1
|
Li Y, Cacciottolo TM, Yin N, He Y, Liu H, Liu H, Yang Y, Henning E, Keogh JM, Lawler K, Mendes de Oliveira E, Gardner EJ, Kentistou KA, Laouris P, Bounds R, Ong KK, Perry JRB, Barroso I, Tu L, Bean JC, Yu M, Conde KM, Wang M, Ginnard O, Fang X, Tong L, Han J, Darwich T, Williams KW, Yang Y, Wang C, Joss S, Firth HV, Xu Y, Farooqi IS. Loss of transient receptor potential channel 5 causes obesity and postpartum depression. Cell 2024; 187:4176-4192.e17. [PMID: 38959890 DOI: 10.1016/j.cell.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Hypothalamic neural circuits regulate instinctive behaviors such as food seeking, the fight/flight response, socialization, and maternal care. Here, we identified microdeletions on chromosome Xq23 disrupting the brain-expressed transient receptor potential (TRP) channel 5 (TRPC5). This family of channels detects sensory stimuli and converts them into electrical signals interpretable by the brain. Male TRPC5 deletion carriers exhibited food seeking, obesity, anxiety, and autism, which were recapitulated in knockin male mice harboring a human loss-of-function TRPC5 mutation. Women carrying TRPC5 deletions had severe postpartum depression. As mothers, female knockin mice exhibited anhedonia and depression-like behavior with impaired care of offspring. Deletion of Trpc5 from oxytocin neurons in the hypothalamic paraventricular nucleus caused obesity in both sexes and postpartum depressive behavior in females, while Trpc5 overexpression in oxytocin neurons in knock-in mice reversed these phenotypes. We demonstrate that TRPC5 plays a pivotal role in mediating innate human behaviors fundamental to survival, including food seeking and maternal care.
Collapse
Affiliation(s)
- Yongxiang Li
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tessa M Cacciottolo
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Na Yin
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hesong Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hailan Liu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuxue Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Taizhou People's Hospital, Medical School of Yangzhou University, Taizhou, Jiangsu, China
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Julia M Keogh
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine Lawler
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Edson Mendes de Oliveira
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Panayiotis Laouris
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Rebecca Bounds
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - John R B Perry
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK; MRC Epidemiology Unit, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research (EXCEED), University of Exeter Medical School, Exeter, UK
| | - Longlong Tu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan C Bean
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Meng Yu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kristine M Conde
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mengjie Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Olivia Ginnard
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Xing Fang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lydia Tong
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tia Darwich
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Kevin W Williams
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390-9077, USA
| | - Yongjie Yang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shelagh Joss
- West of Scotland Regional Genetics Service, Queen Elizabeth University Hospital, Glasgow, UK
| | - Helen V Firth
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust & Wellcome Sanger Institute, Cambridge, UK
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA; Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - I Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge, UK.
| |
Collapse
|
2
|
Moran KM, Delville Y. A hamster model for stress-induced weight gain. Horm Behav 2024; 160:105488. [PMID: 38306877 DOI: 10.1016/j.yhbeh.2024.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024]
Abstract
This review addresses the translational relevance of animal models of stress and their effects on body weight. In humans, stress, whether chronic or acute, has often been associated with increased food intake and weight gain. In view of the current obesity epidemic, this phenomenon is especially relevant. Such observations contrast with reports with commonly used laboratory animals, especially rats and mice. In these species, it is common to find individuals gaining less weight under stress, even with potent social stressors. However, there are laboratory species that present increased appetite and weight gain under stress, such as golden hamsters. Furthermore, these animals also include metabolic and behavioral similarities with humans, including hoarding behavior which is also enhanced under stress. Consequently, we propose that our comparative perspective provides useful insights for future research on the development of obesity in humans as a consequence of chronic stress exposure.
Collapse
Affiliation(s)
- Kevin M Moran
- Psychology Department, The University of Texas at Austin, USA.
| | - Yvon Delville
- Psychology Department, The University of Texas at Austin, USA
| |
Collapse
|
3
|
Roles of Ghrelin and Leptin in Body Mass Regulation under Food Restriction Based on the AMPK Pathway in the Red-Backed Vole, Eothenomys miletus, from Kunming and Dali Regions. Animals (Basel) 2022; 12:ani12233333. [PMID: 36496854 PMCID: PMC9739273 DOI: 10.3390/ani12233333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022] Open
Abstract
The phenotype plasticity of animals' physiological characteristics is an important survival strategy to cope with environmental changes, especially the change in climate factors. Small mammals that inhabit seasonally changing environments often face the stress of food shortage in winter. This study measured and compared the thermogenic characteristics and related physiological indicators in the adenosine-5'-monophosphate-activated protein kinase (AMPK) pathway in Eothenomys miletus between Kunming (KM, n = 18) and Dali (DL, n = 18) under food restriction and refeeding. The results showed that food restriction and the region have significant effects on body mass, the resting metabolic rate (RMR), hypothalamic neuropeptide gene expression, ghrelin levels in the stomach and serum, serum leptin level and the activity of AMPK, and malonyl CoA and carnitine palmitoyltransferase 1 (CPT-1) activity. Food restriction reduced the body mass, the gene expression of neuropeptide proopiomelanocortin (POMC), cocaine- and amphetamine-regulated transcription peptide (CART), and leptin level. However, the ghrelin concentration and AMPK activity increased. After refeeding, there was no difference in these physiological indexes between the food restriction and control groups. Moreover, the physiological indicators also showed regional differences, such as the body mass, POMC and CART gene expression, ghrelin concentration in the stomach and serum, and AMPK activity in DL changed more significantly. All these results showed that food restriction reduces energy metabolism in E. miletus. After refeeding, most of the relevant physiological indicators can return to the control level, indicating that E. miletus has strong phenotypic plasticity. Ghrelin, leptin, and the AMPK pathway play an important role in the energy metabolism of E. miletus under food restriction. Moreover, regional differences in physiological indicators under food restriction may be related to the different temperatures or food resources in different regions.
Collapse
|
4
|
"How Foraging Works": Let's not forget the physiological mechanisms of energy balance. Behav Brain Sci 2019; 42:e51. [PMID: 30940279 DOI: 10.1017/s0140525x1800198x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Anselme & Güntürkün propose a novel mechanism to explain the increase in foraging motivation when experiencing an unpredictable food supply. However, the physiological mechanisms that maintain energy homeostasis already control foraging intensity in response to changes in energy balance. Therefore, unpredictability may just be one of many factors that feeds into the same dopaminergic "wanting" system to control foraging intensity.
