circulating form of CCK in rats, CCK-58, prolongs the IMI more than CCK-8, the peptide generally utilized in feeding studies. Taken together, these results add to a growing list of functions where CCK-8 and CCK-58 express qualitatively different bioactivities. In conclusion, the hypothesis that "all forms of cholecystokinin (CCK) have equal bioactivity" is not supported.
Collapse
Affiliation(s)
- Ayman I Sayegh
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States.
| | - Martha C Washington
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Shannon J Raboin
- Gastroenterology Laboratory, Department of Biomedical Sciences, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, United States
| | - Amnah H Aglan
- School of Medicine, Wayne State University, Detroit, MI, United States
| | - Joseph R Reeve
- CURE: Digestive Diseases Research Center, Veterans Administration Greater Los Angeles Healthcare System, and Digestive Diseases Division, School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
17
|
Overduin J, Gibbs J, Cummings DE, Reeve JR. CCK-58 elicits both satiety and satiation in rats while CCK-8 elicits only satiation. Peptides 2014; 54:71-80. [PMID: 24468546 PMCID: PMC3989439 DOI: 10.1016/j.peptides.2014.01.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 11/18/2022]
Abstract
Reduction of food intake by exogenous cholecystokinin (CCK) has been demonstrated primarily for its short molecular form, CCK-8. Mounting evidence, however, implicates CCK-58 as a major physiologically active CCK form, with different neural and exocrine response profiles than CCK-8. In three studies, we compared meal-pattern effects of intraperitoneal injections CCK-8 vs. CCK-58 in undeprived male Sprague-Dawley rats consuming sweetened condensed milk. In study 1, rats (N=10) received CCK-8, CCK-58 (0.45, 0.9, 1.8 and 3.6 nmol/kg) or vehicle before a 4-h test-food presentation. At most doses, both CCK-8 and CCK-58 similarly reduced meal size relative to vehicle. Meal-size reduction prompted a compensatory shortening of the intermeal interval (IMI) after CCK-8, but not after CCK-58, which uniquely increased the satiety ratio (IMI/size of the preceding meal). In the second study, lick patterns were monitored after administration of 0.9 nmol/kg CCK-58, CCK-8 or vehicle. Lick cluster size, lick efficiency and interlick-interval distribution remained unaltered compared to vehicle, implying natural satiation, rather than illness, following both CCK forms. In study 3, threshold satiating doses of the two CCK forms were given at 5 and 30 min after meal termination, respectively. CCK 58, but not CCK-8 increased the intermeal interval and satiety ratio compared to vehicle. In conclusion, while CCK 58 and CCK-8 both stimulate satiation, thereby reducing meal size, CCK-58 consistently exerts a satiety effect, prolonging IMI. Given the physiological prominence of CCK-58, these results suggest that CCK's role in food intake regulation may require re-examination.
Collapse
Affiliation(s)
- Joost Overduin
- Weill Medical College, Cornell University, White Plains, NY 10605, USA; Veterans Administration Puget Sound Health Care System, Office of Research and Development Medical Research Service, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James Gibbs
- Weill Medical College, Cornell University, White Plains, NY 10605, USA
| | - David E Cummings
- Veterans Administration Puget Sound Health Care System, Office of Research and Development Medical Research Service, Seattle, WA 98108, USA; Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Joseph R Reeve
- Division of Digestive Diseases, David Geffen School of Medicine at UCLA and CURE: Digestive Diseases Research Center, Veterans Administration, Los Angeles, CA 90073, USA.
