1
|
Ponte ME, Prom JC, Newcomb MA, Jordan AB, Comfort LL, Hu J, Puchalska P, Geisler CE, Hayes MR, Morris EM. Reduced Liver Mitochondrial Energy Metabolism Impairs Food Intake Regulation Following Gastric Preloads and Fasting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620086. [PMID: 39554188 PMCID: PMC11565831 DOI: 10.1101/2024.10.24.620086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The capacity of the liver to serve as a peripheral sensor in the regulation of food intake has been debated for over half a century. The anatomical position and physiological roles of the liver suggest it is a prime candidate to serve as an interoceptive sensor of peripheral tissue and systemic energy state. Importantly, maintenance of liver ATP levels and within-meal food intake inhibition is impaired in human subjects with obesity and obese pre-clinical models. We demonstrate that decreased hepatic mitochondrial energy metabolism in liver-specific, heterozygous PGC1a mice results in reduced mitochondrial response to changes in ΔGATP and tissue ATP following fasting. These impairments in liver energy state are associated with larger and longer meals during chow feeding, impaired dose-dependent food intake inhibition in response to mixed and individual nutrient oral pre-loads, and greater acute fasting-induced food intake. These data support previous work proposing liver-mediated food intake regulation through modulation of peripheral satiation signals.
Collapse
Affiliation(s)
- Michael E. Ponte
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - John C. Prom
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Mallory A. Newcomb
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Annabelle B. Jordan
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Lucas L. Comfort
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiayin Hu
- Dept. of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Patrycja Puchalska
- Division of Molecular Medicine, University of Minnesota, Minneapolis, MN
| | - Caroline E. Geisler
- Dept. of Psychiatry, University of Pennsylvania, Philadelphia, PA
- Dept. of Pharmaceutical Sciences, University of Kentucky, Lexington, KY
| | - Matthew R. Hayes
- Dept. of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - E. Matthew Morris
- Dept. of Cell Biology & Physiology, University of Kansas Medical Center, Kansas City, Kansas
- Center for Children’s Healthy Lifestyle and Nutrition, Children’s Mercy Hospital, Kansas City, Missouri
- University of Kansas Diabetes Institute, Kansas City, Kansas
| |
Collapse
|
2
|
Alicehajic A, Duivenvoorden AAM, Lenaerts K. Unveiling the molecular complexity of intestinal ischemia-reperfusion injury through omics technologies. Proteomics 2024; 24:e2300160. [PMID: 38477684 DOI: 10.1002/pmic.202300160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Intestinal ischemia-reperfusion injury (IR) is implicated in various clinical conditions and causes damage to the intestinal epithelium resulting in intestinal barrier loss. This presents a substantial clinical challenge, emphasizing the importance of gaining a comprehensive understanding of molecular events to aid in the identification of novel therapeutic targets. This review systematically explores the extent to which omics technologies-transcriptomics, proteomics, metabolomics, and metagenomics-have already contributed to deciphering the molecular mechanisms contributing to intestinal IR injury, in in vivo and in vitro animal and human models, and in clinical samples. Recent breakthroughs involve applying omics methodologies on exosomes, organoids, and single cells, shedding light on promising avenues and valuable targets to reduce intestinal IR injury. Future directions aimed at expediting clinical translation are discussed as well and include multi-omics data integration to facilitate the identification of key regulatory nodes driving intestinal IR injury and advancing human organoid models based on the novel insights by single-cell omics technologies, offering hope for clinical application of therapeutic strategies in the years to come.
Collapse
Affiliation(s)
- Anja Alicehajic
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Annet Adriana Maria Duivenvoorden
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - Kaatje Lenaerts
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
3
|
Hunstiger M, Johannsen MM, Oliver SR. Non-shivering thermogenesis is differentially regulated during the hibernation season in Arctic ground squirrels. Front Physiol 2023; 14:1207529. [PMID: 37520836 PMCID: PMC10372343 DOI: 10.3389/fphys.2023.1207529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Arctic ground squirrels are small mammals that experience physiological extremes during the hibernation season. Body temperature rises from 1°C to 40°C during interbout arousal and requires tight thermoregulation to maintain rheostasis. Tissues from wild-caught Arctic ground squirrels were sampled over 9 months to assess the expression of proteins key to thermogenic regulation. Animals were sacrificed while aroused, and the extensor digitorum longus, diaphragm, brown adipose tissue, and white adipose tissue were probed using Western blots to assess protein expression and blood was sampled for metabolite analysis. Significant seasonal expression patterns emerged showing differential regulation. Contrary to our prediction, white adipose tissue showed no expression of uncoupling protein 1, but utilization of uncoupling protein 1 peaked in brown adipose tissue during the winter months and began to taper after terminal arousal in the spring. The opposite was true for muscular non-shivering thermogenesis. Sarco/endoplasmic reticulum calcium ATPase 1a and 2a expressions were depressed during the late hibernation season and rebounded after terminal arousal in diaphragm tissues, but only SERCA2a was differentially expressed in the extensor digitorum longus. The uncoupler, sarcolipin, was only detected in diaphragm samples and had a decreased expression during hibernation. The differential timing of these non-shivering pathways indicated distinct functions in maintaining thermogenesis which may depend on burrow temperature, availability of endogenous resources, and other seasonal activity demands on these tissues. These results could be impacted by fiber type makeup of the muscles collected, the body weight of the animal, and the date of entrance or exit from hibernation.
Collapse
Affiliation(s)
- Moriah Hunstiger
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Michelle Marie Johannsen
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - S. Ryan Oliver
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States
| |
Collapse
|
4
|
Integrative transcription start site analysis and physiological phenotyping reveal torpor-specific expression program in mouse skeletal muscle. Commun Biol 2021; 4:1290. [PMID: 34782710 PMCID: PMC8592991 DOI: 10.1038/s42003-021-02819-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 10/28/2021] [Indexed: 11/30/2022] Open
Abstract
Mice enter an active hypometabolic state, called daily torpor when they experience a lowered caloric intake under cold ambient temperature. During torpor, the oxygen consumption rate in some animals drops to less than 30% of the normal rate without harming the body. This safe but severe reduction in metabolism is attractive for various clinical applications; however, the mechanism and molecules involved are unclear. Therefore, here we systematically analyzed the gene expression landscape on the level of the RNA transcription start sites in mouse skeletal muscles under various metabolic states to identify torpor-specific transcribed regulatory patterns. We analyzed the soleus muscles from 38 mice in torpid and non-torpid conditions and identified 287 torpor-specific promoters out of 12,862 detected promoters. Furthermore, we found that the transcription factor ATF3 is highly expressed during torpor deprivation and its binding motif is enriched in torpor-specific promoters. Atf3 was also highly expressed in the heart and brown adipose tissue during torpor and systemically knocking out Atf3 affected the torpor phenotype. Our results demonstrate that mouse torpor combined with powerful genetic tools is useful for studying active hypometabolism.
Collapse
|
5
|
Cooper S, Wilmarth PA, Cunliffe JM, Klimek J, Pang J, Tassi Yunga S, Minnier J, Reddy A, David L, Aslan JE. Platelet proteome dynamics in hibernating 13-lined ground squirrels. Physiol Genomics 2021; 53:473-485. [PMID: 34677084 PMCID: PMC8616595 DOI: 10.1152/physiolgenomics.00078.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/21/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Hibernating mammals undergo a dramatic drop in temperature and blood flow during torpor, yet avoid stasis blood clotting through mechanisms that remain unspecified. The effects of hibernation on hemostasis are especially complex, as cold temperatures generally activate platelets, resulting in platelet clearance and cold storage lesions in the context of blood transfusion. With a hibernating body temperature of 4°C-8°C, 13-lined ground squirrels (Ictidomys tridecemlineatus) provide a model to study hemostasis as well as platelet cold storage lesion resistance during hibernation. Here, we quantified and systematically compared proteomes of platelets collected from ground squirrels at summer (active), fall (entrance), and winter (topor) to elucidate how molecular-level changes in platelets may support hemostatic adaptations in torpor. Platelets were isolated from a total of 11 squirrels in June, October, and January. Platelet lysates from each animal were digested with trypsin prior to 11-plex tandem mass tag (TMT) labeling, followed by LC-MS/MS analysis for relative protein quantification. We measured >700 proteins with significant variations in abundance in platelets over the course of entrance, torpor, and activity-including systems of proteins regulating translation, secretion, metabolism, complement, and coagulation cascades. We also noted species-specific differences in levels of hemostatic, secretory, and inflammatory regulators in ground squirrel platelets relative to human platelets. Altogether, we provide the first ever proteomic characterization of platelets from hibernating animals, where systematic changes in metabolic, hemostatic, and other proteins may account for physiological adaptations in torpor and also inform translational effort to improve cold storage of human platelets for transfusion.
