1
|
Benítez-Muñoz JA, Cupeiro R, Rubio-Arias JÁ, Amigo T, González-Lamuño D. Exercise influence on monocarboxylate transporter 1 (MCT1) and 4 (MCT4) in the skeletal muscle: A systematic review. Acta Physiol (Oxf) 2024; 240:e14083. [PMID: 38240467 DOI: 10.1111/apha.14083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
This review aims to systematically analyze the effect of exercise on muscle MCT protein levels and mRNA expression of their respective genes, considering exercise intensity, and duration (single-exercise session and training program) in humans and rodents, to observe whether both models offer aligned results. The review also aims to report methodological aspects that need to be improved in future studies. A systematic search was conducted in the PubMed and Web of Science databases, and the Preferred Reporting Items for Systematic review and Meta-Analyses (PRISMA) checklist was followed. After applying inclusion and exclusion criteria, 41 studies were included and evaluated using the Cochrane collaboration tool for risk of bias assessment. The main findings indicate that exercise is a powerful stimulus to increase MCT1 protein content in human muscle. MCT4 protein level increases can also be observed after a training program, although its responsiveness is lower compared to MCT1. Both transporters seem to change independently of exercise intensity, but the responses that occur with each intensity and each duration need to be better defined. The effect of exercise on muscle mRNA results is less defined, and more research is needed especially in humans. Moreover, results in rodents only agree with human results on the effect of a training program on MCT1 protein levels, indicating increases in both. Finally, we addressed important and feasible methodological aspects to improve the design of future studies.
Collapse
Affiliation(s)
- José Antonio Benítez-Muñoz
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Rocío Cupeiro
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science (INEF), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jacobo Á Rubio-Arias
- Department of Education, Faculty of Educational Sciences, Health Research Centre, University of Almería, Almería, Spain
| | - Teresa Amigo
- Department of Medical and Surgery Sciences, School of Medicine-IDIVAL, Universidad de Cantabria-Hospital M. Valdecilla, Santander, Spain
| | - Domingo González-Lamuño
- Department of Medical and Surgery Sciences, School of Medicine-IDIVAL, Universidad de Cantabria-Hospital M. Valdecilla, Santander, Spain
| |
Collapse
|
2
|
White H, Gurney T. Chlorella Supplementation Reduces Blood Lactate Concentration and Increases O 2 Pulse during Submaximal and Maximal Cycling in Young Healthy Adults. Nutrients 2024; 16:697. [PMID: 38474825 DOI: 10.3390/nu16050697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Chlorella supplementation is reported to improve V˙O2max following extended supplementation periods (~3 weeks). However, there is little research on its impact over submaximal exercise intensities and following shorter supplementation regimens. This study aimed to investigate the efficacy of 6 g/day 2-day chlorella supplementation on exercise performance in healthy young adults. Twenty young healthy adults (Males = 16, Females = 4) (Age 22 ± 6 years, V˙O2max 42.7 ± 9.6 mL/(kg·min)) were recruited for this double-blinded, randomised cross-over study. Participants ingested 6 g/day of chlorella or a placebo for 2 days, with a one-week washout period between trials. Exercise testing consisted of a 20 min submaximal cycle at 40% of their work rate max (WRmax) (watts), followed by an incremental V˙O2max test. Lactate (mmol/L), heart rate (b/min), oxygen consumption (mL/(kg·min)), O2 pulse (mL/beat), respiratory exchange ratio (RER), and WRmax were compared across conditions. Following chlorella supplementation, blood lactate levels were significantly lower (p < 0.05) during submaximal exercise (3.05 ± 0.92 mmol/L vs. 2.67 ± 0.79 mmol/L) and following V˙O2max tests (12.79 ± 2.61 mmol/L vs. 11.56 ± 3.43 mmol/L). The O2 pulse was significantly higher (p < 0.05) following chlorella supplementation during submaximal (12.6 ± 3.5 mL/beat vs. 13.1 ± 3.5 mL/beat) and maximal exercise intensity (16.7 ± 4.6 mL/beat vs. 17.2 ± 4.5 mL/beat). No differences existed between conditions for oxygen consumption, RER, V˙O2max, or WRmax. A total of 2 days of 6 g/day chlorella supplementation appears to lower the blood lactate response and increase O2 pulse during both submaximal and maximal intensity exercise but did not lead to any improvements in V˙O2max.