Collapse
|
5
|
Henderson LJ, Cockcroft RC, Kaiya H, Boswell T, Smulders TV. Peripherally injected ghrelin and leptin reduce food hoarding and mass gain in the coal tit ( Periparus ater). Proc Biol Sci 2018; 285:rspb.2018.0417. [PMID: 29794047 DOI: 10.1098/rspb.2018.0417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
In birds little is known about the hormonal signals that communicate nutritional state to the brain and regulate appetitive behaviours. In mammals, the peptide hormones ghrelin and leptin elevate and inhibit consumption and food hoarding, respectively. But in birds, administration of both ghrelin and leptin inhibit food consumption. The role of these hormones in the regulation of food hoarding in avian species has not been examined. To investigate this, we injected wild caught coal tits (Periparus ater) with leptin, high-dose ghrelin, low-dose ghrelin and a saline control in the laboratory. We then measured food hoarding and mass gain, as a proxy of food consumption, every 20 min for 2 h post-injection. Both high-dose ghrelin and leptin injections significantly reduced hoarding and mass gain compared with controls. Our results provide the first evidence that hoarding behaviour can be reduced by both leptin and ghrelin in a wild bird. These findings add to evidence that the hormonal control of food consumption and hoarding in avian species differs from that in mammals. Food hoarding and consumptive behaviours consistently show the same response to peripheral signals of nutritional state, suggesting that the hormonal regulation of food hoarding has evolved from the consumption regulatory system.
Collapse
Affiliation(s)
- Lindsay J Henderson
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK .,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Rowan C Cockcroft
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Hiroyuki Kaiya
- National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan
| | - Timothy Boswell
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tom V Smulders
- Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
6
|
Brozek JM, Schneider JE, Rhinehart E. Maternal Programming of Body Weight in Syrian Hamsters. Integr Comp Biol 2017; 57:1245-1257. [PMID: 28992103 DOI: 10.1093/icb/icx108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Maternal programming of offspring energy balance has been viewed as an adaptation in which the gestational environment prepares the offspring to thrive and reproduce in that same postnatal environment. Programming might have the opposite effect, however, when gestational and postnatal environments are mismatched. Gestational programming would represent a trade-off if the mother can maximize fitness in one possible energetic future but cannot maximize fitness in another. The vast majority of research concerns rats, mice, or sheep, and dams are typically food restricted by 30-70% of ad libitum intake resulting in low birth weight and adult obesity in offspring. Few previous studies have used a lower level of food restriction, and no experiments, to the best of our knowledge, were designed to determine whether the effects of gestational restriction have postgestational effects independent of the effects that occurred during gestation. In the present experiment, Syrian hamsters were either restricted to 90% of their ad libitum food intake or fed ad libitum during pregnancy. All litters were cross-fostered at birth and all were fed ad libitum during lactation. Half of the litters from ad libitum-fed pregnant dams were fostered to dams that had been food restricted during pregnancy and half of the litters from food-restricted pregnant dams were fostered to ad libitum-fed dams. The latter group allowed us to test the hypothesis that the effects of having a gestationally food-restricted mother affects offspring characteristics independent of the prenatal programming. First, we found significant increases in the postnatal body weight of the offspring of ad libitum-fed mothers fostered to food-restricted dams, supporting the hypothesis that the effects of gestational restriction carry over to postnatal maternal ability (e.g., milk yield, milk content, or parental behavior). Second, the carry-over effects of gestational food restriction on offspring postnatal body weight were significant in male but not female offspring. This occurred even though this group had significantly lower food intake than offspring of ad libitum-fed mothers with ad libitum-fed foster mothers. In addition, and contrary to expectation, gestational food restriction had no significant effect on adult baseline food hoarding or food hoarding in response to food restriction. These results suggest that even mild energetic challenges during gestation can have postgestational effects on maternal ability, and the effects on offspring are sex-specific.
Collapse
Affiliation(s)
- Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Erin Rhinehart
- Department of Biology, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
7
|
Schneider JE, Benton NA, Russo KA, Klingerman CM, Williams WP, Simberlund J, Abdulhay A, Brozek JM, Kriegsfeld LJ. RFamide-related Peptide-3 and the Trade-off between Reproductive and Ingestive Behavior. Integr Comp Biol 2017; 57:1225-1239. [PMID: 28985338 PMCID: PMC5886337 DOI: 10.1093/icb/icx097] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ingestive and sex behaviors are important for individual survival and reproductive success, but when environmental energy availability is limited, individuals of many different species make a trade-off, forfeiting sex for ingestive behavior. For example, food-deprived female Syrian hamsters (Mesocricetus auratus) forego vaginal scent marking and lordosis (sex behaviors) in favor of foraging, hoarding, and eating food (ingestive behavior). Reproductive processes tend to be energetically costly, and individual survival requires homeostasis in metabolic energy. Thus, during energetic challenges, the chances of survival are enhanced by decreasing the energy expended on reproductive processes. The entire hypothalamic-pituitary-gonadal (HPG) system is inhibited by severe energetic challenges, but comparatively little is known about the effects of mild energetic challenges. We hypothesized that (1) a trade-off is made between sex and ingestive behavior even when the level of food restriction is insufficient to inhibit the HPG system; (2) mild energetic challenges force a trade-off between appetitive ingestive and sex behaviors, but not consummatory versions of the same behaviors; and (3) the trade-off is orchestrated by ovarian steroid modulation of RFamide-related peptide 3 (RFRP-3). In other species, RFRP-3, an ortholog of avian gonadotropin-inhibitory hormone, is implicated in control of behavior in response to energetic challenges and stressful stimuli. In support of our three hypotheses, there is a "dose-response" effect of food restriction and re-feeding on the activation of RFRP-3-immunoreactive cells in the dorsomedial hypothalamus and on appetitive behaviors (food hoarding and sexual motivation), but not on consummatory behaviors (food intake and lordosis), with no significant effect on circulating levels of estradiol or progesterone. The effect of food restriction on the activation of RFRP-3 cells is modulated at the time of estrus in gonadally-intact females and in ovariectomized females treated with progesterone alone or with estradiol plus progesterone. Intracerebral treatment with RFRP-3 results in significant decreases in sexual motivation and results in significant but small increases in food hoarding in hamsters fed ad libitum. These and other results are consistent with the idea that ovarian steroids and RFRP-3 are part of a system that orchestrates trade-offs in appetitive behaviors in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Candice M Klingerman
- Department of Biological and Allied Health Sciences, Bloomsburg University, Bloomsburg, PA 17815, USA