Collapse
Affiliation(s)
- Scott Cooper
- Biology Department, University of Wisconsin-La Crosse, La Crosse, Wisconsin
| | - Phillip A Wilmarth
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Jennifer M Cunliffe
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - John Klimek
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Jiaqing Pang
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Samuel Tassi Yunga
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jessica Minnier
- Division of Cardiology, Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
| | - Ashok Reddy
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Larry David
- Proteomics Shared Resource, Oregon Health & Science University, Portland, Oregon
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
| | - Joseph E Aslan
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon
- Division of Cardiology, Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
6
|
Morris EM, Noland RD, Ponte ME, Montonye ML, Christianson JA, Stanford JA, Miles JM, Hayes MR, Thyfault JP. Reduced Liver-Specific PGC1a Increases Susceptibility for Short-Term Diet-Induced Weight Gain in Male Mice. Nutrients 2021; 13:2596. [PMID: 34444756 PMCID: PMC8400659 DOI: 10.3390/nu13082596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 11/18/2022] Open
Abstract
The central integration of peripheral neural signals is one mechanism by which systemic energy homeostasis is regulated. Previously, increased acute food intake following the chemical reduction of hepatic fatty acid oxidation and ATP levels was prevented by common hepatic branch vagotomy (HBV). However, possible offsite actions of the chemical compounds confound the precise role of liver energy metabolism. Herein, we used a hepatocyte PGC1a heterozygous (LPGC1a) mouse model, with associated reductions in mitochondrial fatty acid oxidation and respiratory capacity, to assess the role of liver energy metabolism in systemic energy homeostasis. LPGC1a male, but not female, mice had a 70% greater high-fat/high-sucrose (HFHS) diet-induced weight gain compared to wildtype (WT) mice (p < 0.05). The greater weight gain was associated with altered feeding behavior and lower activity energy expenditure during the HFHS diet in LPGC1a males. WT and LPGC1a mice underwent sham surgery or HBV to assess whether vagal signaling was involved in the HFHS-induced weight gain of male LPGC1a mice. HBV increased HFHS-induced weight gain (85%, p < 0.05) in male WT mice, but not LPGC1a mice. These data demonstrate a sex-specific role of reduced liver energy metabolism in acute diet-induced weight gain, and the need for a more nuanced assessment of the role of vagal signaling in short-term diet-induced weight gain.
Collapse
Affiliation(s)
- E. Matthew Morris
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.D.N.); (M.E.P.); (J.A.S.); (J.P.T.)
- Center for Children’s Healthy Lifestyle and Nutrition, Children’s Mercy Hospital, Kansas City, MO 64108, USA
| | - Roberto D. Noland
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.D.N.); (M.E.P.); (J.A.S.); (J.P.T.)
| | - Michael E. Ponte
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.D.N.); (M.E.P.); (J.A.S.); (J.P.T.)
| | - Michelle L. Montonye
- Department of Nutrition & Exercise Physiology, University of Missouri, Columbia, MO 65211, USA;
| | - Julie A. Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - John A. Stanford
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.D.N.); (M.E.P.); (J.A.S.); (J.P.T.)
| | - John M. Miles
- Department of Internal Medicine—Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - John P. Thyfault
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (R.D.N.); (M.E.P.); (J.A.S.); (J.P.T.)
- Center for Children’s Healthy Lifestyle and Nutrition, Children’s Mercy Hospital, Kansas City, MO 64108, USA
- Department of Internal Medicine—Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Kansas City VA Medical Center-Research Service, Kansas City, MO 64128, USA
| |
Collapse
|
7
|
Associating physiological functions with genomic variability in hibernating bats. Evol Ecol 2021. [DOI: 10.1007/s10682-020-10096-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Kurtz CC, Otis JP, Regan MD, Carey HV. How the gut and liver hibernate. Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110875. [PMID: 33348019 DOI: 10.1016/j.cbpa.2020.110875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/25/2022]
Abstract
For hibernating mammals, the transition from summer active to winter hibernation seasons come with significant remodeling at cellular, organ and whole organism levels. This review summarizes and synthesizes what is known about hibernation-related remodeling in the gastrointestinal tract of the thirteen-lined ground squirrel, including intestinal and hepatic physiology and the gut microbiota. Hibernation alters intestinal epithelial, immune and cell survival pathways in ways that point to a protective phenotype in the face of prolonged fasting and major fluctuations in nutrient and oxygen delivery during torpor-arousal cycles. The prolonged fasting associated with hibernation alters lipid metabolism and systemic cholesterol dynamics, with both the gut and liver participating in these changes. Fasting also affects the gut microbiota, altering the abundance, composition and diversity of gut microbes and impacting the metabolites they produce in ways that may influence hibernation-related traits in the host. Finally, interventional studies have demonstrated that the hibernation phenotype confers resistance to experimental ischemia-reperfusion injury in both gut and liver, suggesting potential therapeutic roadmaps. We propose that the plasticity inherent to hibernation biology may contribute to this stress tolerance, and in the spirit of August Krogh, makes hibernators particularly valuable for study to identify solutions to certain problems.
Collapse
Affiliation(s)
- Courtney C Kurtz
- Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, WI, United States of America
| | - Jessica P Otis
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, United States of America
| | - Matthew D Regan
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Hannah V Carey
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, United States of America.
| |
Collapse
|
9
|
Wilsterman K, Ballinger MA, Williams CM. A unifying, eco‐physiological framework for animal dormancy. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13718] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kathryn Wilsterman
- Biological Sciences University of Montana Missoula MT USA
- Integrative Biology University of California Berkeley CA USA
| | | | | |
Collapse
|
10
|
Sun H, Wang J, Xing Y, Pan YH, Mao X. Gut transcriptomic changes during hibernation in the greater horseshoe bat ( Rhinolophus ferrumequinum). Front Zool 2020; 17:21. [PMID: 32690984 PMCID: PMC7366455 DOI: 10.1186/s12983-020-00366-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/10/2022] Open
Abstract
Background The gut is the major organ for nutrient absorption and immune response in the body of animals. Although effects of fasting on the gut functions have been extensively studied in model animals (e.g. mice), little is known about the response of the gut to fasting in a natural condition (e.g. hibernation). During hibernation, animals endure the long term of fasting and hypothermia. Results Here we generated the first gut transcriptome in a wild hibernating bat (Rhinolophus ferrumequinum). We identified 1614 differentially expressed genes (DEGs) during four physiological states (Torpor, Arousal, Winter Active and Summer Active). Gene co-expression network analysis assigns 926 DEGs into six modules associated with Torpor and Arousal. Our results reveal that in response to the stress of luminal nutrient deficiency during hibernation, the gut helps to reduce food intake by overexpressing genes (e.g. CCK and GPR17) that regulate the sensitivity to insulin and leptin. At the same time, the gut contributes energy supply by overexpressing genes that increase capacity for ketogenesis (HMGCS2) and selective autophagy (TEX264). Furthermore, we identified separate sets of multiple DEGs upregulated in Torpor and Arousal whose functions are involved in innate immunity. Conclusion This is the first gut transcriptome of a hibernating mammal. Our study identified candidate genes associated with regulation of food intake and enhance of innate immunity in the gut during hibernation. By comparing with previous studies, we found that two DEGs (CPE and HSPA8) were also significantly elevated during torpor in liver and brain of R. ferrumequinum and several DEGs (e.g. TXNIP and PDK1/4) were commonly upregulated during torpor in multiple tissues of different mammals. Our results support that shared expression changes may underlie the hibernation phenotype by most mammals.