Collapse
Affiliation(s)
- Harry White
- Division of Surgery & Interventional Science, University College London, London W1T 7HA, UK
| | - Tom Gurney
- Division of Surgery & Interventional Science, University College London, London W1T 7HA, UK
| |
Collapse
|
3
|
Horii N, Miyamoto-Mikami E, Fujie S, Uchida M, Inoue K, Iemitsu K, Tabata I, Nakamura S, Tsubota J, Tsubota K, Iemitsu M. Effect of Exogenous Acute β-Hydroxybutyrate Administration on Different Modalities of Exercise Performance in Healthy Rats. Med Sci Sports Exerc 2023; 55:1184-1194. [PMID: 36893302 DOI: 10.1249/mss.0000000000003151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
PURPOSE A ketone body (β-hydroxybutyrate [β-HB]) is used as an energy source in the peripheral tissues. However, the effects of acute β-HB supplementation on different modalities of exercise performance remain unclear. This study aimed to assess the effects of acute β-HB administration on the exercise performance of rats. METHODS In study 1, Sprague-Dawley rats were randomly divided into six groups: endurance exercise (EE + PL and EE + KE), resistance exercise (RE + PL and RE + KE), and high-intensity intermittent exercise (HIIE + PL and HIIE + KE) with placebo (PL) or β-HB salt (KE) administration. In study 2, metabolome analysis using capillary electrophoresis mass spectrometry was performed to profile the effects of β-HB salt administration on HIIE-induced metabolic responses in the skeletal and heart muscles. RESULTS The maximal carrying capacity (rest for 3 min after each ladder climb, while carrying heavy weights until the rats could not climb) in the RE + KE group was higher than that in the RE + PL group. The maximum number of HIIE sessions (a 20-s swimming session with a 10-s rest between sessions, while bearing a weight equivalent to 16% of body weight) in the HIIE + KE group was higher than that in the HIIE + PL group. However, there was no significant difference in the time to exhaustion at 30 m·min -1 between the EE + PL and the EE + KE groups. Metabolome analysis showed that the overall tricarboxylic acid cycle and creatine phosphate levels in the skeletal muscle were higher in the HIIE + KE group than those in the HIIE + PL group. CONCLUSIONS These results indicate that acute β-HB salt administration may accelerate HIIE and RE performance, and the changes in metabolic responses in the skeletal muscle after β-HB salt administration may be involved in the enhancement of HIIE performance.
Collapse
Affiliation(s)
| | - Eri Miyamoto-Mikami
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, JAPAN
| | - Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Masataka Uchida
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | | | - Keiko Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Izumi Tabata
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| | - Shigeru Nakamura
- Department of Ophthalmology, Keio University School of Medicine, Shinjuku-ku, Tokyo, JAPAN
| | - Jun Tsubota
- Energy Technology Laboratories, OSAKA GAS Co., Ltd., Konohana-ku, Osaka, JAPAN
| | | | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, JAPAN
| |
Collapse
|
4
|
Lorenzo K, Santocildes G, Torrella JR, Magalhães J, Pagès T, Viscor G, Torres JL, Ramos-Romero S. Bioactivity of Macronutrients from Chlorella in Physical Exercise. Nutrients 2023; 15:2168. [PMID: 37432326 DOI: 10.3390/nu15092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 07/12/2023] Open
Abstract
Chlorella is a marine microalga rich in proteins and containing all the essential amino acids. Chlorella also contains fiber and other polysaccharides, as well as polyunsaturated fatty acids such as linoleic acid and alpha-linolenic acid. The proportion of the different macronutrients in Chlorella can be modulated by altering the conditions in which it is cultured. The bioactivities of these macronutrients make Chlorella a good candidate food to include in regular diets or as the basis of dietary supplements in exercise-related nutrition both for recreational exercisers and professional athletes. This paper reviews current knowledge of the effects of the macronutrients in Chlorella on physical exercise, specifically their impact on performance and recovery. In general, consuming Chlorella improves both anaerobic and aerobic exercise performance as well as physical stamina and reduces fatigue. These effects seem to be related to the antioxidant, anti-inflammatory, and metabolic activity of all its macronutrients, while each component of Chlorella contributes its bioactivity via a specific action. Chlorella is an excellent dietary source of high-quality protein in the context of physical exercise, as dietary proteins increase satiety, activation of the anabolic mTOR (mammalian Target of Rapamycin) pathway in skeletal muscle, and the thermic effects of meals. Chlorella proteins also increase intramuscular free amino acid levels and enhance the ability of the muscles to utilize them during exercise. Fiber from Chlorella increases the diversity of the gut microbiota, which helps control body weight and maintain intestinal barrier integrity, and the production of short-chain fatty acids (SCFAs), which improve physical performance. Polyunsaturated fatty acids (PUFAs) from Chlorella contribute to endothelial protection and modulate the fluidity and rigidity of cell membranes, which may improve performance. Ultimately, in contrast to several other nutritional sources, the use of Chlorella to provide high-quality protein, dietary fiber, and bioactive fatty acids may also significantly contribute to a sustainable world through the fixation of carbon dioxide and a reduction of the amount of land used to produce animal feed.