| | - Wilbur P Williams
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Jessica Simberlund
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Amir Abdulhay
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Benton NA, Russo KA, Brozek JM, Andrews RJ, Kim VJ, Kriegsfeld LJ, Schneider JE. Food restriction-induced changes in motivation differ with stages of the estrous cycle and are closely linked to RFamide-related peptide-3 but not kisspeptin in Syrian hamsters. Physiol Behav 2017. [PMID: 28624479 DOI: 10.1016/j.physbeh.2017.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We tested the hypothesis that the effects of food restriction on behavioral motivation are mediated by one or both of the RFamide peptides, RFamide-related peptide-3 (RFRP-3) and kisspeptin (Kp) in female Syrian hamsters (Mesocricetus auratus). Female hamsters fed ad libitum and given a choice between food and adult male hamsters are highly motivated to visit males instead of food on all four days of the estrous cycle, but after 8days of mild food restriction (75% of ad libitum intake) they shift their preference toward food every day of the estrous cycle until the day of estrus, when they shift their preference back toward the males. In support of a role for RFRP-3 in these behavioral changes, the preference for food and the activation of RFRP-3-immunoreactive (Ir) cells in the dorsomedial hypothalamus (DMH) showed the same estrous cycle pattern in food-restricted females, but no association was observed between behavior and the activation of Kp cells in the hypothalamic arcuate nucleus or preoptic area. Next, we tested the hypothesis that food-restriction-induced activation of RFRP-3-Ir cells is modulated by high levels of ovarian steroids at the time of estrus. In support of this idea, on nonestrous days, mild food restriction increased activation of RFRP-3-Ir cells, but failed to do so on the day of estrus even though this level of food restriction did not significantly decrease circulating concentrations of estradiol or progesterone. Furthermore, in ovariectomized females, food-restriction-induced increases in activation of RFRP-3-Ir cells were blocked by systemic treatment with progesterone alone, estradiol plus progesterone, but not estradiol alone. Central infusion with RFRP-3 in ad libitum-fed females significantly decreased sexual motivation and produced significant increases in 90-minute food hoarding, in support of the hypothesis that elevated central levels of RFRP-3 are sufficient to create the shift in behavioral motivation in females fed ad libitum. Together, these results are consistent with the hypothesis that high levels of ingestive motivation are promoted during the nonfertile phase of the estrous cycle by elevated activation of RFRP-3-Ir cells, and RFRP-3-Ir cellular activation is modulated by ovarian steroids around the time of estrus, thereby diverting attention away from food and increasing sexual motivation.
Collapse
Affiliation(s)
- Noah A Benton
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Kim A Russo
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jeremy M Brozek
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States
| | - Ryan J Andrews
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Veronica J Kim
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Lance J Kriegsfeld
- Department of Psychology and The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States
| | - Jill E Schneider
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, United States.
| |
Collapse
|
9
|
Fernandes MFA, Matthys D, Hryhorczuk C, Sharma S, Mogra S, Alquier T, Fulton S. Leptin Suppresses the Rewarding Effects of Running via STAT3 Signaling in Dopamine Neurons. Cell Metab 2015; 22:741-9. [PMID: 26341832 DOI: 10.1016/j.cmet.2015.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 01/29/2023]
Abstract
The adipose hormone leptin potently influences physical activity. Leptin can decrease locomotion and running, yet the mechanisms involved and the influence of leptin on the rewarding effects of running ("runner's high") are unknown. Leptin receptor (LepR) signaling involves activation of signal transducer and activator of transcription-3 (STAT3), including in dopamine neurons of the ventral tegmental area (VTA) that are essential for reward-relevant behavior. We found that mice lacking STAT3 in dopamine neurons exhibit greater voluntary running, an effect reversed by viral-mediated STAT3 restoration. STAT3 deletion increased the rewarding effects of running whereas intra-VTA leptin blocked it in a STAT3-dependent manner. Finally, STAT3 loss-of-function reduced mesolimbic dopamine overflow and function. Findings suggest that leptin influences the motivational effects of running via LepR-STAT3 modulation of dopamine tone. Falling leptin is hypothesized to increase stamina and the rewarding effects of running as an adaptive means to enhance the pursuit and procurement of food.
Collapse
Affiliation(s)
- Maria Fernanda A Fernandes
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Physiology, Université de Montreal, QC H2X 0A9, Canada
| | - Dominique Matthys
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Neuroscience, Université de Montreal, QC H2X 0A9, Canada
| | - Cécile Hryhorczuk
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Physiology, Université de Montreal, QC H2X 0A9, Canada
| | - Sandeep Sharma
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Nutrition, Université de Montreal, QC H2X 0A9, Canada
| | - Shabana Mogra
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada
| | - Thierry Alquier
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Medicine, Université de Montreal, QC H2X 0A9, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM and Montreal Diabetes Research Center, Université de Montreal, QC H2X 0A9, Canada; Department of Nutrition, Université de Montreal, QC H2X 0A9, Canada; Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
10
|
Abdulhay A, Benton NA, Klingerman CM, Krishnamoorthy K, Brozek JM, Schneider JE. Estrous cycle fluctuations in sex and ingestive behavior are accentuated by exercise or cold ambient temperatures. Horm Behav 2014; 66:135-47. [PMID: 24815221 DOI: 10.1016/j.yhbeh.2014.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 01/11/2023]
Abstract
This article is part of a Special Issue "Energy Balance". In female Syrian hamsters (Mesocricetus auratus), low circulating levels of ovarian steroids are associated with increased food hoarding and decreased sexual motivation, but these effects are exaggerated in food-restricted females. To determine whether cold ambient temperature has the same effects as food restriction, groups of hamsters were fed ad libitum while they were housed at either 5 °C or 22 °C, and then tested for behavior for 90 min on each day of the estrous cycle. In females housed at 22 °C, high levels of sexual motivation and low levels of food hoarding were seen every day of the estrous cycle. In females housed at 5 °C, high levels of sexual motivation were restricted to the periovulatory day. On the three nonestrous days, these females showed high levels of food hoarding, but not food intake. A separate cohort of females were provided with access to running wheels and housed at 22 °C. They showed high levels of sexual motivation restricted to the periovulatory day, similar to the pattern of sexual motivation seen in cold-housed females. Unlike cold-housed females, those with running wheels showed low levels of food hoarding and high levels of food intake. Food restriction, cold housing, and access to wheels had no significant effect on plasma estradiol or progesterone concentrations, but significantly decreased plasma leptin concentrations. All three energetic challenges unmask estrous cycle fluctuations in sexual motivation that are obscured in laboratory conditions, i.e., isolation in a small cage with an overabundance of food.