Collapse
Affiliation(s)
- Haijian Sun
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China
| | - Jiaying Wang
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yutong Xing
- Institute of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062 China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics of Ministry of Education, School of Life Science, East China Normal University, Shanghai, 200062 China
| | - Xiuguang Mao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200062 China.,Institute of Eco-Chongming (IEC), East China Normal University, Shanghai, 200062 China
| |
Collapse
|
11
|
Abstract
Hemorrhagic shock is the leading cause of preventable death after trauma. Hibernation-based treatment approaches have been of increasing interest for various biomedical applications. Owing to apparent similarities in tissue perfusion and metabolic activity between severe blood loss and the hibernating state, hibernation-based approaches have also emerged for the treatment of hemorrhagic shock. Research has shown that hibernators are protected from shock-induced injury and inflammation. Utilizing the adaptive mechanisms that prevent injury in these animals may help alleviate the detrimental effects of hemorrhagic shock in non-hibernating species. This review describes hibernation-based preclinical and clinical approaches for the treatment of severe blood loss. Treatments include the delta opioid receptor agonist D-Ala-Leu-enkephalin (DADLE), the gasotransmitter hydrogen sulfide, combinations of adenosine, lidocaine, and magnesium (ALM) or D-beta-hydroxybutyrate and melatonin (BHB/M), and therapeutic hypothermia. While we focus on hemorrhagic shock, many of the described treatments may be used in other situations of hypoxia or ischemia/reperfusion injury.
Collapse
|
12
|
Gehrke S, Rice S, Stefanoni D, Wilkerson RB, Nemkov T, Reisz JA, Hansen KC, Lucas A, Cabrales P, Drew K, D'Alessandro A. Red Blood Cell Metabolic Responses to Torpor and Arousal in the Hibernator Arctic Ground Squirrel. J Proteome Res 2019; 18:1827-1841. [PMID: 30793910 DOI: 10.1021/acs.jproteome.9b00018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Arctic ground squirrels provide a unique model to investigate metabolic responses to hibernation in mammals. During winter months these rodents are exposed to severe hypothermia, prolonged fasting, and hypoxemia. In the light of their role in oxygen transport/off-loading and owing to the absence of nuclei and organelles (and thus de novo protein synthesis capacity), mature red blood cells have evolved metabolic programs to counteract physiological or pathological hypoxemia. However, red blood cell metabolism in hibernation has not yet been investigated. Here we employed targeted and untargeted metabolomics approaches to investigate erythrocyte metabolism during entrance to torpor to arousal, with a high resolution of the intermediate time points. We report that torpor and arousal promote metabolism through glycolysis and pentose phosphate pathway, respectively, consistent with previous models of oxygen-dependent metabolic modulation in mature erythrocytes. Erythrocytes from hibernating squirrels showed up to 100-fold lower levels of biomarkers of reperfusion injury, such as the pro-inflammatory dicarboxylate succinate. Altered tryptophan metabolism during torpor was here correlated to the accumulation of potentially neurotoxic catabolites kynurenine, quinolinate, and picolinate. Arousal was accompanied by alterations of sulfur metabolism, including sudden spikes in a metabolite putatively identified as thiorphan (level 1 confidence)-a potent inhibitor of several metalloproteases that play a crucial role in nociception and inflammatory complication to reperfusion secondary to ischemia or hemorrhage. Preliminary studies in rats showed that intravenous injection of thiorphan prior to resuscitation mitigates metabolic and cytokine markers of reperfusion injury, etiological contributors to inflammatory complications after shock.
Collapse
Affiliation(s)
- Sarah Gehrke
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Sarah Rice
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Davide Stefanoni
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Rebecca B Wilkerson
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| | - Alfredo Lucas
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Pedro Cabrales
- Department of Bioengineering , University of California San Diego , La Jolla , California 92093 , United States
| | - Kelly Drew
- Department of Chemistry and Biochemistry , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics , University of Colorado Denver - Anschutz Medical Campus , Aurora , Colorado 80045 , United States
| |
Collapse
|
13
|
D'Alessandro A, Nemkov T, Bogren LK, Martin SL, Hansen KC. Comfortably Numb and Back: Plasma Metabolomics Reveals Biochemical Adaptations in the Hibernating 13-Lined Ground Squirrel. J Proteome Res 2016; 16:958-969. [PMID: 27991798 DOI: 10.1021/acs.jproteome.6b00884] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hibernation is an evolutionary adaptation that affords some mammals the ability to exploit the cold to achieve extreme metabolic depression (torpor) while avoiding ischemia/reperfusion or hemorrhagic shock injuries. Hibernators cycle periodically out of torpor, restoring high metabolic activity. If understood at the molecular level, the adaptations underlying torpor-arousal cycles may be leveraged for translational applications in critical fields such as intensive care medicine. Here, we monitored 266 metabolites to investigate the metabolic adaptations to hibernation in plasma from 13-lined ground squirrels (57 animals, 9 time points). Results indicate that the periodic arousals foster the removal of potentially toxic oxidative stress-related metabolites, which accumulate in plasma during torpor while replenishing reservoirs of circulating catabolic substrates (free fatty acids and amino acids). Specifically, we identified metabolic fluctuations of basic amino acids lysine and arginine, one-carbon metabolism intermediates, and sulfur-containing metabolites methionine, cysteine, and cystathionine. Conversely, reperfusion injury markers such as succinate/fumarate remained relatively stable across cycles. Considering the cycles of these metabolites with the hibernator's cycling metabolic activity together with their well-established role as substrates for the production of hydrogen sulfide (H2S), we hypothesize that these metabolic fluctuations function as a biological clock regulating torpor to arousal transitions and resistance to reperfusion during arousal.
Collapse
Affiliation(s)
- Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Lori K Bogren
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Sandra L Martin
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics and ‡Department of Cell and Developmental Biology, University of Colorado Denver - Anschutz Medical Campus , Aurora, Colorado 80045, United States
| |
Collapse
|
14
|
Bogren LK, Johnston EL, Barati Z, Martin PA, Wojda SJ, Van Tets IG, LeBlanc AD, Donahue SW, Drew KL. The effects of hibernation and forced disuse (neurectomy) on bone properties in arctic ground squirrels. Physiol Rep 2016; 4:4/10/e12771. [PMID: 27225624 PMCID: PMC4886160 DOI: 10.14814/phy2.12771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
Bone loss is a well‐known medical consequence of disuse such as in long‐term space flight. Immobilization in many animals mimics the effects of space flight on bone mineral density. Decreases in metabolism are also thought to contribute to a loss of skeletal mass. Hibernating mammals provide a natural model of disuse and metabolic suppression. Hibernating ground squirrels have been shown to maintain bone strength despite long periods of disuse and decreased metabolism during torpor. This study examined if the lack of bone loss during torpor was a result of the decrease in metabolic rate during torpor or an evolutionary change in these animals affording protection against disuse. We delineated changes in bone density during natural disuse (torpor) and forced disuse (sciatic neurectomy) in the hind limbs of the arctic ground squirrel (AGS) over an entire year. We hypothesized that the animals would be resistant to bone loss due to immobilization and disuse during the winter hibernation season when metabolism is depressed but not the summer active season. This hypothesis was not supported. The animals maintained bone density (dual‐energy X‐ray absorptiometry) and most bone structural and mechanical properties in both seasons. This was observed in both natural and forced disuse, regardless of the known metabolic rate increase during the summer. However, trabecular bone volume fraction (microcomputed tomography) in the distal femur was lower in neurectomized AGS at the study endpoint. These results demonstrate a need to better understand the relationship between skeletal load (use) and bone density that may lead to therapeutics or strategies to maintain bone density in disuse conditions.