Collapse
Affiliation(s)
- Karenia Lorenzo
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Garoa Santocildes
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Joan Ramon Torrella
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - José Magalhães
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sport, University of Porto, 4200-450 Porto, Portugal
| | - Teresa Pagès
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Ginés Viscor
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Josep Lluís Torres
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), 08034 Barcelona, Spain
| | - Sara Ramos-Romero
- Physiology Section, Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Gurney T, Brouner J, Spendiff O. The Efficacy of Chlorella Supplementation on Multiple Indices of Cycling Performance. J Diet Suppl 2023; 21:99-115. [PMID: 36905653 DOI: 10.1080/19390211.2023.2186557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This study investigated the effects of chlorella supplementation on submaximal endurance, time trial performance, lactate threshold, and power indices during a repeated sprint performance test by fourteen male trained cyclists. Participants ingested 6 g/day of chlorella or placebo for 21-days in a double-blinded randomized counter-balanced cross-over design, with a fourteen-day washout period between trials. Each completed a 2-day testing period comprising a 1-hour submaximal endurance test at 55% external power output max and a 16.1 km time trial (Day-1), followed by a lactate threshold (Dmax) and repeated sprint performance tests (3 X 20 s sprints interspersed by 4-mins) (Day-2). Heart rate (b.min-1), RER, V̇O2 (ml·kg-1·min-1), lactate and glucose (mmol/L), time (secs), power output (W/kg), and hemoglobin (g/L) were compared across conditions. Following chlorella supplementation (chlorella vs. placebo for each measurement) average lactate and heart rate were significantly lower (p < 0.05) during submaximal endurance tests (1.68 ± 0.50 mmol/L vs. 1.91 ± 0.65 mmol/L & 138 ± 11b.min-1 vs. 144 ± 10b.min-1), average power and peak power (W/kg) were significantly higher during repeated sprint bouts (9.5 ± 0.7 W/kg vs. 9.0 ± 0.7 W/kg & 12.0 ± 1.2 W/kg vs. 11.4 ± 1.4 W/kg), hemoglobin significantly increased (149.1 ± 10.3 g/L) in comparison to placebo (143.4 ± 8.7 g/L) (p = 0.05). No differences existed between conditions for all oxygen consumption values, 16.1 km time trial measures and lactate threshold tests (p > 0.05). In conclusion, chlorella may pose as an additional supplement for cyclists to consider, particularly for those cyclists who want to improve their sprinting.
Collapse
Affiliation(s)
- Tom Gurney
- School of Life Sciences, Kingston University, Kingston upon Thames, England
- Division of Surgery & Interventional Science, University College London, London, England
| | - James Brouner
- School of Life Sciences, Kingston University, Kingston upon Thames, England
| | - Owen Spendiff
- School of Life Sciences, Kingston University, Kingston upon Thames, England
| |
Collapse
|
6
|
Gurney T, Spendiff O. Algae Supplementation for Exercise Performance: Current Perspectives and Future Directions for Spirulina and Chlorella. Front Nutr 2022; 9:865741. [PMID: 35321288 PMCID: PMC8937016 DOI: 10.3389/fnut.2022.865741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Nutritional clinical trials have reported algae such as spirulina and chlorella to have the capability to improve cardiovascular risk factors, anemia, immune function, and arterial stiffness. With positive results being reported in clinical trials, researchers are investigating the potential for algae as an ergogenic aid for athletes. Initial studies found spirulina and chlorella supplementation to increase peak oxygen uptake and time to exhaustion, with the mechanistic focus on the antioxidant capabilities of both algae. However, a number of oxidative stress biomarkers reported in these studies are now considered to lack robustness and have consequently provided equivocal results. Considering the nutrient complexity and density of these commonly found edible algae, there is a need for research to widen the scope of investigation. Most recently algae supplementation has demonstrated ergogenic potential during submaximal and repeated sprint cycling, yet a confirmed primary mechanism behind these improvements is still unclear. In this paper we discuss current algae supplementation studies and purported effects on performance, critically examine the antioxidant and ergogenic differing perspectives, and outline future directions.