Collapse
Affiliation(s)
- Amir Abdulhay
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Noah A Benton
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Candice M Klingerman
- Bloomsburg University, Department of Biological and Allied Health Sciences, Bloomsburg, PA 17815, USA
| | | | - Jeremy M Brozek
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA
| | - Jill E Schneider
- Lehigh University, Department of Biological Sciences, Bethlehem, PA 18015, USA.
| |
Collapse
|
11
|
Leptin signaling in the medial nucleus tractus solitarius reduces food seeking and willingness to work for food. Neuropsychopharmacology 2014; 39:605-13. [PMID: 24002186 PMCID: PMC3895238 DOI: 10.1038/npp.2013.235] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 08/23/2013] [Accepted: 08/29/2013] [Indexed: 01/07/2023]
Abstract
The adipose-derived hormone leptin signals in the medial nucleus tractus solitarius (mNTS) to suppress food intake, in part, by amplifying within-meal gastrointestinal (GI) satiation signals. Here we show that mNTS leptin receptor (LepRb) signaling also reduces appetitive and motivational aspects of feeding, and that these effects can depend on energy status. Using the lowest dose that significantly suppressed 3-h cumulative food intake, unilateral leptin (0.3 μg) administration to the mNTS (3 h before testing) reduced operant lever pressing for sucrose under increasing work demands (progressive ratio reinforcement schedule) regardless of whether animals were energy deplete (food restricted) or replete (ad libitum fed). However, in a separate test of food-motivated responding in which there was no opportunity to consume food (conditioned place preference (CPP) for an environment previously associated with a palatable food reward), mNTS leptin administration suppressed food-seeking behavior only in chronically food-restricted rats. On the other hand, mNTS LepRb signaling did not reduce CPP expression for morphine reinforcement regardless of energy status, suggesting that mNTS leptin signaling differentially influences motivated responding for food vs opioid reward. Overall results show that mNTS LepRb signaling reduces food intake and appetitive food-motivated responding independent of energy status in situations involving orosensory and postingestive contact with food, whereas food-seeking behavior independent of food consumption is only reduced by mNTS LepRb activation in a state of energy deficit. These findings reveal a novel appetitive role for LepRb signaling in the mNTS, a brain region traditionally linked with processing of meal-related GI satiation signals.
Collapse
|
12
|
Keen-Rhinehart E, Ondek K, Schneider JE. Neuroendocrine regulation of appetitive ingestive behavior. Front Neurosci 2013; 7:213. [PMID: 24298235 PMCID: PMC3828638 DOI: 10.3389/fnins.2013.00213] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/25/2013] [Indexed: 01/08/2023] Open
Abstract
Food availability in nature is often irregular, and famine is commonplace. Increased motivation to engage in ingestive behaviors increases the chance of survival, providing additional potential opportunities for reproduction. Because of the advantages conferred by entraining ingestive behavior to environmental conditions, neuroendocrine mechanisms regulating the motivation to acquire and ingest food have evolved to be responsive to exogenous (i.e., food stored for future consumption) and endogenous (i.e., body fat stores) fuel availability. Motivated behaviors like eating occur in two phases. The appetitive phase brings animals into contact with food (e.g., foraging, food hoarding), and the more reflexive consummatory phase results in ingestion (e.g., chewing, swallowing). Quantifiable appetitive behaviors are part of the natural ingestive behavioral repertoire of species such as hamsters and humans. This review summarizes current knowledge about neuroendocrine regulators of ingestive behavior, with an emphasis appetitive behavior. We will discuss hormonal regulators of appetitive ingestive behaviors, including the orexigenic hormone ghrelin, which potently stimulates foraging and food hoarding in Siberian hamsters. This section includes a discussion of the hormone leptin, its relation to endogenous fat stores, and its role in food deprivation-induced increases in appetitive ingestive behaviors. Next, we discuss how hormonal regulators interact with neurotransmitters involved in the regulation of ingestive behaviors, such as neuropeptide Y (NPY), agouti-related protein (AgRP) and α-melanocyte stimulating hormone (α-MSH), to regulate ingestive behavior. Finally, we discuss the potential impact that perinatal nutrient availability can have on the neuroendocrine regulation of ingestive behavior. Understanding the hormonal mechanisms that connect metabolic fuel availability to central appetite regulatory circuits should provide a better understanding of the neuroendocrine regulation of the motivation to engage in ingestive behavior.
Collapse
|
13
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|
14
|
Teubner BJ, Bartness TJ. PYY(3-36) into the arcuate nucleus inhibits food deprivation-induced increases in food hoarding and intake. Peptides 2013; 47:20-8. [PMID: 23816798 PMCID: PMC3759582 DOI: 10.1016/j.peptides.2013.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/11/2013] [Accepted: 05/13/2013] [Indexed: 12/17/2022]
Abstract
Central administration of neuropeptide Y (NPY) increases food intake in laboratory rats and mice, as well as food foraging and hoarding in Siberian hamsters. The NPY-Y1 and Y5 receptors (Rs) within the hypothalamus appear sufficient to account for these increases in ingestive behaviors. Stimulation of NPY-Y2Rs in the Arcuate nucleus (Arc) has an anorexigenic effect as shown by central or peripheral administration of its natural ligand peptide YY (3-36) and pharmacological NPY-Y2R antagonism by BIIE0246 increases food intake. Both effects on food intake by NPY-Y2R agonism and antagonism are relatively short-lived lasting ∼4h. The role of NPY-Y2Rs in appetitive ingestive behaviors (food foraging/hoarding) is untested, however. Therefore, Siberians hamsters, a natural food hoarder, were housed in a semi-natural burrow/foraging system that had (a) foraging requirement (10 revolutions/pellet), no free food (true foraging group), (b) no running wheel access, free food (general malaise control) or (c) running wheel access, free food (exercise control). We microinjected BIIE0246 (antagonist) and PYY(3-36) (agonist) into the Arc to test the role of NPY-Y2Rs there on ingestive behaviors. Food foraging, hoarding, and intake were not affected by Arc BIIE0246 microinjection in fed hamsters 1, 2, 4, and 24h post injection. Stimulation of NPY-Y2Rs by PYY(3-36) inhibited food intake at 0-1 and 1-2h and food hoarding at 1-2h without causing general malaise or affecting foraging. Collectively, these results implicate a sufficiency, but not necessity, of the Arc NPY-Y2R in the inhibition of food intake and food hoarding by Siberian hamsters.