Collapse
Affiliation(s)
- Lori K Bogren
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Erin L Johnston
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Zeinab Barati
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Paula A Martin
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - Samantha J Wojda
- Mechanical Engineering Department, Colorado State University, Fort Collins, Colorado
| | - Ian G Van Tets
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska
| | | | - Seth W Donahue
- Mechanical Engineering Department, Colorado State University, Fort Collins, Colorado
| | - Kelly L Drew
- Chemistry and Biochemistry Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| |
Collapse
|
15
|
Abstract
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Hecht AM, Braun BC, Krause E, Voigt CC, Greenwood AD, Czirják GÁ. Plasma proteomic analysis of active and torpid greater mouse-eared bats (Myotis myotis). Sci Rep 2015; 5:16604. [PMID: 26586174 PMCID: PMC4653738 DOI: 10.1038/srep16604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 10/15/2015] [Indexed: 11/21/2022] Open
Abstract
Hibernation is a physiological adaptation to overcome extreme environmental conditions. It is characterized by prolonged periods of torpor interrupted by temporary arousals during winter. During torpor, body functions are suppressed and restored rapidly to almost pre-hibernation levels during arousal. Although molecular studies have been performed on hibernating rodents and bears, it is unclear how generalizable the results are among hibernating species with different physiology such as bats. As targeted blood proteomic analysis are lacking in small hibernators, we investigated the general plasma proteomic profile of European Myotis myotis and hibernation associated changes between torpid and active individuals by two-dimensional gel electrophoresis. Results revealed an alternation of proteins involved in transport, fuel switching, innate immunity and blood coagulation between the two physiological states. The results suggest that metabolic changes during hibernation are associated with plasma proteomic changes. Further characterization of the proteomic plasma profile identified transport proteins, coagulation proteins and complement factors and detected a high abundance of alpha-fetoprotein. We were able to establish for the first time a basic myotid bat plasma proteomic profile and further demonstrated a modulated protein expression during torpor in Myotis myotis, indicating both novel physiological pathways in bats in general, and during hibernation in particular.
Collapse
Affiliation(s)
- Alexander M. Hecht
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Beate C. Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Eberhard Krause
- Leibniz Institute for Molecular Pharmacology, Robert-Rössle-Straße 10, 13125 Berlin, Germany
| | - Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Department of Animal Behaviour, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany
| | - Alex D. Greenwood
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, Oertzenweg 19b, 14163 Berlin, Germany
| | - Gábor Á. Czirják
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| |
Collapse
|
17
|
Lang-Ouellette D, Richard TG, Morin P. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs. BIOCHEMISTRY (MOSCOW) 2015; 79:1161-71. [PMID: 25540001 DOI: 10.1134/s0006297914110030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.
Collapse
Affiliation(s)
- D Lang-Ouellette
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, New Brunswick, E1A 3E9, Canada.
| | | | | |
Collapse
|
18
|
Proteomics approaches shed new light on hibernation physiology. J Comp Physiol B 2015; 185:607-27. [PMID: 25976608 DOI: 10.1007/s00360-015-0905-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/11/2015] [Accepted: 04/19/2015] [Indexed: 10/23/2022]
Abstract
The broad phylogenetic distribution and rapid phenotypic transitions of mammalian hibernators imply that hibernation is accomplished by differential expression of common genes. Traditional candidate gene approaches have thus far explained little of the molecular mechanisms underlying hibernation, likely due to (1) incomplete and imprecise sampling of a complex phenotype, and (2) the forming of hypotheses about which genes might be important based on studies of model organisms incapable of such dynamic physiology. Unbiased screening approaches, such as proteomics, offer an alternative means to discover the cellular underpinnings that permit successful hibernation and may reveal previously overlooked, important pathways. Here, we review the findings that have emerged from proteomics studies of hibernation. One striking feature is the stability of the proteome, especially across the extreme physiological shifts of torpor-arousal cycles during hibernation. This has led to subsequent investigations of the role of post-translational protein modifications in altering protein activity without energetically wasteful removal and rebuilding of protein pools. Another unexpected finding is the paucity of universal proteomic adjustments across organ systems in response to the extreme metabolic fluctuations despite the universality of their physiological challenges; rather each organ appears to respond in a unique, tissue-specific manner. Additional research is needed to extend and synthesize these results before it will be possible to address the whole body physiology of hibernation.
Collapse
|
19
|
Bogren LK, Murphy CJ, Johnston EL, Sinha N, Serkova NJ, Drew KL. 1H-NMR metabolomic biomarkers of poor outcome after hemorrhagic shock are absent in hibernators. PLoS One 2014; 9:e107493. [PMID: 25211248 PMCID: PMC4161479 DOI: 10.1371/journal.pone.0107493] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 08/12/2014] [Indexed: 11/20/2022] Open
Abstract
Background Hemorrhagic shock (HS) following trauma is a leading cause of death among persons under the age of 40. During HS the body undergoes systemic warm ischemia followed by reperfusion during medical intervention. Ischemia/reperfusion (I/R) results in a disruption of cellular metabolic processes that ultimately lead to tissue and organ dysfunction or failure. Resistance to I/R injury is a characteristic of hibernating mammals. The present study sought to identify circulating metabolites in the rat as biomarkers for metabolic alterations associated with poor outcome after HS. Arctic ground squirrels (AGS), a hibernating species that resists I/R injury independent of decreased body temperature (warm I/R), was used as a negative control. Methodology/principal findings Male Sprague-Dawley rats and AGS were subject to HS by withdrawing blood to a mean arterial pressure (MAP) of 35 mmHg and maintaining the low MAP for 20 min before reperfusing with Ringers. The animals’ temperature was maintained at 37±0.5°C for the duration of the experiment. Plasma samples were taken immediately before hemorrhage and three hours after reperfusion. Hydrophilic and lipid metabolites from plasma were then analyzed via 1H–NMR from unprocessed plasma and lipid extracts, respectively. Rats, susceptible to I/R injury, had a qualitative shift in their hydrophilic metabolic fingerprint including differential activation of glucose and anaerobic metabolism and had alterations in several metabolites during I/R indicative of metabolic adjustments and organ damage. In contrast, I/R injury resistant AGS, regardless of season or body temperature, maintained a stable metabolic homeostasis revealed by a qualitative 1H–NMR metabolic profile with few changes in quantified metabolites during HS-induced global I/R. Conclusions/significance An increase in circulating metabolites indicative of anaerobic metabolism and activation of glycolytic pathways is associated with poor prognosis after HS in rats. These same biomarkers are absent in AGS after HS with warm I/R.
Collapse
Affiliation(s)
- Lori K. Bogren
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- * E-mail:
| | - Carl J. Murphy
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Erin L. Johnston
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow, Uttar Pradesh, India
| | - Natalie J. Serkova
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Kelly L. Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, AK, United States of America
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States of America
| |
Collapse
|
20
|
Vlaski M, Negroni L, Kovacevic-Filipovic M, Guibert C, de la Grange PB, Rossignol R, Chevaleyre J, Duchez P, Lafarge X, Praloran V, Schmitter JM, Ivanovic Z. Hypoxia/Hypercapnia-Induced Adaptation Maintains Functional Capacity of Cord Blood Stem and Progenitor Cells at 4°C. J Cell Physiol 2014; 229:2153-65. [DOI: 10.1002/jcp.24678] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Marija Vlaski
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Luc Negroni
- UMR 5248 CNRS/Université Bordeaux Segalen; Bordeaux France
| | | | | | - Philippe Brunet de la Grange
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | | | - Jean Chevaleyre
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Pascale Duchez
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| | - Xavier Lafarge
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
| | | | | | - Zoran Ivanovic
- Etablissement Français du Sang Aquitaine-Limousin; Bordeaux France
- UMR 5164 CNRS/Université Bordeaux Segalen; Bordeaux France
| |
Collapse
|
21
|
Bogren LK, Drew KL. Ischemia/reperfusion injury resistance in hibernators is more than an effect of reduced body temperature or winter season. Temperature (Austin) 2014; 1:87-8. [PMID: 27583285 PMCID: PMC4977161 DOI: 10.4161/temp.29761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/24/2022] Open
Abstract
Hibernating mammals are resistant to injury following cardiac arrest. The basis of this protection has been proposed to be due to their ability to lower body temperature or metabolic rate in a seasonally-dependent manner. However, recent studies have shown that neither reduced body temperature nor hibernation season are components this protection.