Collapse
Affiliation(s)
- Tom Gurney
- *Correspondence: Tom Gurney, ; orcid.org/0000-0002-2490-2960
| | | |
Collapse
|
7
|
Vieira-Souza LM, Aidar FJ, Matos DGD, Silva AND, Miguel-dos-Santos R, Santos JLD, Costa RDA, Marçal AC, Lauton-Santos S, Cabral BGDAT, Estevam CDS, Araújo SSD. SHORT-TERM HIIT DOES NOT PROMOTE OXIDATIVE STRESS OR MUSCLE DAMAGE. REV BRAS MED ESPORTE 2021. [DOI: 10.1590/1517-8692202127022019_0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
ABSTRACT Introduction: High intensity interval training (HIIT) is a method that is widely used today. Objective: The present study aimed to evaluate the effects of HIIT on markers of oxidative stress and muscle damage in rats. Methods: The sample consisted of 60-day-old Wistar rats, divided into two groups: a control group (n=8) and an HIIT group (n=8). The training consisted of fourteen 20-second swimming sessions (loaded with weights equivalent to 14% of their body weight) with 10-second intervals between each session, performed for 12 consecutive days. Results: HIIT induced a reduction (−17.75%) in thiobarbituric acid reactive substances (an oxidative stress marker) in hepatic tissue (p=0.0482). There was also a reduction (−31.80%) in the HIIT group in the level of superoxide dismutase enzyme activity in the liver (p=0.0375). However, there were no differences between the groups in catalase, glutathione peroxidase, glutathione reductase, the total content of SH sulfhydryls, hydroperoxides, or carbonylated proteins in the hepatic tissue. No significant differences were found in any of these markers in the gastrocnemius muscle. The muscle damage markers creatinine kinase and lactate dehydrogenase were also similar between the groups in the gastrocnemius. Conclusion: The conclusion was that that short-term HIIT does not cause oxidative stress or muscle damage. Level of evidence I; High-quality randomized clinical trial with or without statistically significant difference, but with narrow confidence intervals.
Collapse
Affiliation(s)
| | - Felipe J. Aidar
- Universidade Federal de Sergipe, Brazil; Universidade Federal de Sergipe, Brazil; Universidade Federal de Sergipe, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sanayei M, Izadi A, Hajizadeh-Sharafabad F, Amirsasan R, Kaviani M, Barzegar A. Chlorella vulgaris in combination with high intensity interval training in overweight and obese women: a randomized double-blind clinical trial. J Diabetes Metab Disord 2021; 20:781-792. [PMID: 34178863 DOI: 10.1007/s40200-021-00816-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
Background Chlorella vulgaris (CV) as a multifunctional dietary supplement is known with lots of health benefits. It is possible that CV consumption along with high-intensity interval training (HIIT), a short period exercise is more beneficial. This investigation aimed to evaluate the effects of CV and/or HIIT on anthropometric parameters and cardiometabolic risk factors among overweight or obese women. Methods Present randomized double-blind clinical trial, included 46 women with overweight or obesity and randomly assigned them to four groups including CV, HIIT, CV+HIIT, and placebo. CV supplementation was 900 mg a day and HIIT program 3 sessions a week. Dietary intake, anthropometric assays and blood samples were taken at the commencement and completion of 8-week intervention. Results After 8 weeks, waist circumference (WC) significantly reduced in CV+HIIT group in comparison with placebo group. Significant decreases in triglycerides (TG) and low-density lipoprotein (LDL) cholesterol levels were found after CV supplementation and/or HIIT exercise in comparison with placebo group. A significant rise in high-density lipoprotein (HDL) cholesterol level was observed in HIIT and HIIT + CV groups in comparison with placebo group, however CV consumption failed to affect HDL cholesterol levels. CV and/or HIIT significantly lowered, visceral adiposity index (VAI), lipid accumulating product (LAP) and atherogenic index of plasma (AIP) in comparison with placebo. However, concurrent administration of CV and HII resulted in greater reduction in this indexes. Among glycemic indices a significant reduction in insulin resistance in CV+HIIT group compared with placebo group were seen. Conclusions In conclusion, CV and HIIT could improve lipid profile and glycemic status in overweight and obese women.