| |
Collapse
|
18
|
Smith JP, Solomon TE. Cholecystokinin and pancreatic cancer: the chicken or the egg? Am J Physiol Gastrointest Liver Physiol 2014; 306:G91-G101. [PMID: 24177032 PMCID: PMC4073990 DOI: 10.1152/ajpgi.00301.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The gastrointestinal peptide cholecystokinin (CCK) causes the release of pancreatic digestive enzymes and growth of the normal pancreas. Exogenous CCK administration has been used in animal models to study pancreatitis and also as a promoter of carcinogen-induced or Kras-driven pancreatic cancer. Defining CCK receptors in normal human pancreas has been problematic because of its retroperitoneal location, high concentrations of pancreatic proteases, and endogenous RNase. Most studies indicate that the predominant receptor in human pancreas is the CCK-B type, and CCK-A is the predominant form in rodent pancreas. In pancreatic cancer cells and tumors, the role of CCK is better established because receptors are often overexpressed by these cancer cells and stimulation of such receptors promotes growth. Furthermore, in established cancer, endogenous production of CCK and/or gastrin occurs and their actions stimulate the synthesis of more receptors plus growth by an autocrine mechanism. Initially it was thought that the mechanism by which CCK served to potentiate carcinogenesis was by interplay with inflammation in the pancreatic microenvironment. But with the recent findings of CCK receptors on early PanIN (pancreatic intraepithelial neoplasia) lesions and on stellate cells, the question has been raised that perhaps CCK actions are not the result of cancer but an early driving promoter of cancer. This review will summarize what is known regarding CCK, its receptors, and pancreatic cancer, and also what is unknown and requires further investigation to determine which comes first, the chicken or the egg, "CCK or the cancer."
Collapse
Affiliation(s)
- Jill P. Smith
- 1Clinical and Translational Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; and
| | - Travis E. Solomon
- 2Department of Basic Medical Science, University of Missouri-Kansas City, Kansas City, Missouri
| |
Collapse
|
19
|
Ahmed ASF, Dai L, Ho W, Ferguson AV, Sharkey KA. The subfornical organ: a novel site of action of cholecystokinin. Am J Physiol Regul Integr Comp Physiol 2014; 306:R363-73. [PMID: 24430886 DOI: 10.1152/ajpregu.00462.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ (SFO) is an important sensory circumventricular organ implicated in the regulation of fluid homeostasis and energy balance. We investigated whether the SFO is activated by the hormone cholecystokinin (CCK). CCK₁ and CCK₂ receptors were identified in the SFO by RT-PCR. Dissociated SFO neurons that responded to CCK (40/77), were mostly depolarized (9.2 ± 0.9 mV, 30/77), but some were hyperpolarized (-7.3 ± 1.1 mV, 10/77). We next examined the responses of SFO neurons in vivo to CCK (16 μg/kg ip), in the presence and absence of CCK₁ or CCK₂ receptor antagonists (devazepide; 600 μg/kg and L-365,260; 100 μg/kg, respectively), using the functional activation markers c-Fos and phosphorylated extracellular signal-related kinase (p-ERK). The nucleus of the solitary tract (NTS) served as a control for CCK-induced activity. There was a significant increase in c-Fos expression in the NTS (259.2 ± 20.8 neurons) compared with vehicle (47.5 ± 2.5). Similarly, in the SFO, c-Fos was expressed in 40.5 ± 10.6 neurons in CCK-treated compared with 6.6 ± 2.7 in vehicle-treated rats (P < 0.01). Devazepide significantly reduced the effects of CCK in the NTS but not in SFO. L-365,260 blocked the effects of CCK in both brain regions. CCK increased the number of p-ERK neurons in NTS (27.0 ± 4.0) as well as SFO (18.0 ± 4.0), compared with vehicle (8.0 ± 2.6 and 4.3 ± 0.6, respectively; P < 0.05). Both devazepide and L-365,260 reduced CCK-induced p-ERK in NTS, but only L-365,260 reduced it in the SFO. In conclusion, the SFO represents a novel brain region at which circulating CCK may act via CCK₂ receptors to influence central autonomic control.
Collapse
Affiliation(s)
- Al-Shaimaa F Ahmed
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; and
| | | | | | | | | |
Collapse
|