Collapse
Affiliation(s)
- Lori K Bogren
- Department of Chemistry and Biochemistry; University of Alaska Fairbanks; Fairbanks, AK USA; Institute of Arctic Biology; University of Alaska Fairbanks; Fairbanks, AK USA
| | - Kelly L Drew
- Department of Chemistry and Biochemistry; University of Alaska Fairbanks; Fairbanks, AK USA; Institute of Arctic Biology; University of Alaska Fairbanks; Fairbanks, AK USA
| |
Collapse
|
22
|
Bogren LK, Olson JM, Carpluk J, Moore JM, Drew KL. Resistance to systemic inflammation and multi organ damage after global ischemia/reperfusion in the arctic ground squirrel. PLoS One 2014; 9:e94225. [PMID: 24728042 PMCID: PMC3984146 DOI: 10.1371/journal.pone.0094225] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 03/14/2014] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Cardiac arrest (CA) and hemorrhagic shock (HS) are two clinically relevant situations where the body undergoes global ischemia as blood pressure drops below the threshold necessary for adequate organ perfusion. Resistance to ischemia/reperfusion (I/R) injury is a characteristic of hibernating mammals. The present study sought to determine if arctic ground squirrels (AGS) are protected from systemic inflammation and multi organ damage after CA- or HS-induced global I/R and if, for HS, this protection is dependent upon their hibernation season. METHODS For CA, rats and summer euthermic AGS (AGS-EU) were asphyxiated for 8 min, inducing CA. For HS, rats, AGS-EU, and winter interbout arousal AGS (AGS-IBA) were subject to HS by withdrawing blood to a mean arterial pressure of 35 mmHg and maintaining that pressure for 20 min before reperfusion with Ringers. For both I/R models, body temperature (Tb) was kept at 36.5-37.5°C. After reperfusion, animals were monitored for seven days (CA) or 3 hrs (HS) then tissues and blood were collected for histopathology, clinical chemistries, and cytokine level analysis (HS only). For the HS studies, additional groups of rats and AGS were monitored for three days after HS to access survival and physiological impairment. RESULTS Rats had increased serum markers of liver damage one hour after CA while AGS did not. For HS, AGS survived 72 hours after I/R whereas rats did not survive overnight. Additionally, only rats displayed an inflammatory response after HS. AGS maintained a positive base excess, whereas the base excess in rats was negative during and after hemorrhage. CONCLUSIONS Regardless of season, AGS are resistant to organ damage, systemic inflammation, and multi organ damage after systemic I/R and this resistance is not dependent on their ability to become decrease Tb during insult but may stem from an altered acid/base and metabolic response during I/R.
Collapse
Affiliation(s)
- Lori K Bogren
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Jasmine M Olson
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Joanna Carpluk
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Jeanette M Moore
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Kelly L Drew
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America; Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| |
Collapse
|
23
|
Hindle AG, Grabek KR, Epperson LE, Karimpour-Fard A, Martin SL. Metabolic changes associated with the long winter fast dominate the liver proteome in 13-lined ground squirrels. Physiol Genomics 2014; 46:348-61. [PMID: 24642758 DOI: 10.1152/physiolgenomics.00190.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small-bodied hibernators partition the year between active homeothermy and hibernating heterothermy accompanied by fasting. To define molecular events underlying hibernation that are both dependent and independent of fasting, we analyzed the liver proteome among two active and four hibernation states in 13-lined ground squirrels. We also examined fall animals transitioning between fed homeothermy and fasting heterothermy. Significantly enriched pathways differing between activity and hibernation were biased toward metabolic enzymes, concordant with the fuel shifts accompanying fasting physiology. Although metabolic reprogramming to support fasting dominated these data, arousing (rewarming) animals had the most distinct proteome among the hibernation states. Instead of a dominant metabolic enzyme signature, torpor-arousal cycles featured differences in plasma proteins and intracellular membrane traffic and its regulation. Phosphorylated NSFL1C, a membrane regulator, exhibited this torpor-arousal cycle pattern; its role in autophagosome formation may promote utilization of local substrates upon metabolic reactivation in arousal. Fall animals transitioning to hibernation lagged in their proteomic adjustment, indicating that the liver is more responsive than preparatory to the metabolic reprogramming of hibernation. Specifically, torpor use had little impact on the fall liver proteome, consistent with a dominant role of nutritional status. In contrast to our prediction of reprogramming the transition between activity and hibernation by gene expression and then within-hibernation transitions by posttranslational modification (PTM), we found extremely limited evidence of reversible PTMs within torpor-arousal cycles. Rather, acetylation contributed to seasonal differences, being highest in winter (specifically in torpor), consistent with fasting physiology and decreased abundance of the mitochondrial deacetylase, SIRT3.
Collapse
Affiliation(s)
- Allyson G Hindle
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katharine R Grabek
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado; Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado; and
| | - L Elaine Epperson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anis Karimpour-Fard
- Center for Computational Pharmacology University of Colorado School of Medicine, Aurora, Colorado
| | - Sandra L Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado; Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado; and
| |
Collapse
|
24
|
Jani A, Martin SL, Jain S, Keys D, Edelstein CL. Renal adaptation during hibernation. Am J Physiol Renal Physiol 2013; 305:F1521-32. [PMID: 24049148 DOI: 10.1152/ajprenal.00675.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hibernators periodically undergo profound physiological changes including dramatic reductions in metabolic, heart, and respiratory rates and core body temperature. This review discusses the effect of hypoperfusion and hypothermia observed during hibernation on glomerular filtration and renal plasma flow, as well as specific adaptations in renal architecture, vasculature, the renin-angiotensin system, and upregulation of possible protective mechanisms during the extreme conditions endured by hibernating mammals. Understanding the mechanisms of protection against organ injury during hibernation may provide insights into potential therapies for organ injury during cold storage and reimplantation during transplantation.
Collapse
Affiliation(s)
- Alkesh Jani
- Univ. of Colorado Denver and the Health Sciences Center, Division of Renal Diseases and Hypertension, Box C281, 12700 East 19th Ave., Research 2, Aurora, CO 80262.
| | | | | | | | | |
Collapse
|
25
|
Hindle AG, Martin SL. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels. PLoS One 2013; 8:e71627. [PMID: 23951209 PMCID: PMC3739743 DOI: 10.1371/journal.pone.0071627] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/01/2013] [Indexed: 12/17/2022] Open
Abstract
13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy – wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase-related protein and stathmin suggested mechanisms for rapid cytoskeletal reorganization on return to euthermy during torpor-arousal cycles.
Collapse
Affiliation(s)
- Allyson G Hindle
- Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA.
| | | |
Collapse
|
26
|
Li H, Liu T, Chen W, Jain MR, Vatner DE, Vatner SF, Kudej RK, Yan L. Proteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax. J Proteome Res 2013; 12:4221-9. [PMID: 23855383 DOI: 10.1021/pr400580f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mammalian hibernation is a unique strategy for winter survival in response to limited food supply and harsh climate, which includes resistance to cardiac arrhythmias. We previously found that hibernating woodchucks (Marmota monax) exhibit natural resistance to Ca2+ overload-related cardiac dysfunction and nitric oxide (NO)-dependent vasodilation, which maintains myocardial blood flow during hibernation. Since the cellular/molecular mechanisms mediating the protection are less clear, the goal of this study was to investigate changes in the heart proteome and reveal related signaling networks that are involved in establishing cardioprotection in woodchucks during hibernation. This was accomplished using isobaric tags for a relative and absolute quantification (iTRAQ) approach. The most significant changes observed in winter hibernation compared to summer non-hibernation animals were upregulation of the antioxidant catalase and inhibition of endoplasmic reticulum (ER) stress response by downregulation of GRP78, mechanisms which could be responsible for the adaptation and protection in hibernating animals. Furthermore, protein networks pertaining to NO signaling, acute phase response, CREB and NFAT transcriptional regulations, protein kinase A and α-adrenergic signaling were also dramatically upregulated during hibernation. These adaptive mechanisms in hibernators may provide new directions to protect myocardium of non-hibernating animals, especially humans, from cardiac dysfunction induced by hypothermic stress and myocardial ischemia.