Collapse
Affiliation(s)
- Mahzad Sanayei
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azimeh Izadi
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Hajizadeh-Sharafabad
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Amirsasan
- Associate Professor in Exercise Physiology and Sport Nutrition, University of Tabriz, Tabriz, Iran
| | - Mojtaba Kaviani
- School of Nutrition and Dietetics, Faculty of Pure and Applied Science, Acadia University, Nova Scotia, Canada
| | - Ali Barzegar
- Nutrition Research Center, Department of Community Nutrition, School of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Pengam M, Amérand A, Simon B, Guernec A, Inizan M, Moisan C. How do exercise training variables stimulate processes related to mitochondrial biogenesis in slow and fast trout muscle fibres? Exp Physiol 2021; 106:938-957. [PMID: 33512052 DOI: 10.1113/ep089231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/27/2021] [Indexed: 12/27/2022]
Abstract
NEW FINDINGS What is the central question of this study? Exercise is known to promote mitochondrial biogenesis in skeletal muscle, but what are the most relevant training protocols to stimulate it? What is the main finding and its importance? As in mammals, training in rainbow trout affects slow and fast muscle fibres differently. Exercise intensity, relative to volume, duration and frequency, is the most relevant training variable to stimulate the processes related to mitochondrial biogenesis in both red and white muscles. This study offers new insights into muscle fibre type-specific transcription and expression of genes involved in mitochondrial adaptations following training. ABSTRACT Exercise is known to be a powerful way to improve health through the stimulation of mitochondrial biogenesis in skeletal muscle, which undergoes cellular and molecular adaptations. One of the current challenges in human is to define the optimal training stimulus to improve muscle performance. Fish are relevant models for exercise training physiology studies mainly because of their distinct slow and fast muscle fibres. Using rainbow trout, we investigated the effects of six different training protocols defined by manipulating specific training variables (such as exercise intensity, volume, duration and frequency), on mRNAs and some proteins related to four subsystems (AMP-activated protein kinase-peroxisome proliferator-activated receptor γ coactivator-1α signalling pathway, mitochondrial function, antioxidant defences and lactate dehydrogenase (LDH) metabolism) in both red and white muscles (RM and WM, respectively). In both muscles, high-intensity exercise stimulated more mRNA types and enzymatic activities related to mitochondrial biogenesis than moderate-intensity exercise. For volume, duration and frequency variables, we demonstrated fibre type-specific responses. Indeed, for high-intensity interval training, RM transcript levels are increased by a low training volume, but WM transcript responses are stimulated by a high training volume. Moreover, transcripts and enzymatic activities related to mitochondria and LDH show that WM tends to develop aerobic metabolism with a high training volume. For transcript stimulation, WM requires a greater duration and frequency of exercise than RM, whereas protein adaptations are efficient with a long training duration and a high frequency in both muscles.
Collapse
Affiliation(s)
- Morgane Pengam
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Aline Amérand
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Bernard Simon
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Anthony Guernec
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Manon Inizan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| | - Christine Moisan
- EA 4324 ORPHY, UFR Sciences et Techniques, Université de Brest, 6 avenue Victor Le Gorgeu, Brest, F-29238, France
| |
Collapse
|
10
|
Fujie S, Hasegawa N, Horii N, Inoue K, Uchida M, Iemitsu M. Effects of combined exercise training and Chlorella intake on vasorelaxation mediated by nitric oxide in aged mice. Appl Physiol Nutr Metab 2020; 46:479-484. [PMID: 33186051 DOI: 10.1139/apnm-2020-0543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic Chlorella intake and aerobic exercise training reduce arterial stiffness and increase circulating nitric oxide (NO) levels, which has beneficial effects. This study aimed to clarify the combined aortic NO-mediated effects of chronic Chlorella intake and aerobic exercise training on endothelial vasorelaxation in aged mice. In this study, 38-week-old male senescence-accelerated mouse prone 1 (SAMP1) mice were divided into aged sedentary control (Con), aerobic exercise training (AT; voluntary wheel running for 12 weeks), Chlorella intake (CH; 0.5% Chlorella powder in normal diet), and AT and CH combined (AT+CH) groups. Endothelium-dependent vasorelaxation by addition of acetylcholine to the isolated mouse aortic rings was significantly higher in the AT, CH, and AT+CH groups than in the Con group; a significantly greater effect was seen in the AT+CH group than in the AT and CH groups. Similarly, plasma and arterial nitrite/nitrate levels and arterial endothelial NO synthase phosphorylation were significantly higher in the AT, CH, and AT+CH groups than in the Con group; the AT+CH group had higher values than the AT and CH groups. Thus, chronic Chlorella intake combined with aerobic exercise training had pronounced effects on endothelial vasorelaxation in aged mice via an additive increase in arterial NO production. Novelty: Endothelium-dependent vasorelaxation was improved by Chlorella intake and exercise. Chlorella intake and exercise increased arterial Akt/eNOS/NO signaling. This combination approach further improved vasorelaxation via arterial NO production.