Collapse
Affiliation(s)
- Brett J.W. Teubner
- Department of Biology and Obesity Reversal Center, Georgia State University, Atlanta, GA 30302-4010 USA
| | - Timothy J. Bartness
- Department of Biology and Obesity Reversal Center, Georgia State University, Atlanta, GA 30302-4010 USA
- To whom all correspondence should be addressed. Dr. Timothy J. Bartness, Department of Biology, 24 Peachtree Center Ave. NE, Georgia State University, Atlanta, GA 30302-4010, Phone: (404) 413-5334, FAX: (404) 413-5301,
| |
Collapse
|
15
|
Zhang XY, Yang HD, Zhang Q, Wang Z, Wang DH. Increased feeding and food hoarding following food deprivation are associated with activation of dopamine and orexin neurons in male Brandt's voles. PLoS One 2011; 6:e26408. [PMID: 22046281 PMCID: PMC3203142 DOI: 10.1371/journal.pone.0026408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
Small mammals usually face energetic challenges, such as food shortage, in the field. They have thus evolved species-specific adaptive strategies for survival and reproductive success. In the present study, we examined male Brandt's voles (Lasiopodomys brandtii) for their physiological, behavioral, and neuronal responses to food deprivation (FD) and subsequent re-feeding. Although 48 hr FD induced a decrease in body weight and the resting metabolic rate (RMR), such decreases did not reach statistical significance when compared to the control males that did not experience FD. During the first 2 hr of re-feeding following 48 hr FD, voles showed higher levels of feeding than controls. However, when permitted to hoard food, FD voles showed an increase in food hoarding, rather than feeding, compared to the controls. Further, both feeding and food hoarding induced an increase in neuronal activation, measured by Fos-ir, in a large number of brain areas examined. Interestingly, feeding and food hoarding also induced an increase in the percentage of tyrosine hydroxylase immunoreactive (TH-ir) cells that co-expressed Fos-ir in the ventral tegmental area (VTA), whereas both FD and feeding induced an increase in the percentage of orexin-ir cells that co-expressed Fos-ir in the lateral hypothalamus (LH). Food hoarding also increased orexin-ir/Fos-ir labeling in the LH. Together, our data indicate that food-deprived male Brandt's voles display enhanced feeding or food hoarding dependent upon an environmental setting. In addition, changes in central dopamine and orexin activities in selected brain areas are associated with feeding and hoarding behaviors following FD and subsequent re-feeding.
Collapse
Affiliation(s)
- Xue-Ying Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hui-Di Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida, United States of America
| | - De-Hua Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Bartness TJ, Keen-Rhinehart E, Dailey MJ, Teubner BJ. Neural and hormonal control of food hoarding. Am J Physiol Regul Integr Comp Physiol 2011; 301:R641-55. [PMID: 21653877 DOI: 10.1152/ajpregu.00137.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many animals hoard food, including humans, but despite its pervasiveness, little is known about the physiological mechanisms underlying this appetitive behavior. We summarize studies of food hoarding in humans and rodents with an emphasis on mechanistic laboratory studies of species where this behavior importantly impacts their energy balance (hamsters), but include laboratory rat studies although their wild counterparts do not hoard food. The photoperiod and cold can affect food hoarding, but food availability is the most significant environmental factor affecting food hoarding. Food-deprived/restricted hamsters and humans exhibit large increases in food hoarding compared with their fed counterparts, both doing so without overeating. Some of the peripheral and central peptides involved in food intake also affect food hoarding, although many have not been tested. Ad libitum-fed hamsters given systemic injections of ghrelin, the peripheral orexigenic hormone that increases with fasting, mimics food deprivation-induced increases in food hoarding. Neuropeptide Y or agouti-related protein, brain peptides stimulated by ghrelin, given centrally to ad libitum-fed hamsters, duplicates the early and prolonged postfood deprivation increases in food hoarding, whereas central melanocortin receptor agonism tends to inhibit food deprivation and ghrelin stimulation of hoarding. Central or peripheral leptin injection or peripheral cholecystokinin-33, known satiety peptides, inhibit food hoarding. Food hoarding markedly increases with pregnancy and lactation. Because fasted and/or obese humans hoard more food in general, and more high-density/high-fat foods specifically, than nonfasted and/or nonobese humans, understanding the mechanisms underlying food hoarding could provide another target for behavioral/pharmacological approaches to curb obesity.
Collapse
Affiliation(s)
- Timothy J Bartness
- Department of Biology, Neurobiology and Behavior Program, Georgia State University, Atlanta, Georgia, USA
| | | | | | | |
Collapse
|
17
|
Yang HD, Wang Q, Wang Z, Wang DH. Food hoarding and associated neuronal activation in brain reward circuitry in Mongolian gerbils. Physiol Behav 2011; 104:429-36. [PMID: 21570992 DOI: 10.1016/j.physbeh.2011.04.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 04/17/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Mongolian gerbils (Meriones unguiculatus) display food hoarding and thus provide an opportunity to study the neuromechanisms underlying this behavior. In the present study, male gerbils exhibited a bimodal expression of food hoarding behavior-some displayed high levels of food hoarding whereas others virtually lacked this behavior under normal laboratory conditions with free access to food. Food hoarding was found to be associated with an increase in neuronal activation, indicated by Fos immunoreactive (ir) staining, in several brain areas including the nucleus accumbens, ventral tegmental area (VTA), and lateral hypothalamus. Food hoarding was also associated with increases in the number of cells labeled for tyrosine hydroxylase (TH-ir), the rate limiting enzyme for dopamine conversion, and the number of cells co-labeled for TH-ir/Fos-ir in the VTA, suggesting that dopamine in the brain reward circuitry may be involved in food hoarding. Further, we found that 22 h of food deprivation induced food hoarding in some, but not all, males that naturally did not display food hoarding. In these males, however, food hoarding did not increase TH-ir or TH-ir/Fos-ir expression in the VTA. Together, these data indicate that male Mongolian gerbils display diverse phenotypes of food hoarding behavior and that dopamine in the brain reward circuitry may be involved in the control of naturally occurring, but not food deprivation-induced, food hoarding.