Collapse
Affiliation(s)
- Hong Li
- Center for Advanced Proteomics Research and Department of Biochemistry and Molecular Biology, Rutgers University-New Jersey Medical School Cancer Center, Newark, New Jersey 07103, United States.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jani A, Orlicky DJ, Karimpour-Fard A, Epperson LE, Russell RL, Hunter LE, Martin SL. Kidney proteome changes provide evidence for a dynamic metabolism and regional redistribution of plasma proteins during torpor-arousal cycles of hibernation. Physiol Genomics 2012; 44:717-27. [PMID: 22643061 DOI: 10.1152/physiolgenomics.00010.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hibernating ground squirrels maintain homeostasis despite extreme physiological challenges. In winter, these circannual hibernators fast for months while cycling between prolonged periods of low blood flow and body temperature, known as torpor, and short interbout arousals (IBA), where more typical mammalian parameters are rapidly restored. Here we examined the kidney proteome for changes that support the dramatically different physiological demands of the hibernator's year. We identified proteins in 150 two-dimensional gel spots that altered by at least 1.5-fold using liquid chromatography and tandem mass spectrometry. These data successfully classified individuals by physiological state and revealed three dynamic patterns of relative protein abundance that dominated the hibernating kidney: 1) a large group of proteins generally involved with capturing and storing energy were most abundant in summer; 2) a select subset of these also increased during each arousal from torpor; and 3) 14 spots increased in torpor and early arousal were enriched for plasma proteins that enter cells via the endocytic pathway. Immunohistochemistry identified α(2)-macroglobulin and albumin in kidney blood vessels during late torpor and early arousal; both exhibited regional heterogeneity consistent with highly localized control of blood flow in the glomeruli. Furthermore, albumin, but not α(2)-macroglobulin, was detected in the proximal tubules during torpor and early arousal but not in IBA or summer animals. Taken together, our findings indicate that normal glomerular filtration barriers remain intact throughout torpor-arousal cycles but endocytosis, and hence renal function, is compromised at low body temperature during torpor and then recovers with rewarming during arousal.
Collapse
Affiliation(s)
- Alkesh Jani
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Otis JP, Sahoo D, Drover VA, Yen CLE, Carey HV. Cholesterol and lipoprotein dynamics in a hibernating mammal. PLoS One 2011; 6:e29111. [PMID: 22195001 PMCID: PMC3240636 DOI: 10.1371/journal.pone.0029111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 11/21/2011] [Indexed: 01/01/2023] Open
Abstract
Hibernating mammals cease feeding during the winter and rely primarily on stored lipids to fuel alternating periods of torpor and arousal. How hibernators manage large fluxes of lipids and sterols over the annual hibernation cycle is poorly understood. The aim of this study was to investigate lipid and cholesterol transport and storage in ground squirrels studied in spring, summer, and several hibernation states. Cholesterol levels in total plasma, HDL and LDL particles were elevated in hibernators compared with spring or summer squirrels. Hibernation increased plasma apolipoprotein A-I expression and HDL particle size. Expression of cholesterol 7 alpha-hydroxylase was 13-fold lower in hibernators than in active season squirrels. Plasma triglycerides were reduced by fasting in spring but not summer squirrels. In hibernators plasma β-hydroxybutyrate was elevated during torpor whereas triglycerides were low relative to normothermic states. We conclude that the switch to a lipid-based metabolism during winter, coupled with reduced capacity to excrete cholesterol creates a closed system in which efficient use of lipoproteins is essential for survival.
Collapse
Affiliation(s)
- Jessica P. Otis
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Daisy Sahoo
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Victor A. Drover
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Hannah V. Carey
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
29
|
Grabek KR, Karimpour-Fard A, Epperson LE, Hindle A, Hunter LE, Martin SL. Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 2011; 43:1263-75. [PMID: 21914784 PMCID: PMC3217319 DOI: 10.1152/physiolgenomics.00125.2011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 09/02/2011] [Indexed: 11/22/2022] Open
Abstract
The hibernator's heart functions continuously and avoids damage across the wide temperature range of winter heterothermy. To define the molecular basis of this phenotype, we quantified proteomic changes in the 13-lined ground squirrel heart among eight distinct physiological states encompassing the hibernator's year. Unsupervised clustering revealed a prominent seasonal separation between the summer homeotherms and winter heterotherms, whereas within-season state separation was limited. Further, animals torpid in the fall were intermediate to summer and winter, consistent with the transitional nature of this phase. A seasonal analysis revealed that the relative abundances of protein spots were mainly winter-increased. The winter-elevated proteins were involved in fatty acid catabolism and protein folding, whereas the winter-depleted proteins included those that degrade branched-chain amino acids. To identify further state-dependent changes, protein spots were re-evaluated with respect to specific physiological state, confirming the predominance of seasonal differences. Additionally, chaperone and heat shock proteins increased in winter, including HSPA4, HSPB6, and HSP90AB1, which have known roles in protecting against ischemia-reperfusion injury and apoptosis. The most significant and greatest fold change observed was a disappearance of phospho-cofilin 2 at low body temperature, likely a strategy to preserve ATP. The robust summer-to-winter seasonal proteomic shift implies that a winter-protected state is orchestrated before prolonged torpor ensues. Additionally, the general preservation of the proteome during winter hibernation and an increase of stress response proteins, together with dephosphorylation of cofilin 2, highlight the importance of ATP-conserving mechanisms for winter cardioprotection.
Collapse
Affiliation(s)
- Katharine R Grabek
- Human Medical Genetics Program, Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
30
|
Hindle AG, Karimpour-Fard A, Epperson LE, Hunter LE, Martin SL. Skeletal muscle proteomics: carbohydrate metabolism oscillates with seasonal and torpor-arousal physiology of hibernation. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1440-52. [PMID: 21865542 PMCID: PMC3213940 DOI: 10.1152/ajpregu.00298.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/22/2011] [Indexed: 02/07/2023]
Abstract
The physiology of small mammalian hibernators shifts profoundly over a year, from summer homeothermy to winter heterothermy. Torpor-arousal cycles define high-amplitude tissue activity fluctuations in winter, particularly for skeletal muscle, which contributes to the energetically demanding rewarming process via shivering. To better understand the biochemistry underlying summer-winter and torpor-arousal transitions, we applied two-dimensional gel electrophoresis coupled with liquid chromatography/mass spectrometry/mas spectrometry to the soluble proteins from hindlimb muscle of 13-lined ground squirrels (Ictidomys tridecemlineatus) in two summer and six winter states. Two hundred sixteen protein spots differed by sampled state. Significantly, intrawinter protein adjustment was a minor component of the dataset despite large discrepancies in muscle activity level among winter states; rather, the bulk of differences (127/138 unequivocally identified proteins spots) occurred between summer and winter. We did not detect any proteomic signatures of skeletal muscle atrophy in this hibernator nor any differential seasonal regulation of protein metabolism. Instead, adjustments to metabolic substrate preferences dominated the detected proteomic differences. Pathways of carbohydrate metabolism (glycolysis and gluconeogenesis) were summer enriched, whereas the winter proteome was enriched for fatty acid β-oxidation. Nevertheless, our data suggest that some reliance on carbohydrate reserves is maintained during winter. Phosphoglucomutase (PGM1), which reversibly prepares glucose subunits for either glycolysis or glycogenesis, showed apparent winter state-specific phosphorylation. PGM1 was phosphorylated during rewarming and dephosphorylated by interbout arousal, implying that glucose supplements lipid fuels during rewarming. This, along with winter elevation of TCA cycle enzymes, suggests that hindlimb muscles are primed for rapid energy production and that carbohydrates are an important fuel for shivering thermogenesis.
Collapse
Affiliation(s)
- Allyson G Hindle
- Dept. of Cell and Developmental Biology, PO Box 6511, MS 8010, Univ. of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | | | | | |
Collapse
|
31
|
Schneider H. Oxygenation of the placental–fetal unit in humans. Respir Physiol Neurobiol 2011; 178:51-8. [DOI: 10.1016/j.resp.2011.05.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/22/2011] [Accepted: 05/11/2011] [Indexed: 01/18/2023]
|
32
|
Visser ME, Caro SP, van Oers K, Schaper SV, Helm B. Phenology, seasonal timing and circannual rhythms: towards a unified framework. Philos Trans R Soc Lond B Biol Sci 2010; 365:3113-27. [PMID: 20819807 PMCID: PMC2981940 DOI: 10.1098/rstb.2010.0111] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenology refers to the periodic appearance of life-cycle events and currently receives abundant attention as the effects of global change on phenology are so apparent. Phenology as a discipline observes these events and relates their annual variation to variation in climate. But phenology is also studied in other disciplines, each with their own perspective. Evolutionary ecologists study variation in seasonal timing and its fitness consequences, whereas chronobiologists emphasize the periodic nature of life-cycle stages and their underlying timing programmes (e.g. circannual rhythms). The (neuro-) endocrine processes underlying these life-cycle events are studied by physiologists and need to be linked to genes that are explored by molecular geneticists. In order to fully understand variation in phenology, we need to integrate these different perspectives, in particular by combining evolutionary and mechanistic approaches. We use avian research to characterize different perspectives and to highlight integration that has already been achieved. Building on this work, we outline a route towards uniting the different disciplines in a single framework, which may be used to better understand and, more importantly, to forecast climate change impacts on phenology.