Collapse
Affiliation(s)
- Shumpei Fujie
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Natsuki Hasegawa
- Research Organization of Science and Technology, Ritsumeikan University, Shiga, Japan
| | - Naoki Horii
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Kenichiro Inoue
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Masataka Uchida
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
11
|
Béland-Millar A, Takimoto M, Hamada T, Messier C. Brain and muscle adaptation to high-fat diets and exercise: Metabolic transporters, enzymes and substrates in the rat cortex and muscle. Brain Res 2020; 1749:147126. [PMID: 32946799 DOI: 10.1016/j.brainres.2020.147126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/10/2020] [Accepted: 09/11/2020] [Indexed: 11/28/2022]
Abstract
There is evidence suggesting that the effects of diet and physical activity on physical and mental well-being are the result of altered metabolic profiles. Though the central and peripheral systems work in tandem, the interactions between peripheral and central changes that lead to these altered states of well-being remains elusive. We measured changes in the metabolic profile of brain (cortex) and muscle (soleus and plantaris) tissue in rats following 5-weeks of treadmill exercise and/or a high-fat diet to evaluate peripheral and central interactions as well as identify any common adaptive mechanisms. To characterize changes in metabolic profiles, we measured relative changes in key metabolic enzymes (COX IV, hexokinase, LDHB, PFK), substrates (BHB, FFA, glucose, lactate, insulin, glycogen, BDNF) and transporters (MCT1, MCT2, MCT4, GLUT1, GLUT3). In the cortex, there was an increase in MCT1 and a decrease in glycogen following the high-fat diet, suggesting an increased reliance on monocarboxylates. Muscle changes were dependent muscle type. Within the plantaris, a high-fat diet increased the oxidative capacity of the muscle likely supported by increased glycolysis, whereas exercise increased the oxidative capacity of the muscle likely supported via increased glycogen synthesis. There was no effect of diet on soleus measurements, but exercise increased its oxidative capacity likely fueled by endogenous and exogenous monocarboxylates. For both the plantaris and soleus, combining exercise training and high-fat diet mediated results, resulting in a middling effect. Together, these results indicate the variable adaptions of two main metabolic pathways: glycolysis and oxidative phosphorylation. The results also suggest a dynamic relationship between the brain and body.
Collapse
Affiliation(s)
- Alexandria Béland-Millar
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada.
| | - Masaki Takimoto
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Taku Hamada
- Laboratory of Exercise Physiology and Biochemistry, Graduate School of Sport and Exercise Sciences, Osaka University of Health and Sport Sciences, Osaka, Japan
| | - Claude Messier
- School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
12
|
Effect of Chlorella vulgaris supplementation with eccentric exercise on serum interleukin 6 and insulin resistance in overweight men. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Do sex-related differences and time of intervals affect the skeletal muscle glycolytic response to high-intensity interval exercise? SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Wang L, Zhu R, Wang J, Yu S, Wang J, Zhang Y. Nrf2 Activation Enhances Muscular MCT1 Expression and Hypoxic Exercise Capacity. Med Sci Sports Exerc 2020; 52:1719-1728. [PMID: 32079911 DOI: 10.1249/mss.0000000000002312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Skeletal muscle is the major producing and metabolizing site of lactic acid. A family of monocarboxylate transporter (MCT) proteins, especially MCT1 and MCT4, are involved in the lactate-pyruvate exchange and metabolism. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal coordinator of antioxidant response and energy metabolism, and has been reported to associate with the physiological functions of the skeletal muscle. METHODS In this study, C57BL/6 J mice were administrated with an Nrf2 activator, sulforaphane (SFN) before taking incremental treadmill exercise to exhaustion under hypoxia; then the effects of SFN on exercise endurance and molecular/biochemical makers of the skeletal muscle were evaluated. RESULTS The results indicated that SFN pretreatment enhanced the exercise endurance under hypoxia. SFN not only increased the expressions of antioxidant genes and activity of antioxidant enzymes, but also significantly increased the mRNA and protein levels of MCT1 and CD147, but not MCT4. Moreover, the expressions of LDH-B and LDH activity of converting lactate into pyruvate, as well as citrate synthase activity were significantly higher, whereas the LDH activity of converting pyruvate into lactate and blood lactate level were remarkably lower in the SFN-exercise mice than those of the phosphate-buffered saline-exercise group. Furthermore, Atf3Δzip2 (the alternatively spliced isoform of activating transcription factor-3) mRNA was increased by the exercise and further potentiated by SFN. CONCLUSION These results show, for the first time, that SFN increases MCT1 expression in the skeletal muscle under acute hypoxic exercise and suggest that Nrf2 activation is a promising strategy to enhance exercise performance under hypoxia.