Collapse
Affiliation(s)
- Hui-Di Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
18
|
|
19
|
Klingerman CM, Krishnamoorthy K, Patel K, Spiro AB, Struby C, Patel A, Schneider JE. Energetic challenges unmask the role of ovarian hormones in orchestrating ingestive and sex behaviors. Horm Behav 2010; 58:563-74. [PMID: 20624393 DOI: 10.1016/j.yhbeh.2010.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 06/24/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
Effects of ovarian hormones on sex and ingestive behavior are well studied, and yet, their role in diverting attention from food to sex has not been examined directly, possibly because these functions are masked under conditions of excessive food abundance typical of the laboratory. Female Syrian hamsters were either fed ad libitum or food-restricted to 75% of their ad libitum intake for 8days and then tested every day of the estrous cycle for their preference for males versus food, food hoarding and food intake in an apparatus designed to mimic aspects of their natural habitat. The food-restricted, but not the fed females, varied significantly over the estrous cycle in appetitive behaviors, which included their preference for males versus food and in the amount of food hoarded, with low food hoarding and high male preference on the night of ovulation. In contrast, there were no significant differences between restricted and ad libitum-fed females in the consummatory behaviors, namely, food intake or lordosis duration. In ovariectomized females, estradiol plus progesterone treatment delayed food restriction-stimulated hoarding and hastened feeding-inhibited hoarding without affecting food intake or lordosis duration. In summary, energy restriction and the presence of males unmasked an effect that was obscured in the normal laboratory conditions characterized by isolation and an over abundance of readily available food. These results are consistent with the idea that ovarian hormones orchestrate appetites for food and sex to optimize reproductive success under fluctuating energetic conditions.
Collapse
Affiliation(s)
- Candice M Klingerman
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Keen-Rhinehart E, Dailey MJ, Bartness T. Physiological mechanisms for food-hoarding motivation in animals. Philos Trans R Soc Lond B Biol Sci 2010; 365:961-75. [PMID: 20156819 PMCID: PMC2830250 DOI: 10.1098/rstb.2009.0225] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The study of ingestive behaviour has an extensive history, starting as early as 1918 when Wallace Craig, an animal behaviourist, coined the terms 'appetitive' and 'consummatory' for the two-part sequence of eating, drinking and sexual behaviours. Since then, most ingestive behaviour research has focused on the neuroendocrine control of food ingestion (consummatory behaviour). The quantity of food eaten, however, is also influenced by the drive both to acquire and to store food (appetitive behaviour). For example, hamster species have a natural proclivity to hoard food and preferentially alter appetitive ingestive behaviours in response to environmental changes and/or metabolic hormones and neuropeptides, whereas other species would instead primarily increase their food intake. Therefore, with the strong appetitive component to their ingestive behaviour that is relatively separate from their consummatory behaviour, they seem an ideal model for elucidating the neuroendocrine mechanisms underlying the control of food hoarding and foraging. This review focuses on the appetitive side of ingestive behaviour, in particular food hoarding, attempting to integrate what is known about the neuroendocrine mechanisms regulating this relatively poorly studied behaviour. An hypothesis is formed stating that the direction of 'energy flux' is a unifying factor for the control of food hoarding.
Collapse
Affiliation(s)
| | - Megan J. Dailey
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30303, USA
- Department of Psychology, Neurobiology and Behavior Program, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30303, USA
| | - Timothy Bartness
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30303, USA
- Department of Psychology, Neurobiology and Behavior Program, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30303, USA
| |
Collapse
|
21
|
Teubner BJW, Bartness TJ. Body mass loss during adaptation to short winter-like days increases food foraging, but not food hoarding. Physiol Behav 2009; 97:135-40. [PMID: 19224707 DOI: 10.1016/j.physbeh.2009.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 02/09/2009] [Accepted: 02/10/2009] [Indexed: 11/28/2022]
Abstract
Siberian hamsters markedly reduce their body/lipid mass ( approximately 20-45%) in short 'winter-like' days (SD). Decreases in body/lipid mass associated with food deprivation or lipectomy result in increases in foraging and food hoarding. When at their SD-induced body/lipid mass nadir, food hoarding is not increased despite their decreases in body/lipid mass, but hoarding was not tested during the dynamic period of body/lipid mass loss (first 5-6 weeks of SDs). Therefore, we tested for changes in foraging/hoarding during this initial period in Siberian hamsters housed in a simulated burrow with a wheel running-based foraging system and exposed to either long 'summer-like' days (LD) or SDs. Two foraging effort conditions were used: 10 Revolutions/Pellet (pellet delivered after running 10 revolutions) and a Free Wheel/Free Food condition (wheel available, food pellets non-contingently available). Regardless of the foraging condition, body mass was significantly reduced across 8 weeks of SDs ( approximately 15%). Foraging increased after 7 weeks in SDs, but food hoarding did not increase compared to LDs. Instead food hoarding significantly decreased in SDs at Weeks 2-5 compared with Week 0 values, with the 10 Revolutions/Pellet foraging group returning to LD levels thereafter and the Free Wheel/Free Food group remaining reduced from Weeks 2-7. Collectively, we found that SDs decreased body mass, increased foraging after 7 weeks, and increased food hoarding, but only after an initial decrease and not above that seen in LDs. These data suggest that SD-induced body/lipid mass losses do not engender similar behavioral responses as seen with food deprivation or lipectomy.
Collapse
Affiliation(s)
- Brett J W Teubner
- Department of Biology and Center for Behavioral Neuroscience, Georgia State University, Atlanta, GA 30302-4010, United States
| | | |
Collapse
|
22
|
Keen-Rhinehart E, Bartness TJ. Leptin inhibits food-deprivation-induced increases in food intake and food hoarding. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1737-46. [PMID: 18832088 DOI: 10.1152/ajpregu.90512.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Food deprivation stimulates foraging and hoarding and to a much lesser extent, food intake in Siberian hamsters. Leptin, the anorexigenic hormone secreted primarily from adipocytes, may act in the periphery, the brain, or both to inhibit these ingestive behaviors. Therefore, we tested whether leptin given either intracerebroventricularly or intraperitoneally, would block food deprivation-induced increases in food hoarding, foraging, and intake in animals with differing foraging requirements. Hamsters were trained in a running wheel-based food delivery foraging system coupled with simulated burrow housing. We determined the effects of food deprivation and several peripheral doses of leptin on plasma leptin concentrations. Hamsters were then food deprived for 48 h and given leptin (0, 10, 40, or 80 microg ip), and additional hamsters were food deprived for 48 h and given leptin (0, 1.25, 2.5, or 5.0 microg icv). Foraging, food intake, and hoarding were measured postinjection. Food deprivation stimulated food hoarding to a greater degree and duration than food intake. In animals with a foraging requirement, intracerebroventricular leptin almost completely blocked food deprivation-induced increased food hoarding and intake, but increased foraging. Peripheral leptin treatment was most effective in a sedentary control group, completely inhibiting food deprivation-induced increased food hoarding and intake at the two highest doses, and did not affect foraging at any dose. Thus, the ability of leptin to inhibit food deprivation-induced increases in ingestive behaviors differs based on foraging effort (energy expenditure) and the route of administration of leptin administration.