Collapse
Affiliation(s)
- Marcel E Visser
- Netherlands Institute of Ecology (NIOO-KNAW), PO Box 40, 6666 ZG Heteren, The Netherlands.
| | | | | | | | | |
Collapse
|
33
|
Intestinal ischemic preconditioning after ischemia/reperfusion injury in rat intestine: profiling global gene expression patterns. Dig Dis Sci 2010; 55:1866-77. [PMID: 19779973 DOI: 10.1007/s10620-009-0980-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 08/31/2009] [Indexed: 12/09/2022]
Abstract
OBJECTIVE Intestinal ischemia/reperfusion (IR) injury involves activation of inflammatory mediators, mucosal necrosis, ileus, and alteration in a variety of gene products. Ischemic preconditioning (IPC) reduced all the effects of intestinal injury seen in IR. In an effort to investigate the molecular mechanisms responsible for the protective effects afforded by IPC, we sought to characterize the global gene expression pattern in rats subjected to IPC in the setting of IR injury. METHODS Rats were randomized into five groups: (1) Sham, (2) IPC only (3) IR, (4) Early IPC + IR (IPC --> IR), and (5) Late IPC + IR (IPC --> 24 h --> IR). At 6 h after reperfusion, ileum was harvested for total RNA isolation, pooled, and analyzed on complementary DNA (cDNA) microarrays with validation using real-time polymerase chain reaction (PCR). Significance Analysis of Microarray (SAM) software was used to determine statistically significant changes in gene expression. RESULTS Early IPC + IR had 5,167 induced and 4 repressed genes compared with the other groups. SAM analysis revealed 474 out of 10,000 genes differentially expressed among the groups. Early and Late IPC + IR had more genes involved in redox hemostasis, the immune/inflammatory response, and apoptosis than either the IPC only or IR alone groups. CONCLUSION The transcriptional profile suggests that IPC exerts its protective effects by regulating the gene response to injury in the intestine.
Collapse
|
34
|
Epperson LE, Rose JC, Russell RL, Nikrad MP, Carey HV, Martin SL. Seasonal protein changes support rapid energy production in hibernator brainstem. J Comp Physiol B 2009; 180:599-617. [PMID: 19967378 DOI: 10.1007/s00360-009-0422-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 01/03/2023]
Abstract
During the torpor phase of mammalian hibernation when core body temperature is near 4 degrees C, the autonomic system continues to maintain respiration, blood pressure and heartbeat despite drastic reductions in brain activity. In addition, the hibernator's neuronal tissues enter into a protected state in which the potential for ischemia-reperfusion injury is markedly minimized. Evolutionary adaptations for continued function and neuroprotection throughout cycles of torpor and euthermia in winter are predicted to manifest themselves partly in changes in the brainstem proteome. Here, we compare the soluble brainstem protein complement from six summer active ground squirrels and six in the early torpor (ET) phase of hibernation. Thirteen percent of the approximately 1,500 quantifiable 2D gel spots alter significantly from summer to ET; the proteins identified in these differing spots are known to play roles in energy homeostasis via the tricarboxylic acid cycle (8 proteins), cytoarchitecture and cell motility (14 proteins), anabolic protein processes (13 proteins), redox control (11 proteins) and numerous other categories including protein catabolism, oxidative phosphorylation, signal transduction, glycolysis, intracellular protein trafficking and antiapoptotic function. These protein changes represent, at least in part, the molecular bases for restructuring of cells in the brainstem, a shift away from glucose as the primary fuel source for brain in the winter, and the generation of a streamlined mechanism capable of efficient and rapid energy production and utilization during the torpor and arousal cycles of hibernation.
Collapse
Affiliation(s)
- L Elaine Epperson
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, P.O. Box 6511, mail stop 8108, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Melvin RG, Andrews MT. Torpor induction in mammals: recent discoveries fueling new ideas. Trends Endocrinol Metab 2009; 20:490-8. [PMID: 19864159 PMCID: PMC2788021 DOI: 10.1016/j.tem.2009.09.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 09/20/2009] [Accepted: 09/22/2009] [Indexed: 01/22/2023]
Abstract
When faced with a harsh climate or inadequate food, some mammals enter a state of suspended animation known as torpor. A major goal of torpor research is to determine mechanisms that integrate environmental cues, gene expression and metabolism to produce periods of torpor lasting from hours to weeks. Recent discoveries spanning the Metazoa suggest that sirtuins, the mammalian circadian clock, fibroblast growth factor 21 (FGF21) and lipids are involved in torpor induction. For example, sirtuins link cellular energy status to the mammalian circadian clock, oxidative stress and metabolic fuel selection. In this review, we discuss how these recent discoveries form a new hypothesis linking changes in the physical environment with changes in the expression of genes that regulate torpor induction.
Collapse
Affiliation(s)
- Richard G Melvin
- Department of Biology, University of Minnesota Duluth, Duluth, MN 55812, USA
| | | |
Collapse
|
36
|
Shao C, Liu Y, Ruan H, Li Y, Wang H, Kohl F, Goropashnaya AV, Fedorov VB, Zeng R, Barnes BM, Yan J. Shotgun proteomics analysis of hibernating arctic ground squirrels. Mol Cell Proteomics 2009; 9:313-26. [PMID: 19955082 DOI: 10.1074/mcp.m900260-mcp200] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian hibernation involves complex mechanisms of metabolic reprogramming and tissue protection. Previous gene expression studies of hibernation have mainly focused on changes at the mRNA level. Large scale proteomics studies on hibernation have lagged behind largely because of the lack of an adequate protein database specific for hibernating species. We constructed a ground squirrel protein database for protein identification and used a label-free shotgun proteomics approach to analyze protein expression throughout the torpor-arousal cycle during hibernation in arctic ground squirrels (Urocitellus parryii). We identified more than 3,000 unique proteins from livers of arctic ground squirrels. Among them, 517 proteins showed significant differential expression comparing animals sampled after at least 8 days of continuous torpor (late torpid), within 5 h of a spontaneous arousal episode (early aroused), and 1-2 months after hibernation had ended (non-hibernating). Consistent with changes at the mRNA level shown in a previous study on the same tissue samples, proteins involved in glycolysis and fatty acid synthesis were significantly underexpressed at the protein level in both late torpid and early aroused animals compared with non-hibernating animals, whereas proteins involved in fatty acid catabolism were significantly overexpressed. On the other hand, when we compared late torpid and early aroused animals, there were discrepancies between mRNA and protein levels for a large number of genes. Proteins involved in protein translation and degradation, mRNA processing, and oxidative phosphorylation were significantly overexpressed in early aroused animals compared with late torpid animals, whereas no significant changes at the mRNA levels between these stages had been observed. Our results suggest that there is substantial post-transcriptional regulation of proteins during torpor-arousal cycles of hibernation.