Collapse
Affiliation(s)
- Linjia Wang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| | - Rongxin Zhu
- Shanghai Research Institute of Sports Science, Shanghai, CHINA
| | - Jiahui Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, CHINA
| | - Jianxiong Wang
- Faculty of Health, Engineering, and Sciences, University of Southern Queensland, Toowoomba, Queensland, AUSTRALIA
| | - Ying Zhang
- School of Sport Science, Beijing Sport University, Beijing, CHINA
| |
Collapse
|
15
|
Feng Y, Zhang J, Tian X, Wu J, Lu J, Shi R. Mechanical stretch activates glycometabolism-related enzymes via estrogen in C 2 C 12 myoblasts. J Cell Physiol 2020; 235:5702-5710. [PMID: 31975415 DOI: 10.1002/jcp.29502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 01/08/2020] [Indexed: 01/12/2023]
Abstract
Moderate exercise improves glycometabolic disorder and type 2 diabetes mellitus in menopausal females. So far, the effect of exercise-induced estrogen on muscular glycometabolism is not well defined. The current study was designed to explore the effect of mechanical stretch-induced estrogen on glycometabolism in mouse C2 C12 myoblasts. The mouse C2 C12 myoblasts in vitro were assigned randomly to the control (C), stretch (S), and stretch plus aromatase inhibitor anastrozole (SA) groups. Cells in the S group were stretched by the Flexcell FX-5000™ system (15% magnitude, 1 Hz frequency, and 6-hr duration) whereas those in the SA group were treated with 400 μg/ml anastrozole before the same stretching. Glucose uptake, estradiol levels, PFK-1 levels, and oxygen consumption rate were determined, and the expression of HK, PI3K, p-AKT, AKT, and GLUT4 proteins were semiquantified with western blot analysis. Compared to the control, the estradiol level, oxygen consumption rate, expression of HK, PI3K, and PFK-1 proteins, the ratio of p-AKT to AKT, and the ratio of GLUT4 in the cell membrane to that in the whole cell were higher in the S group. On the other hand, the estradiol level, glucose uptake, expression of PFK-1 and GLUT4 proteins, oxygen consumption rate, expression of HK protein, and the ratio of p-AKT/AKT were lower in the myoblasts in the SA group than those in the S group. The level of estradiol was positively correlated with glucose uptake (p < .01, r = .818). Therefore, mechanical stretch-induced estrogen increased the expression of glycometabolism-related enzymes and proteins in the mouse C2 C12 myoblasts.
Collapse
Affiliation(s)
- Yu Feng
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jin Zhang
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiangyang Tian
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Jiaxi Wu
- Central Laboratories, Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences, Shanghai, China
| | - Jianqiang Lu
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- Department of Exercise Biochemistry, School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
16
|
Akmali A, Saghebjoo M. High-intensity interval training with long duration intervals is more effective than short duration intervals for improving glycolytic capacity in the rats' gastrocnemius muscle. Horm Mol Biol Clin Investig 2019; 41:hmbci-2019-0035. [PMID: 31628826 DOI: 10.1515/hmbci-2019-0035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/09/2019] [Indexed: 11/15/2022]
Abstract
Background There is little data regarding the ability of high-intensity interval training (HIIT) to increase of glycolytic capacity and intramuscular metabolic adaptations. The goal of this study was to evaluate the effects of HIIT (8 weeks, 5 times/week) with short (HIIT1 min: 16 × 1 min work and active recovery at 80-95% and 50-60% VO2max, respectively) and long (HIIT4 min: 4 × 4 min work and active recovery at 80-95% and 50-60% VO2max, respectively) duration intervals and 4 weeks detraining on the levels of phosphofructokinase (PFK), glycogen synthase 1 (GYS1), monocarboxylate transporter 4 (MCT4) and lactate dehydrogenase (LDH) activity in the rats' gastrocnemius muscle. Materials and methods Fifty-four male Wistar rats were assigned into three groups, including HIIT1 min, HIIT4 min and control (Ctrl). After 48 h of the last training session and after 4 weeks of detraining, the rats were sacrificed, and the gastrocnemius muscles were isolated. Results The PFK levels in the HIIT4 min group was significantly higher than in the HIIT1 min and Ctrl groups, and after the detraining period in the HIIT4 minDT group significantly decreased compared to the HIIT4 min group. The LDH activity in the HIIT4 min and HIIT1 min groups were significantly higher than the Ctrl group and the increasing trend in the HIIT4 min group was more than the HIIT1 min group. There was no significant change in LDH activity after detraining compared to training. No significant changes were observed in the level of GYS1 and MCT4 after HIIT. Conclusions Eight weeks of HIIT with long duration intervals induced more improvements in intramuscular glycolytic capacity than a short duration. After short-term detraining, some of these adaptations have remained.