Collapse
Affiliation(s)
- Erin Keen-Rhinehart
- Department of Biology, Georgia State University, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
23
|
Dailey ME, Bartness TJ. Fat pad-specific effects of lipectomy on foraging, food hoarding, and food intake. Am J Physiol Regul Integr Comp Physiol 2007; 294:R321-8. [PMID: 18003790 DOI: 10.1152/ajpregu.00230.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Unlike most species, after food deprivation, Siberian hamsters increase foraging and food hoarding, two appetitive ingestive behaviors, but not food intake, a consummatory ingestive behavior. We previously demonstrated (Wood AD, Bartness TJ, Am J Physiol Regul Integr Comp Physiol 272: R783-R792, 1997) that increases in food hoarding are triggered by directly decreasing body fat levels through partial surgical lipectomy; however, we did not test if lipectomy affected foraging, nor if the magnitude of the lipid deficit affected food hoard size. Therefore, we tested whether varying the size of the lipectomy-induced lipid deficit and/or foraging effort affected foraging, food hoarding, or food intake. This was accomplished by housing adult male Siberian hamsters in a foraging/hoarding system and removing (x) both epididymal white adipose tissue (EWATx) pads, both inguinal white adipose tissue (IWATx) pads, or both EWAT and IWAT pads (EWATx + IWATx) and measuring foraging, food hoarding, and food intake for 12 wk. The lipectomy-induced lipid deficit triggered different patterns of white adipose tissue mass compensation that varied with foraging effort. Foraging for food (10 wheel revolutions to earn a food pellet) abolished the EWATx-induced compensation in IWAT pad mass. The magnitude of the lipid deficit did not engender a proportional change in any of the appetitive or consummatory ingestive behaviors. EWATx caused the greatest increase in food hoarding compared with IWATx or EWATx + IWATx, when animals were required to forage for their food. Collectively, it appears that the magnitude of a lipid deficit does not affect appetitive or consummatory behaviors; rather, when energy (foraging) demands are increased, loss of specific (gonadal) fat pads can preferentially stimulate increases in food hoarding.
Collapse
Affiliation(s)
- Megan E Dailey
- Department of Biology, Georgia State University, 24 Peachtree Center Avenue NE, Atlanta, GA 30302-4010, USA
| | | |
Collapse
|
24
|
Buckley CA, Schneider JE, Cundall D. Kinematic analysis of an appetitive food-handling behavior: the functional morphology of Syrian hamster cheek pouches. J Exp Biol 2007; 210:3096-106. [PMID: 17704084 DOI: 10.1242/jeb.003210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Prodigious food hoarding in Syrian hamsters Mesocricetus auratusWaterhouse is strongly linked to appetite and is made possible by large internal cheek pouches. We provide a functional analysis of the cheek pouch and its associated retractor muscle. Frame-by-frame analysis of videotaped pouch-filling behavior revealed multiple jaw cycles for each food item pouched and the use of more jaw cycles to pouch large food items (∼2.5 g chow pellets) than small (corn kernels or sunflower seed with husks). These results stand in contrast to previously reported pouching kinematics in the externally pouched Dipodomys deserti, which uses only one jaw cycle per pouching event. Comparison of pouching and mastication in the same individuals also suggests that in Syrian hamsters, feeding jaw cycles are modulated to accommodate pouch filling primarily by the addition of a pause between fast open and fast close phases, which we call `gape phase'. Contrary to previous assertions, the retractor muscle does not merely provide structural support for the full pouch during locomotion. Video analysis of ten hamsters with unilaterally denervated retractor muscles and electrophysiological study of an anaesthetized subject confirmed that retractor muscle activity during pouch filling increases pouching efficiency for food items subsequent to the first.
Collapse
|
25
|
Schneider JE, Casper JF, Barisich A, Schoengold C, Cherry S, Surico J, DeBarba A, Fabris F, Rabold E. Food deprivation and leptin prioritize ingestive and sex behavior without affecting estrous cycles in Syrian hamsters. Horm Behav 2007; 51:413-27. [PMID: 17306262 DOI: 10.1016/j.yhbeh.2006.12.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 12/15/2006] [Accepted: 12/18/2006] [Indexed: 11/19/2022]
Abstract
Energy consumption is critical for the energetically expensive processes related to reproduction, and thus, mechanisms that increase ingestive behavior are directly linked to reproductive success. Similarly, the mechanisms that inhibit hunger and ingestive behavior might be most adaptive when these mechanisms cause individuals to stop foraging, hoarding and eating in order to find and court potential mates. In the laboratory, ingestive behaviors are typically studied separately from reproductive behaviors even though it is likely that these behaviors evolved under conditions in which both food and mates were available. We examined the choice between paracopulatory and ingestive behaviors in a semi-natural environment in which both food and potential mates were available. Intact female Syrian hamsters showed a high preference for males on days 3 and 4 (day 4 being the day of ovulation and estrous behavior), and a 48-h period of food deprivation significantly decreased preference for sex and increased preference for eating and food hoarding on day 3 in 89% of the hamsters, although none became anestrous. The same period of food deprivation significantly decreased the level of vaginal marking without significant effects on plasma estradiol concentrations. Next, hamsters were either food deprived (FD) or fed ad libitum, and half of each group was treated with vehicle or the adipocyte hormone leptin. The percentage of females with a low preference for sex was significantly greater in the FD compared to the ad libitum-fed groups, and leptin treatment prevented this effect. Metabolic fuels, possibly acting through leptin and other hormones, might influence sensitivity to estradiol or enhance the downstream effects of estradiol, thereby increasing motivation for sex and decreasing the relative motivation to forage, hoard and eat food.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Schneider JE. Metabolic and hormonal control of the desire for food and sex: implications for obesity and eating disorders. Horm Behav 2006; 50:562-71. [PMID: 16875692 DOI: 10.1016/j.yhbeh.2006.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 06/26/2006] [Accepted: 06/26/2006] [Indexed: 01/08/2023]
Abstract