Collapse
Affiliation(s)
- Chunxuan Shao
- Chinese Academy of Sciences-German Max Planck Society(CAS-MPG) Partner Institute for Computational Biology, Shanghai Institutes of Biological Sciences,320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Epperson LE, Rose JC, Carey HV, Martin SL. Seasonal proteomic changes reveal molecular adaptations to preserve and replenish liver proteins during ground squirrel hibernation. Am J Physiol Regul Integr Comp Physiol 2009; 298:R329-40. [PMID: 19923364 DOI: 10.1152/ajpregu.00416.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernators are unique among mammals in their ability to survive extended periods of time with core body temperatures near freezing and with dramatically reduced heart, respiratory, and metabolic rates in a state known as torpor. To gain insight into the molecular events underlying this remarkable physiological phenotype, we applied a proteomic screening approach to identify liver proteins that differ between the summer active (SA) and the entrance (Ent) phase of winter hibernation in 13-lined ground squirrels. The relative abundance of 1,600 protein spots separated on two-dimensional gels was quantitatively determined using fluorescence difference gel electrophoresis, and 74 unique proteins exhibiting significant differences between the two states were identified using liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). Proteins elevated in Ent hibernators included liver fatty acid-binding protein, fatty acid transporter, and 3-hydroxy-3-methylglutaryl-CoA synthase, which support the known metabolic fuel switch to lipid and ketone body utilization in winter. Several proteins involved in protein stability and protein folding were also elevated in the Ent phase, consistent with previous findings. In contrast to transcript screening results, there was a surprising increase in the abundance of proteins involved in protein synthesis during Ent hibernation, including several initiation and elongation factors. This finding, coupled with decreased abundance of numerous proteins involved in amino acid and nitrogen metabolism, supports the intriguing hypothesis that the mechanism of protein preservation and resynthesis is used by hibernating ground squirrels to help avoid nitrogen toxicity and ensure preservation of essential amino acids throughout the long winter fast.
Collapse
Affiliation(s)
- L Elaine Epperson
- Dept. of Cell and Developmental Biology, Univ. of Colorado School of Medicine, PO Box 6511, MS 8108, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
38
|
Kinross J, Warren O, Basson S, Holmes E, Silk D, Darzi A, Nicholson JK. Intestinal ischemia/reperfusion injury: defining the role of the gut microbiome. Biomark Med 2009; 3:175-92. [DOI: 10.2217/bmm.09.11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intestinal ischemia/reperfusion (I/R) injury initiates a systemic inflammatory response syndrome with a high associated mortality rate. Early diagnosis is essential for reducing surgical mortality, yet current clinical biomarkers are insufficient. Metabonomics is a novel strategy for studying intestinal I/R, which may be used as part of a systems approach for quantitatively analyzing the intestinal microbiome during gut injury. By deconvolving the mammalian–microbial symbiotic relationship systems biology thus has the potential for personalized risk stratification in patients exposed to intestinal I/R. This review describes the mechanism of intestinal I/R and explores the essential role of the intestinal microbiota in the initiation of systemic inflammatory response syndrome. Furthermore, it analyzes current and future approaches for elucidating the mechanism of this condition.
Collapse
Affiliation(s)
- James Kinross
- Department of Biomolecular Medicine, SORA, Imperial College London
| | - Oliver Warren
- Department of Biomolecular Medicine, SORA, Imperial College London
| | | | - Elaine Holmes
- Department of Biomolecular Medicine, SORA, Imperial College London
| | - David Silk
- Department of Biomolecular Medicine, SORA, Imperial College London
| | - Ara Darzi
- Department of Biomolecular Medicine, SORA, Imperial College London
| | - Jeremy K Nicholson
- Professor of Biological Chemistry, Head of Department of Biomolecular Medicine, SORA, Imperial College, 6th Floor, Sir Alexander Fleming Building, South Kensington Campus, London, SW7 2AZ, UK
| |
Collapse
|
39
|
Abstract
Hibernation is one of the most dramatic examples of phenotypic plasticity in mammals. During periods of food shortage and/or reduced ambient temperatures hibernating mammals become heterothermic, allowing their body temperature to decrease while entering an energy-conserving torpid state. In order to survive the multi-month hibernation season many species engage in hyperphagy, dramatically increasing adipose stores prior to the onset of hibernation. Nuclear receptors are a superfamily of transcription factors many of which bind lipophilic molecules as ligands. They regulate a variety of processes including energy homeostasis, carbohydrate and lipid metabolism, inflammation and circadian rhythm. Given that lipids are integral in the hibernation phenotype they may play important regulatory roles through their interactions with nuclear receptors. Here we review current knowledge and suggest possible roles in mammalian hibernation for peroxisome proliferator-activated receptors (PPARs), farnesoid X receptors (FXRs), liver X receptors (LXRs), retinoid-related orphan receptors (RORs) and Rev-ERBs.
Collapse
Affiliation(s)
- Clark J Nelson
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, WI 53706, USA
| | | | | |
Collapse
|
40
|
Schneider H. Tolerance of Human Placental Tissue to Severe Hypoxia and Its Relevance for Dual Ex Vivo Perfusion. Placenta 2009; 30 Suppl A:S71-6. [DOI: 10.1016/j.placenta.2008.11.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 11/05/2008] [Accepted: 11/07/2008] [Indexed: 11/26/2022]
|
41
|
Nelson CJ, Otis JP, Martin SL, Carey HV. Analysis of the hibernation cycle using LC-MS-based metabolomics in ground squirrel liver. Physiol Genomics 2009; 37:43-51. [DOI: 10.1152/physiolgenomics.90323.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A hallmark of hibernation in mammals is metabolic flexibility, which is typified by reversible bouts of metabolic depression (torpor) and the seasonal shift from predominantly carbohydrate to lipid metabolism from summer to winter. To provide new insight into the control and consequences of hibernation, we used LC/MS-based metabolomics to measure differences in small molecules in ground squirrel liver in five activity states: summer, entering torpor, late torpor, arousing from torpor, and interbout arousal. There were significant alterations both seasonally and within torpor-arousal cycles in enzyme cofactor metabolism, amino acid catabolism, and purine and pyrimidine metabolism, with observed metabolites reduced during torpor and increased upon arousal. Multiple lipids also changed, including 1-oleoyllysophosphatidylcholine, cholesterol sulfate, and sphingosine, which tended to be lowest during torpor, and hexadecanedioic acid, which accumulated during a torpor bout. The results reveal the dramatic alterations that occur in several classes of metabolites, highlighting the value of metabolomic analyses in deciphering the hibernation phenotype.
Collapse
Affiliation(s)
- Clark J. Nelson
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| | - Jessica P. Otis
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| | - Sandra L. Martin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado
| | - Hannah V. Carey
- Department of Comparative Biosciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin
| |
Collapse
|
42
|
Cho S, Kim D, Eom K, Bae K. Identification of a PAS domain‐containing protein in a mammalian hibernator,Murina leucogaster. Anim Cells Syst (Seoul) 2009. [DOI: 10.1080/19768354.2009.9647202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
43
|
Andrews MT, Russeth KP, Drewes LR, Henry PG. Adaptive mechanisms regulate preferred utilization of ketones in the heart and brain of a hibernating mammal during arousal from torpor. Am J Physiol Regul Integr Comp Physiol 2008; 296:R383-93. [PMID: 19052316 DOI: 10.1152/ajpregu.90795.2008] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hibernating mammals use reduced metabolism, hypothermia, and stored fat to survive up to 5 or 6 mo without feeding. We found serum levels of the fat-derived ketone, D-beta-hydroxybutyrate (BHB), are highest during deep torpor and exist in a reciprocal relationship with glucose throughout the hibernation season in the thirteen-lined ground squirrel (Spermophilus tridecemlineatus). Ketone transporter monocarboxylic acid transporter 1 (MCT1) is upregulated at the blood-brain barrier, as animals enter hibernation. Uptake and metabolism of 13C-labeled BHB and glucose were measured by high-resolution NMR in both brain and heart at several different body temperatures ranging from 7 to 38 degrees C. We show that BHB and glucose enter the heart and brain under conditions of depressed body temperature and heart rate but that their utilization as a fuel is highly selective. During arousal from torpor, glucose enters the brain over a wide range of body temperatures, but metabolism is minimal, as only low levels of labeled metabolites are detected. This is in contrast to BHB, which not only enters the brain but is also metabolized via the tricarboxylic acid (TCA) cycle. A similar situation is seen in the heart as both glucose and BHB are transported into the organ, but only 13C from BHB enters the TCA cycle. This finding suggests that fuel selection is controlled at the level of individual metabolic pathways and that seasonally induced adaptive mechanisms give rise to the strategic utilization of BHB during hibernation.
Collapse
Affiliation(s)
- Matthew T Andrews
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota 1035 Kirby Dr., Duluth, MN 55812, USA.
| | | | | | | |
Collapse
|