Collapse
Affiliation(s)
- Azadeh Akmali
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| | - Marziyeh Saghebjoo
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Birjand, Birjand, Iran
| |
Collapse
|
17
|
Horii N, Hasegawa N, Fujie S, Uchida M, Iemitsu K, Inoue K, Iemitsu M. Effect of combination of chlorella intake and aerobic exercise training on glycemic control in type 2 diabetic rats. Nutrition 2019; 63-64:45-50. [PMID: 30928787 DOI: 10.1016/j.nut.2019.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/19/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Chlorella is a type of unicellular green algae that contains various nutrients. Habitual exercise and chlorella treatment can improve insulin resistance in obese or diabetic animal models. However, the additive effects of combined chlorella intake and aerobic exercise training remain unclear. The aim of this study was to investigate whether a combination of chlorella intake and aerobic exercise training would produce greater effects on improving glycemic control in rats with type 2 diabetes. METHODS Twenty-wk-old male rats with type 2 diabetes (Otsuka Long-Evans Tokushima Fatty [OLETF] rats) were randomly divided into four groups: sedentary control, aerobic exercise training (treadmill running for 1 h, 25m/min, 5 d/wk), chlorella intake (0.5% chlorella powder in normal diet), or combination of aerobic exercise training and chlorella intake for 8 wk (n = 7 per group). RESULTS Chlorella intake and aerobic exercise training significantly decreased fasting blood glucose, insulin levels, and total glucose area under the curve during the oral glucose tolerance test and increased the insulin sensitivity index concomitant with muscle phosphatidylinositol-3 kinase (PI3K) activity, protein kinase B (Akt) phosphorylation, and glucose transporter 4 (GLUT4) translocation levels. Furthermore, a combination of chlorella intake and aerobic exercise training significantly further improved these effects compared with aerobic exercise training or chlorella intake alone. CONCLUSIONS These results suggested that chlorella intake combined with aerobic exercise training had more pronounced effects on the improvement of glycemic control via further activation of muscle PI3K/Akt/GLUT4 signaling in rats with type 2 diabetes.
Collapse
Affiliation(s)
- Naoki Horii
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan; Research Fellow of Japan Society for the Promotion of Science, Kojimachi, Tokyo, Japan
| | - Natsuki Hasegawa
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Shumpei Fujie
- Research Fellow of Japan Society for the Promotion of Science, Kojimachi, Tokyo, Japan; Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masataka Uchida
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Keiko Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Kenichiro Inoue
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
18
|
Gene expression profile of muscle adaptation to high-intensity intermittent exercise training in young men. Sci Rep 2018; 8:16811. [PMID: 30429512 PMCID: PMC6235852 DOI: 10.1038/s41598-018-35115-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
High-intensity intermittent exercise training (HIIT) has been proposed as an effective approach for improving both, the aerobic and anaerobic exercise capacity. However, the detailed molecular response of the skeletal muscle to HIIT remains unknown. We examined the effects of the HIIT on the global gene expression in the human skeletal muscle. Eleven young healthy men participated in the study and completed a 6-week HIIT program involving exhaustive 6–7 sets of 20-s cycling periods with 10-s rests. In addition to determining the maximal oxygen uptake (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{{\rm{V}}}{\rm{O}}}_{2{\rm{\max }}}$$\end{document}V˙O2max), maximal accumulated oxygen deficit, and thigh muscle cross-sectional area (CSA), muscle biopsy samples were obtained from the vastus lateralis before and after the training to analyse the skeletal muscle transcriptome. The HIIT program significantly increased the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\dot{{\rm{V}}}{\rm{O}}}_{2{\rm{\max }}}$$\end{document}V˙O2max, maximal accumulated oxygen deficit, and thigh muscle CSA. The expression of 79 genes was significantly elevated (fold-change >1.2), and that of 73 genes was significantly reduced (fold-change <0.8) after HIIT. Gene ontology analysis of the up-regulated genes revealed that the significantly enriched categories were “glucose metabolism”, “extracellular matrix”, “angiogenesis”, and “mitochondrial membrane”. By providing information about a set of genes in the human skeletal muscle that responds to the HIIT, the study provided insight into the mechanism of skeletal muscle adaptation to HIIT.
Collapse
|
19
|
HASEGAWA NATSUKI, FUJIE SHUMPEI, HORII NAOKI, MIYAMOTO-MIKAMI ERI, TSUJI KATSUNORI, UCHIDA MASATAKA, HAMAOKA TAKAFUMI, TABATA IZUMI, IEMITSU MOTOYUKI. Effects of Different Exercise Modes on Arterial Stiffness and Nitric Oxide Synthesis. Med Sci Sports Exerc 2018; 50:1177-1185. [DOI: 10.1249/mss.0000000000001567] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Horii N, Uchida M, Hasegawa N, Fujie S, Oyanagi E, Yano H, Hashimoto T, Iemitsu M. Resistance training prevents muscle fibrosis and atrophy
via
down‐regulation of C1q‐induced Wnt signaling in senescent mice. FASEB J 2018; 32:3547-3559. [DOI: 10.1096/fj.201700772rrr] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Naoki Horii
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Masataka Uchida
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| | - Natsuki Hasegawa
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Shumpei Fujie
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
- Japan Society for the Promotion of ScienceTokyoJapan
| | - Eri Oyanagi
- Department of Health and Sports ScienceKawasaki University of Medical WelfareOkayamaJapan
| | - Hiromi Yano
- Department of Health and Sports ScienceKawasaki University of Medical WelfareOkayamaJapan
| | | | - Motoyuki Iemitsu
- Faculty of Sport and Health ScienceRitsumeikan UniversityShigaJapan
| |
Collapse
|