During evolution, the ability to overeat and store the extra energy as glycogen and lipids in specialized tissues must have conferred a reproductive advantage by releasing animals from the need to eat constantly, enabling them to engage in behaviors that improved reproductive success. Mechanisms that inhibited ingestive behavior might have been most adaptive when they caused individuals to stop foraging, hoarding and eating in order to find and court potential mates. Conversely, the ability to abstain from reproductive activities to engage in foraging and eating was probably critical for individual survival during severe energetic challenges because reproductive processes are energetically costly and can be delayed until the energetic conditions improve. The mechanisms that control ingestive behavior most likely evolved under conditions in which both food and mates were available, and thus, our understanding might be limited by our narrow focus on food intake in animals isolated from potential mates, and reproductive behaviors in the absence of food. Our understanding of obesity and eating disorders will be enriched by the study of the choice between ingestive and reproductive behaviors and by a renewed attention to "reproductive" hormones such as gonadal steroids and hypothalamic releasing hormones. Furthermore, leptin and reproductive hormones have both organizational and activational effects on the energy balancing system including those mechanisms that control appetite, body fat content and body fat distribution. Understanding these organizational and activational effects on body fat distribution might lead to a better understanding of sex differences in the propensity to develop obesity, type II diabetes and eating disorders.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
| |
Collapse
|
27
|
Wang JM, Zhang YM, Wang DH. Seasonal regulations of energetics, serum concentrations of leptin, and uncoupling protein 1 content of brown adipose tissue in root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. J Comp Physiol B 2006; 176:663-71. [PMID: 16786335 DOI: 10.1007/s00360-006-0089-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2005] [Revised: 02/22/2006] [Accepted: 04/18/2006] [Indexed: 11/29/2022]
Abstract
Survival of small mammals in winter requires proper adjustments in physiology, behavior and morphology. The present study was designed to examine the changes in serum leptin concentration and the molecular basis of thermogenesis in seasonally acclimatized root voles (Microtus oeconomus) from the Qinghai-Tibetan plateau. In January root voles had lower body mass and body fat mass coupled with higher nonshivering thermogenesis (NST) capacity. Consistently, cytochrome c oxidase activity and mitochondrial uncoupling protein-1 (UCP1) protein contents in brown adipose tissues were higher in January as compared to that in July. Circulating level of serum leptin was significantly lower in winter and higher in July. Correlation analysis showed that serum leptin levels were positively related with body mass and body fat mass while negatively correlated with UCP1 protein contents. Together, these data provided further evidence for our previous findings that root voles from the Qinghai-Tibetan plateau mainly depend on higher NST coupled with lower body mass to enhance winter survival. Further, fat deposition was significantly mobilized in cold winter and leptin was potentially involved in the regulation of body mass and thermogenesis in root voles. Serum leptin might act as a starvation signal in winter and satiety signal in summer.
Collapse
Affiliation(s)
- Jian-Mei Wang
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining , 810001 Qinghai, China
| | | | | |
Collapse
|
28
|
Ammar AA, Nergårdh R, Fredholm BB, Brodin U, Södersten P. Intake inhibition by NPY and CCK-8: A challenge of the notion of NPY as an “Orexigen”. Behav Brain Res 2005; 161:82-7. [PMID: 15904713 DOI: 10.1016/j.bbr.2005.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2004] [Revised: 11/30/2004] [Accepted: 01/13/2005] [Indexed: 12/16/2022]
Abstract
We tested the hypothesis that neuropeptide Y (NPY) interacts with cholecystokinin octapeptide (CCK-8) in inhibition of intake of an intraorally infused solution of sucrose, a test of consummatory ingestive behavior. Both intracerebroventricular infusion of NPY (10 microg) and intraperitoneal injection of CCK-8 (0.5 micro/kg) reduced the intake of a 1M solution of sucrose infused intraorally at a rate of 0.5 ml/min in ovariectomized female rats, but the two peptides did not interact in inhibiting intraoral intake. By contrast, NPY increased intake if the sucrose solution was ingested from a bottle, a test demanding both appetitive and consummatory ingestive responses. CCK-8 inhibited intake in this test and its inhibitory effect was increased by simultaneous treatment with NPY. The activity in the nucleus of the solitary tract (NTS), a brainstem relay mediating inhibition of intake, judged by the expression of c-fos-like immunoreactivity, was significantly increased after treatment with CCK-8 or NPY to approximately the same extent. Combined treatment with NPY and CCK-8 did not increase the c-fos-like immunoreactivity in the NTS above treatment with NPY or CCK-8 alone. These results strengthen the hypothesis that NPY, like CCK-8, is an inhibitor of consummatory ingestive behavior and suggest that this inhibition is mediated via the NTS.
Collapse
Affiliation(s)
- A A Ammar
- Karolinska Institutet, Section of Applied Neuroendocrinology, Novum, S-14157 Huddinge, Sweden
| | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- W A Cupples
- Centre for Biomedical Research, Department of Biology, University of Victoria, PO Box 3020, STN CSC Victoria, British Columbia, Canada V8W 3N5.
| |
Collapse
|
30
|
Yabuki A, Ojima T, Kojima M, Nishi Y, Mifune H, Matsumoto M, Kamimura R, Masuyama T, Suzuki S. Characterization and species differences in gastric ghrelin cells from mice, rats and hamsters. J Anat 2004; 205:239-46. [PMID: 15379929 PMCID: PMC1571341 DOI: 10.1111/j.0021-8782.2004.00331.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ghrelin is a newly identified gastric peptide hormone that has various important functions, including growth-hormone release and appetite stimulation. Ghrelin-immunoreactive cells (ghrelin cells) are characterized by X-type endocrine cells in the rat stomach. In the present study, we analysed ghrelin cells in fundi of stomach from ICR mice and Syrian hamsters immunohistochemically, immunoelectron microscopically and morphometrically, and compared the results with those from Wistar rats. Immunohistochemistry revealed that ghrelin cells were sparsely distributed in the proper gastric glands in all species. The number of ghrelin cells per unit area in hamsters was significantly lower than that in rats. Immunoelectron microscopy detected ghrelin immunolabelling in granules in the X-type endocrine cells. However, the diameter of granules in the hamsters was significantly smaller than that in the mice and rats. Gastric ghrelin contents were determined by radioimmunoassay, and levels in the hamsters were significantly lower than those in mice and rats. The results from mice were identical to those from rats. In conclusion, gastric ghrelin cells in mice and hamsters are characterized by X-type endocrine cells, as has been observed in rats. However, the data indicated that gastric ghrelin production was lower in hamster than in mouse or rat.
Collapse
Affiliation(s)
- Akira Yabuki
- Department of Veterinary Anatomy, Faculty of Agriculture, Research Center for Life Science Resources, Kagoshima University, Korimoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|